

Supplementary Information

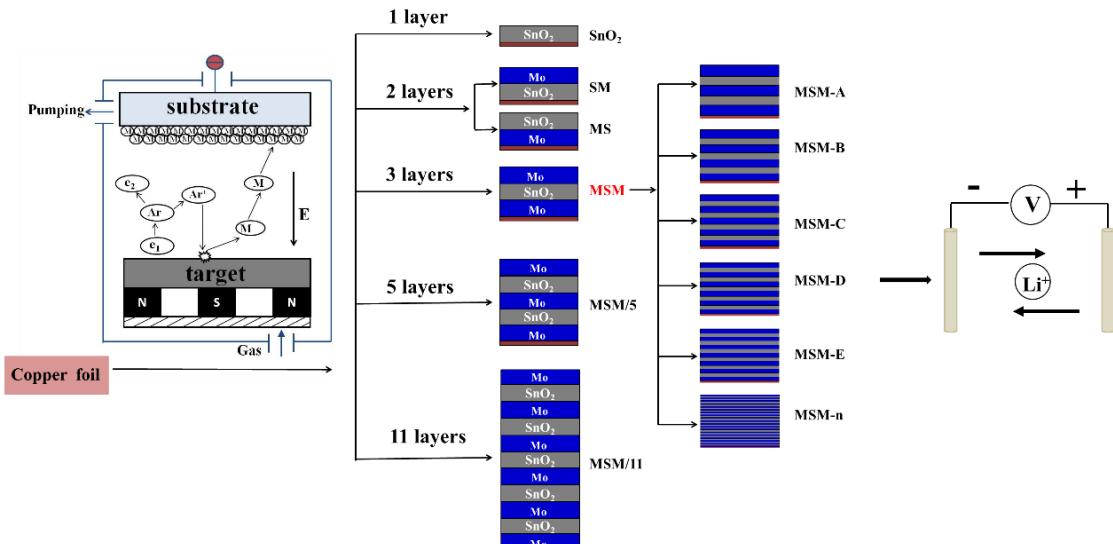
Achieving over 90 % initial Coulombic efficiency and highly stable Li storage in SnO₂ by constructing interfacial oxygen redistribution in multilayers

5
6 Xuexia Lan^{†a}, Jie Cui^{†b}, Xiaofeng Zhang^{†c}, Renzong Hu^{*a}, Liang Tan^a, Jiayi He^a,
7 Houpo Zhang^a, XingYu Xiong^a, Xianfeng Yang^b, Shunqing Wu^{*c}, and Min Zhu^{*a}

9 ^aSchool of Materials Science and Engineering, Guangdong Provincial Key Laboratory
10 of Advanced Energy Storage Materials, South China University of Technology,
11 Guangzhou, 510640, China

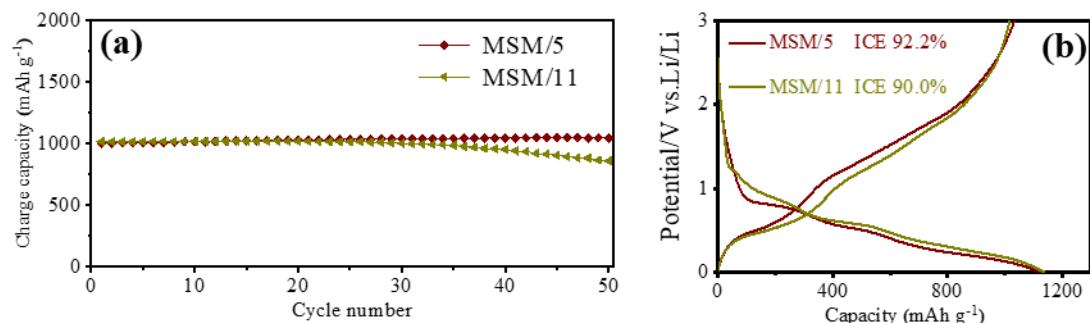
¹² ^b Analytical and Testing Center, South China University of Technology, Guangzhou,
¹³ 510640, China

14 ^c Department of Physics, OSED, Key Laboratory of Low Dimensional Condensed
15 Matter Physics (Department of Education of Fujian Province), Jiujiang Research
16 Institute, Xiamen University, Xiamen, 361005, China

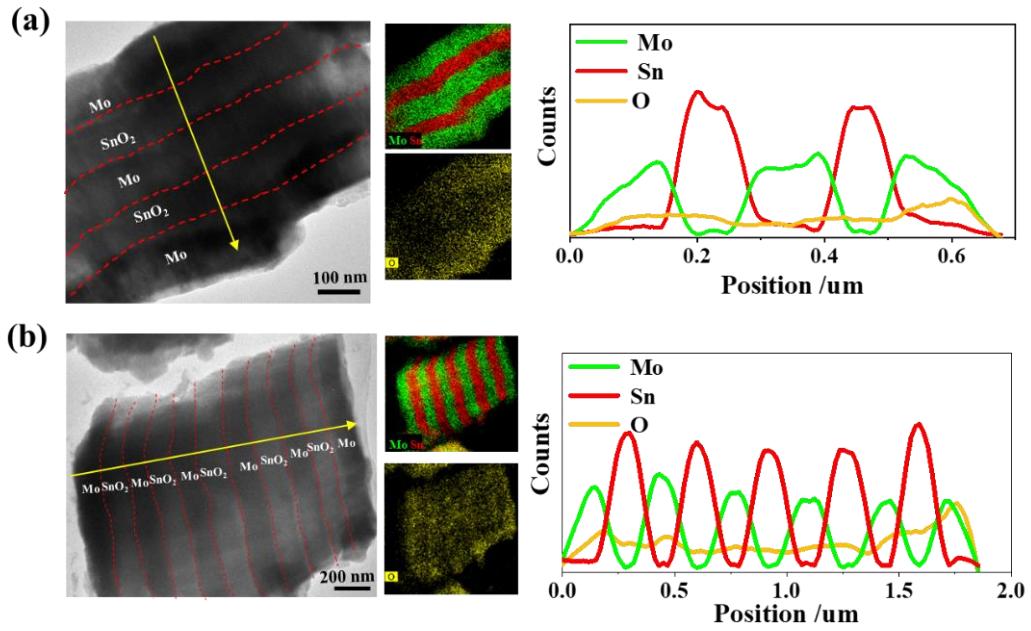

17 [†] These authors contributed equally.

18 * Corresponding Author.

19 E-mail addresses: msrenzonghu@scut.edu.cn (Renzong Hu)

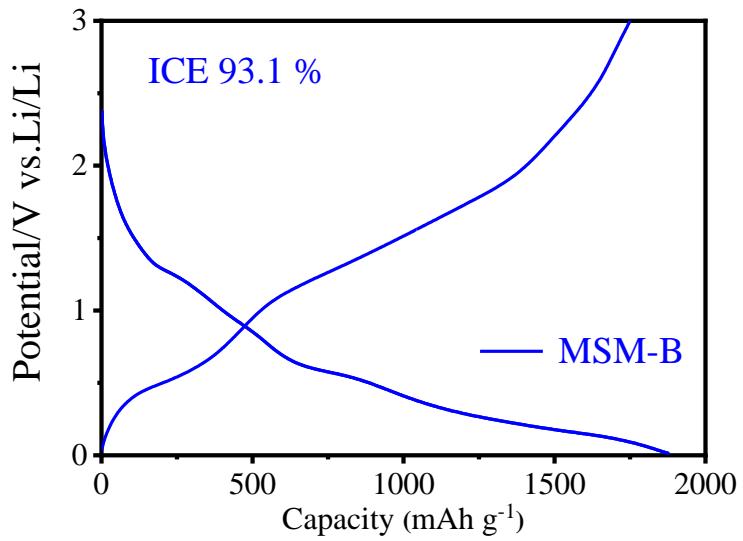

20 wsq@xmu.edu.cn (Shunqing Wu)

21 memzhu@scut.edu.cn (Min Zhu)

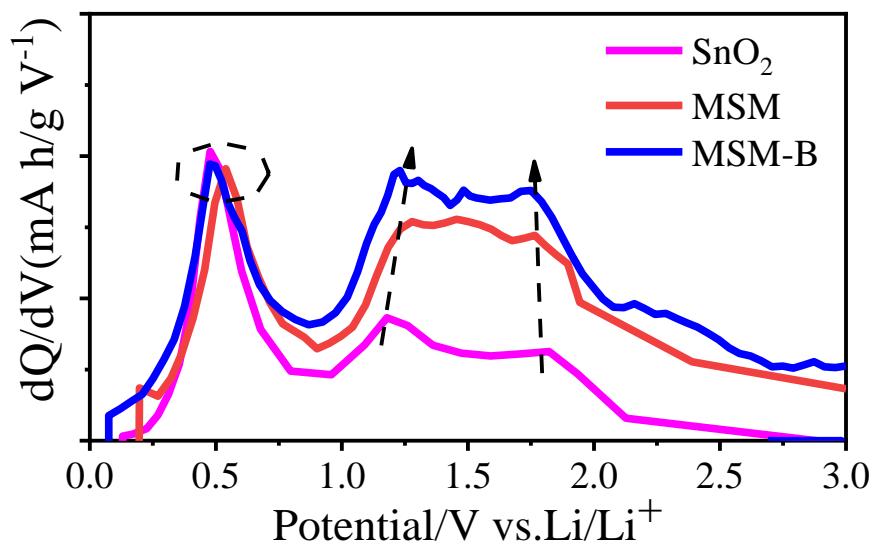

1 **Figure S1.** Schematic illustration of the SnO₂-Mo multilayered electrodes preparation
2 procedures. (a) Depositing the SnO₂-Mo multilayers on the copper foil current collector.
3 (b) Assembling Li-ion cells to evaluate the electrochemical performance of the SnO₂-
4 Mo multilayered electrodes.

5

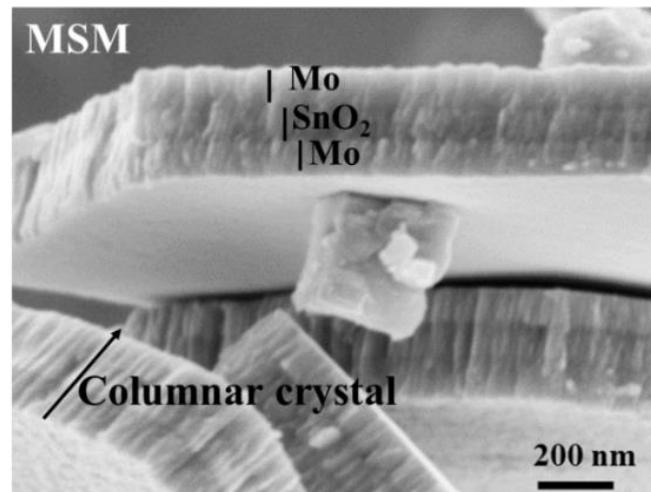
7


8 **Figure S2.** Cycling performance and discharge/charge profiles of the MSM/5 and
9 MSM/11 electrodes.

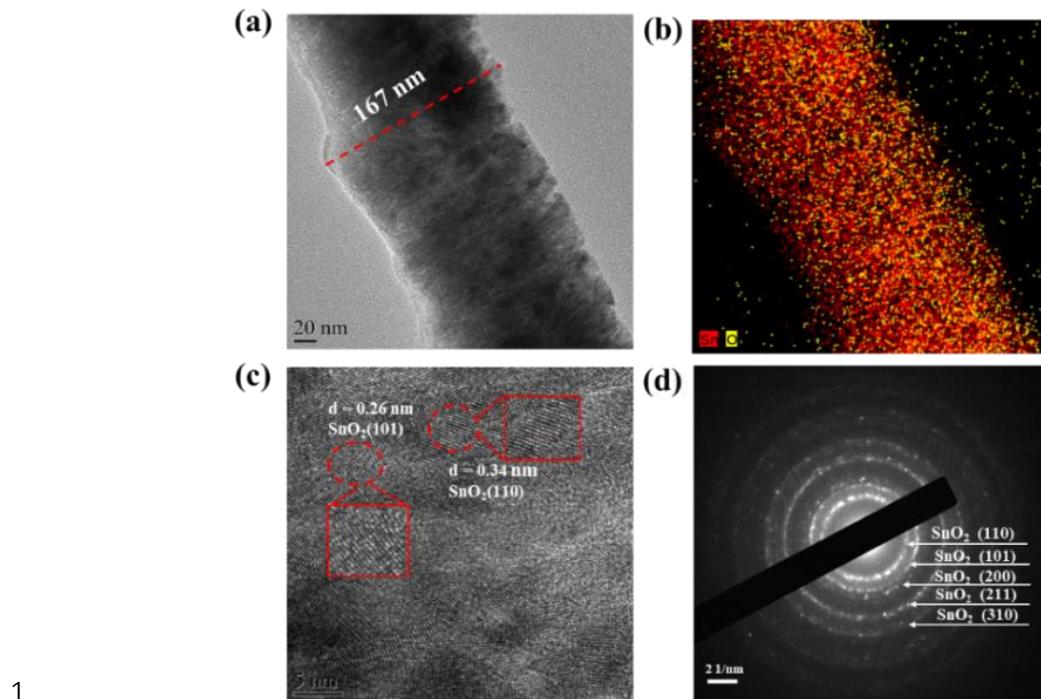
1

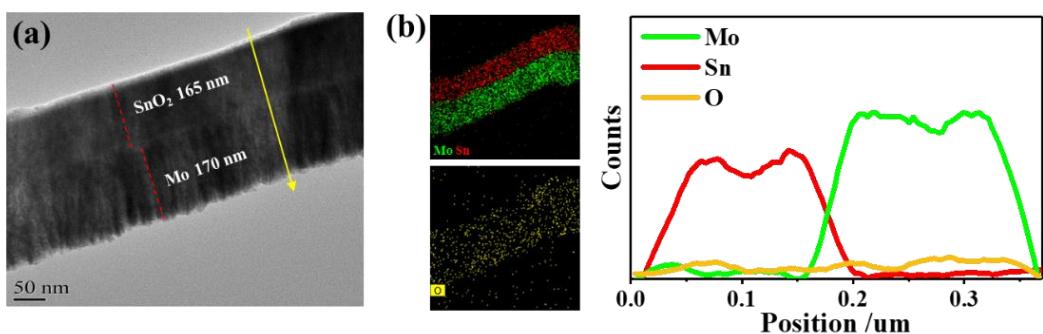

2 **Figure S3.** TEM images of cross-sectional morphology and EDS images for MSM/5

3 (a) and MSM/11 (b) electrodes.



5 **Figure S4.** Discharge/charge profiles of the MSM-B electrode.


6


1
2 **Figure S5.** Differential charge capacity vs. voltage curve of the SnO_2 , MSM and MSM-
3 B electrodes at the 1st cycle.
4

5
6 **Figure S6.** SEM image of cross-sectional morphology for the MSM electrode.
7

1 **Figure S7.** TEM images of cross-sectional morphology and phase observation for the
2 SnO₂ electrode. (a) Typical TEM image of cross-sectional morphology. (b) EDS
3 mapping images with Sn and O elements. (c) HRTEM image. (d) SAED image.

5 **Figure S8.** TEM image of cross-sectional morphology (a) and EDS images (b) for
6 the SM electrode.

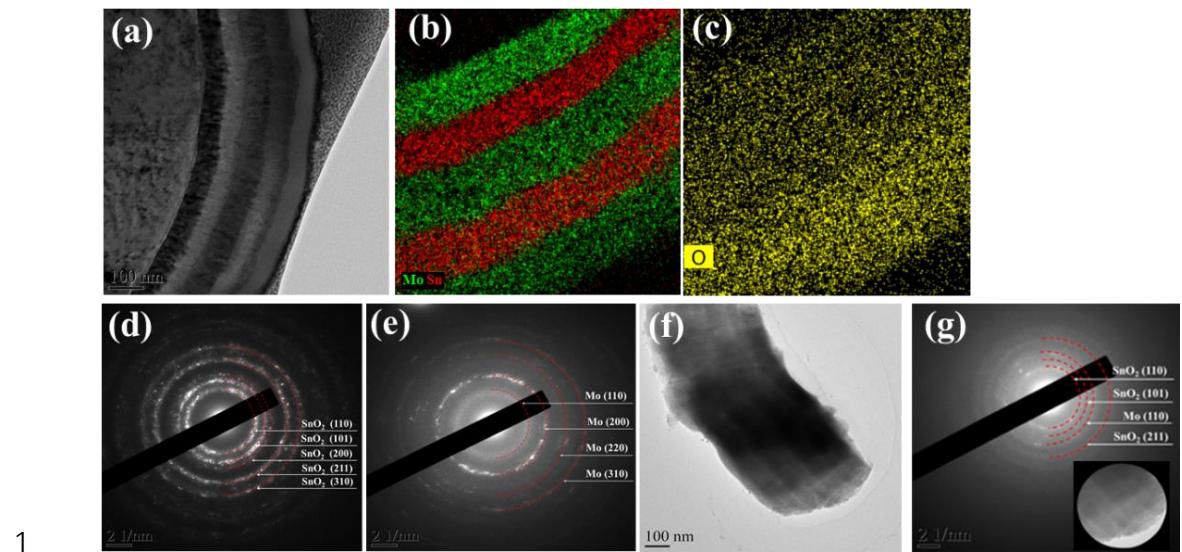


Figure S9. TEM images of cross-sectional morphology and phase observation for MSM-A (a-e) and MSM-B (f, g) electrodes. (a) Typical TEM image of cross-sectional morphology. (b, c) EDS mapping of Sn, Mo and O elements. (d) SAED image of SnO_2 layer. (e) SAED image of Mo layer. (f) TEM cross-sectional morphology image. (g) SAED image (insert image shows the selected part).

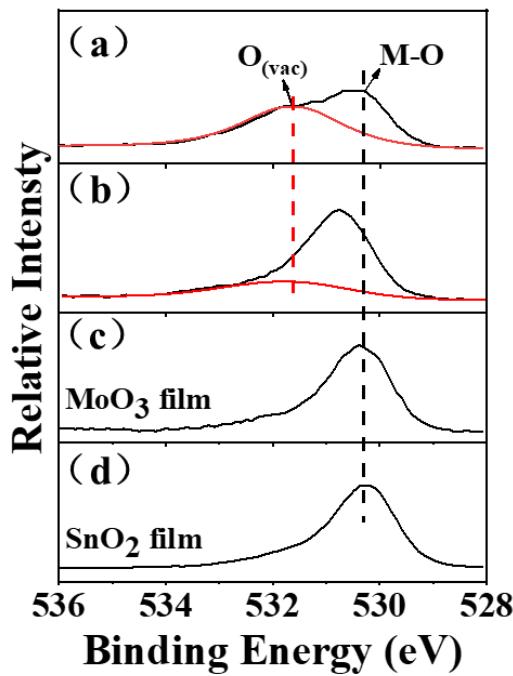
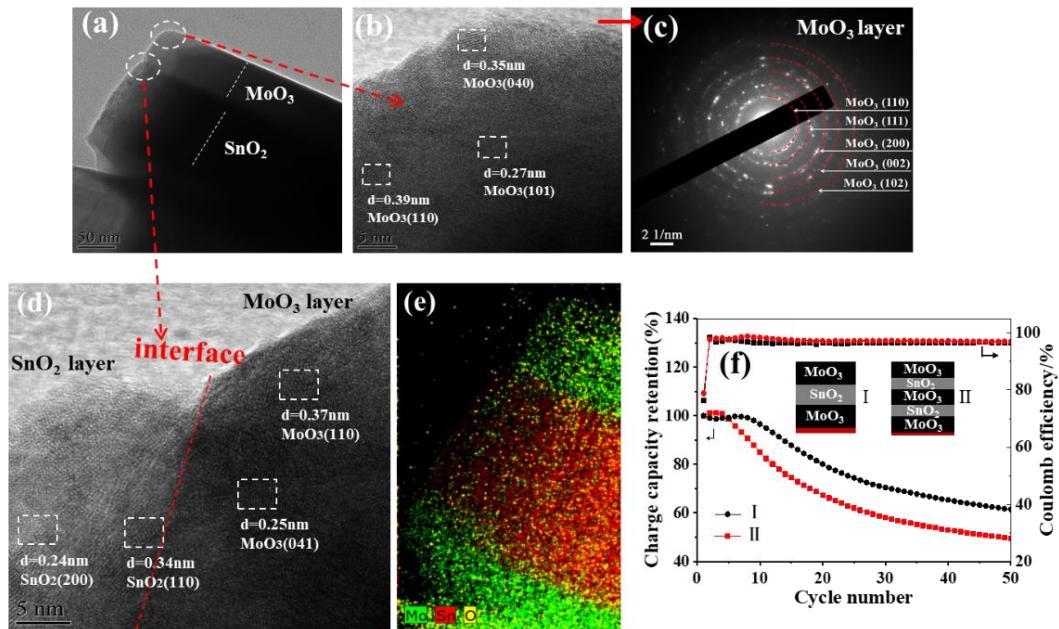
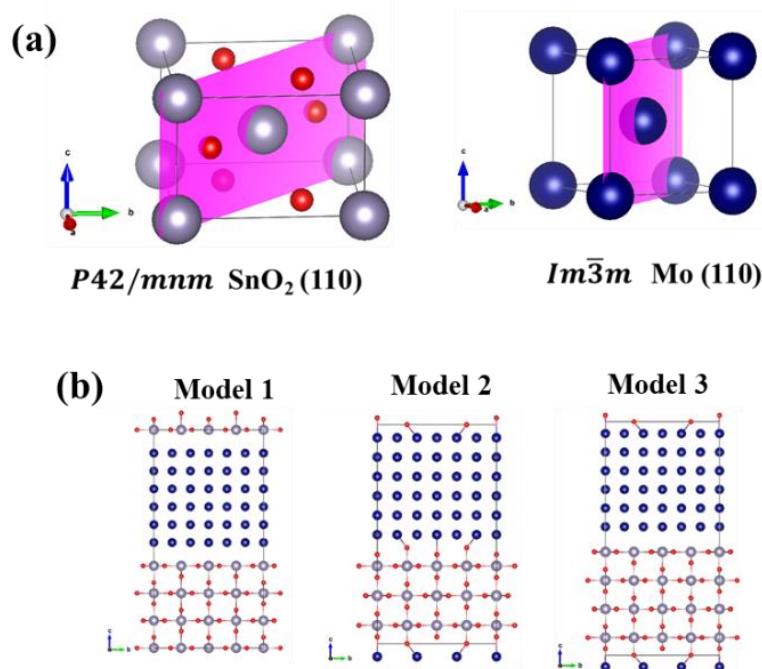
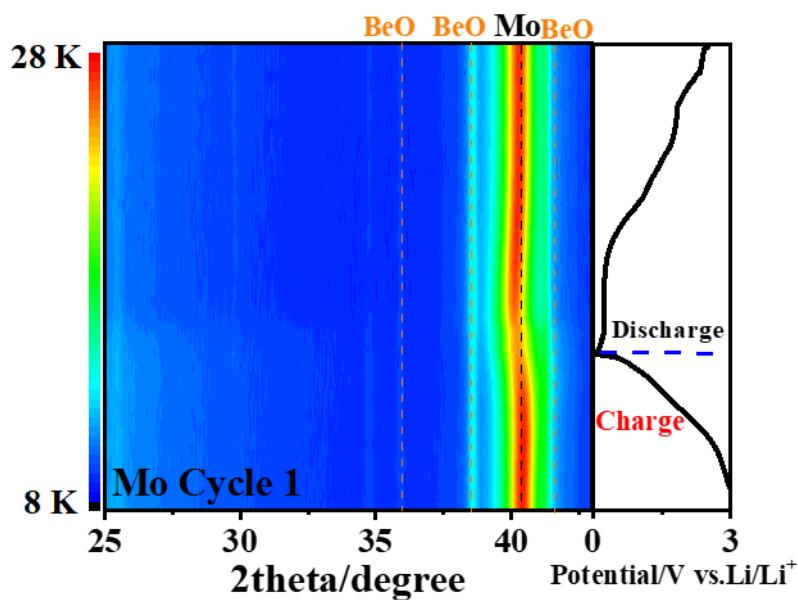



Figure S10. XPS spectra of O 1s. (a) at the up side of interface in MSM. (b) at the down side of interface in MSM. (c) MoO_3 film. (d) SnO_2 film.

1 down side of interface in MSM. (c) SnO₂ films. (d) MoO₃ films.



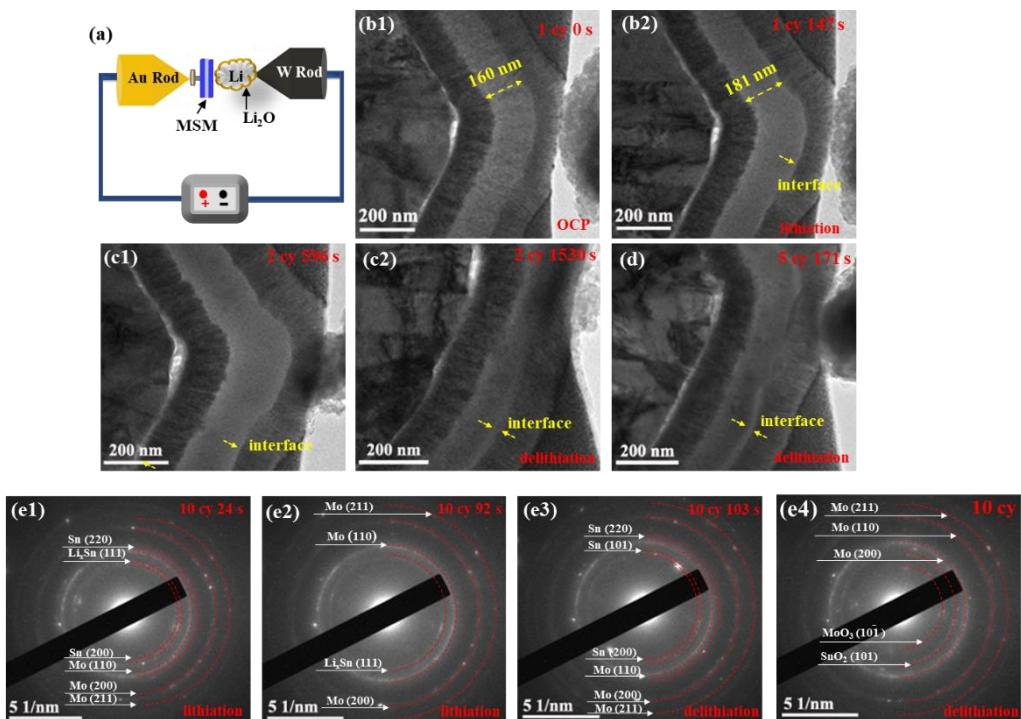
2 **Figure S11.** (a-e) TEM observation for the MoO₃/SnO₂/MoO₃ electrode. (a) Typical
3 cross-sectional morphology. (b) HRTEM image of the MoO₃ layer. (c) SAED image
4 of the MoO₃ layer. (d) HRTEM image at the interface between MoO₃ and SnO₂ layers.
5 (e) EDS mapping image of Sn, Mo and O elements. (f) Cycling performance of
6 MoO₃-SnO₂ electrodes.


8 The HRTEM and SAED images for MoO₃ layer demonstrate the polycrystalline
9 state of MoO₃ (Figure S11b, c). From the locally magnified HRTEM image at the
10 interface between MoO₃ and SnO₂ layer (Figure S11d), obvious lattice fringes for MoO₃
11 and SnO₂ can be observed, indicating high crystallinity, which is significantly different
12 from the amorphous interfaces in the MSM. Figure S11f displays the cycling
13 performance of MoO₃/SnO₂/MoO₃ and MoO₃/SnO₂/MoO₃/SnO₂/MoO₃ electrodes.

14 After 50 cycles, the MoO₃/SnO₂/MoO₃ achieves a charge capacity retention of 61.4 %,
15 much lower than that of the MSM. Furthermore, the charge capacity retention further

1 decreased to 49.5 % for the $\text{MoO}_3/\text{SnO}_2/\text{MoO}_3/\text{SnO}_2/\text{MoO}_3$ with greater interfacial
2 density, showing the negative effects of the interface in the MoO_3 - SnO_2 electrodes.

3
4 **Figure S12.** (a) Crystal structures of SnO_2 and Mo viewed along the [001] direction.
5 (b) Three SnO_2 /Mo interface models.
6

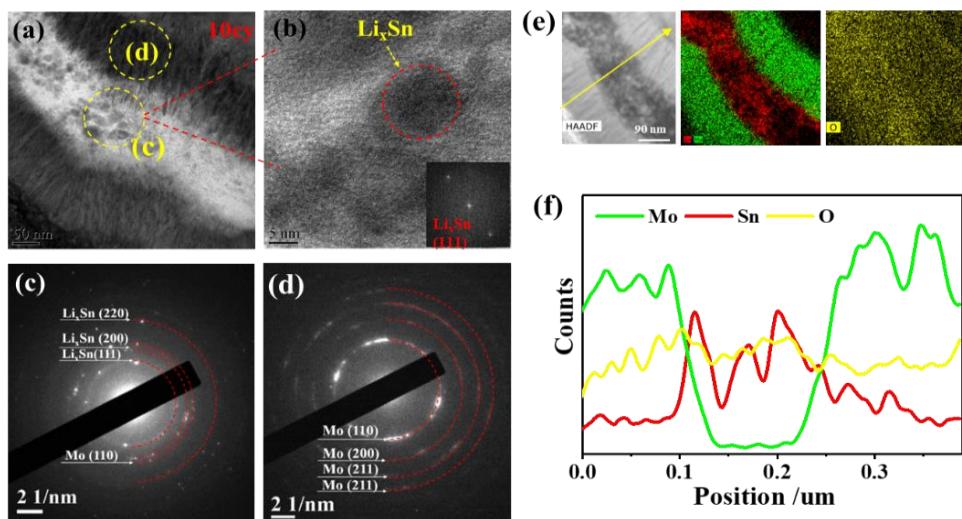


7
8 **Figure S13.** In-situ XRD phase evolution of Mo during lithiation/delithiation

1 processes.

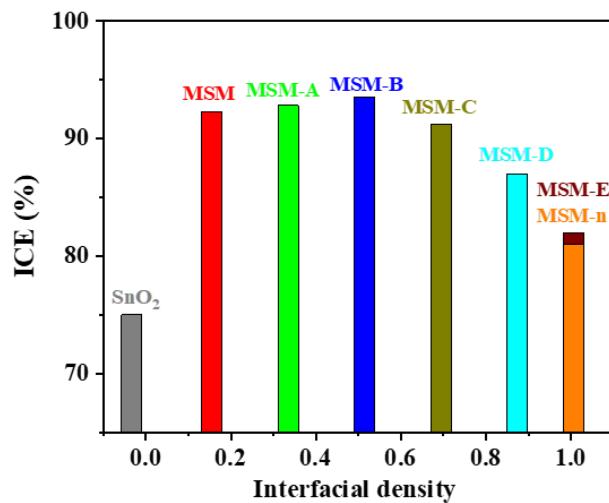
2 For the pure Mo film shown in Figure S13, no additional phases or impurities are
3 presented throughout the initial cycle due to the inactivity of Mo to Li^+ . However, the
4 diffraction peak of Mo slightly weakens and shifts to the lower 2θ values when
5 discharging to low potential, while increases and shifts to the higher 2θ values again
6 when charging. The variation of the Mo diffraction peak reflects the existence of
7 interaction between Mo layers and the electrolyte due to that Mo allows the solid
8 electrolyte interface (SEI) to form directly on its surface.¹

9

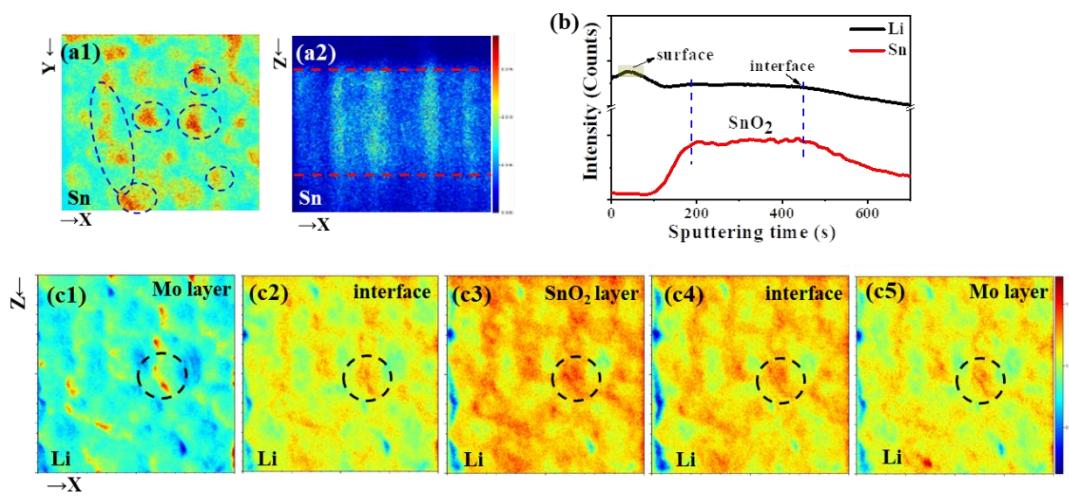


10 **Figure S14.** In-situ TEM observation of morphology and phase evolution of MSM
11 electrode during lithiation/delithiation process. (a) Schematic illustration of in situ TEM
12 measurement. (b-d) Sequential images of Li^+ insertion/extraction in the 1st cycle (b),
13 2nd cycle (c), 5th cycle (d). (e) In situ SAED images operated at various states during
14 the 10th cycle.

1
2 As illustrated in Figure S14a, the metallic Li@Li₂O and the MSM film are fixed
3 on the W and Au tips, acting as the counter electrode and working electrode,
4 respectively. During the 1st lithiation process, slight thickness increase about 13 % of
5 SnO₂ layer is observed (Figure S14b1, b2), indicating the occurrence of rapid Li⁺
6 insertion (Video S1). Compared with the previous reported results of fully lithiated
7 SnO₂ with 370 % volume expansion,^{2, 3} the minor volume variation confirms that the
8 volume effect can be effectively prevented in the MSM. After the 1st full delithiation
9 (Figure 6f), the thickness of SnO₂ layer demonstrates a volume shrinkage. Furthermore,
10 during the following several rapid lithiation/delithiation processes (Figure S14c, d and
11 Figure 6g), the MSM remains high structure integrity guaranteed by the protection of
12 Mo layers and the coordination effect of the amorphous interfaces composed of mixed
13 metal oxides with stabilization effect,⁴ which is completely different from the pure SnO₂
14 electrode (Video S2)


15 The interfacial effect on the reversibility of electrochemical reactions was also
16 investigated through the in-situ SAED patterns during the 10th cycle, and the
17 demonstrated phase evolution is consistent with the in-situ XRD results. Figure S14e
18 and Video S1 display the in-situ SAED patterns during the 10th cycle. In the early
19 process of lithiation (Figure S14e1), the diffraction pattern is mainly composed of Mo,
20 Sn, accompanied by a small amount of Li_xSn, corresponding to the conversion reaction
21 of SnO₂. Then, the disappearance of Sn and the increase of Li_xSn reveal the occurrence
22 of an alloying reaction (Figure S14e2). In the delithiation process, the dealloying

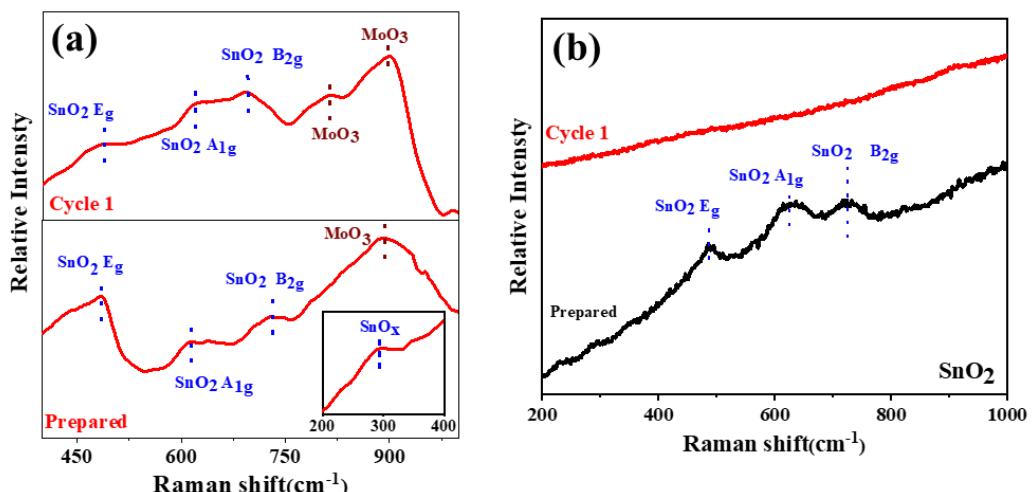
1 reaction first happens with the diffraction rings of Sn (Figure S14e3), In the fully
 2 delithiated status (Figure S14e4), the disappearance of Sn phase again indicates the
 3 completion of reversed conversion reaction. Furthermore, the emergence of metal
 4 oxides (SnO_2 , MoO_3) demonstrates superior reaction reversibility as the cycle
 5 proceeds.⁵ These also clearly confirm that SnO_2 is the dominant reactant in these SnO_2 -
 6 Mo multilayers.



8 **Figure S15.** In-situ TEM observation of morphology and phase evolution of MSM
 9 electrode at the fully lithiated status in the 10th cycle. (a) Typical cross-sectional
 10 morphology. (b) HRTEM image of the SnO_2 layer. (c, d) SAED images of the SnO_2 and
 11 Mo layers as marked in (a). (e, f) HADDF image, EDS mapping and line-scan images.
 12
 13 Figure S15 shows in-situ TEM observation for the MSM electrode at the fully
 14 lithiated state after 10 cycles. Obviously, the Li_xSn particles with a size of 5-10 nm have
 15 been generated (Figures S15a-d). More apparent interdiffusion between SnO_2 and Mo
 16 layers happens as the cycles increase, and O tends to concentrate at the interfaces

1 (Figure S15e, f). As a result, the interfaces tend to capture more Li^+ during discharge
 2 and contribute more additional capacity to the multilayers electrodes. More importantly,
 3 the concentration of O at the SnO_2/Mo interfaces would induce an increase of oxygen
 4 vacancy in the SnO_2 layer, which promotes the reversibility of conversion reactions in
 5 lithiated SnO_2 .²

6
 7 **Figure S16.** Comparison of the ICEs for SnO_2 , MSM, MSM-A, MSM-B, MSM-C,
 8 MSM-D, MSM-E and MSM-n electrodes.


9

1 **Figure S17.** TOF-SIMS for MSM electrode as discharged to 0.01V in 1st cycle after
2 the scavenging process, showing the distribution of Li. (a) Li distributed along the XY
3 plane (a1) and XZ plane (a2). (b) Depth profiles of Li. (c) Distribution of Li with
4 increasing depth along the XY plane. The depth positions are taken from (b).

5

6 In the fully lithiated state (discharged to 0.01V), after a scavenging process, as
7 displayed in Figure S17a, b, Sn is mainly distributed in the middle layer and slightly
8 diffuses to the Mo layers. The content of Li in MSM electrode as discharged to 0.01V
9 in 1st cycle, as displayed in Figure S17b, c, in SnO_2 layer is the highest, followed by
10 the interfaces, and the Mo layer is the lowest. It should be mentioned that the
11 exceptionally high Li content on the surface results from the SEI and is not discussed
12 further.

13

14

15 **Figure S18.** SERS spectra of SnO_2 electrode before and after the 1st cycle.

16 As displayed in Figure S18a, the pristine MSM shows three obvious bands for the
17 SnO_2 phase at Raman shift around 480, 630, 720 cm^{-1} , corresponding to the E_g

1 (translational), A_{1g} (symmetric Sn-O stretching), and B_{2g} (asymmetric Sn-O stretching)
 2 vibration mode, respectively.^{6, 7} Besides, the SnO_x peak at 290 cm^{-1} and MoO_3 peak at
 3 890 cm^{-1} are observed, which come from the interfaces between SnO_2 and Mo layer.
 4 The SERS recorded at the end of first charge presents the same peaks of SnO_2 ,
 5 providing the strongest evidence to support that the conversion between Li_2O and SnO_2
 6 is reversible during the discharge/charge cycle of MSM. In contrast, no vibration of
 7 SnO_2 can be detected in the pure SnO_2 electrode after the initial cycle (Figure S18b).

8 **Table S1.** Preparation conditions and parameters of the various SnO_2 -Mo multilayers.

Film		Time (min)	Power	Pressur
SnO_2	SnO_2	3		
Mo/SnO_2	MS	3/3		
SnO_2/Mo	SM	3/3		
$Mo/SnO_2/Mo$	MSM	3/3/3		
$Mo/SnO_2/Mo/SnO_2/Mo$ (5 layers)	MSM-A	2/1.5/2/1.5/2	120 W	2 Pa
$Mo/SnO_2/Mo/SnO_2/Mo/SnO_2/Mo$ (7 layers)	MSM-B	1.5/1/1.5/1/1.5/1/1.5		
$Mo/SnO_2/Mo/SnO_2/Mo/SnO_2/Mo/SnO_2/Mo$ (9 layers)	MSM-C	1.2/0.75/1.2/0.75/1.2/0.75/1.2/0.75/1.2		
$Mo/SnO_2/Mo/SnO_2/Mo/SnO_2/Mo/SnO_2/Mo/SnO_2/Mo$ (11 layers)	MSM-D	1/0.6/1/0.6/1/0.6/1/0.6/1/0.6/1		
$Mo/SnO_2/Mo/SnO_2/Mo/SnO_2/Mo/SnO_2/Mo/SnO_2/Mo/SnO_2/Mo$ (13 layers)	MSM-E	0.86/0.5/0.86/0.5/0.86/0.5/0.86/0.5/0.86/0.5/0.86/0.5/0.86/0.5		
$Mo/SnO_2 /...../SnO_2/Mo$ (n layers)	MSM-n	Semi-cospattering		

Mo/SnO₂/Mo/SnO₂/Mo (5 layers)

MSM/5

3/3/3/3/3/3/3/3

Mo/SnO₂/Mo/SnO₂/Mo/SnO₂/Mo/SnO₂/Mo/SnO₂/Mo (11 layers) MSM/11 3/3/3/3/3/3/3/3/3

1

2

1 **Table S2.** Preparation conditions and parameters of the SnO₂-MoO₃ film electrodes

2

Film	Time	Power	Pressure
MoO ₃ /SnO ₂ /MoO ₃	I	12/3/12 min	
MoO ₃ /SnO ₂ /MoO ₃ /SnO ₂ /MoO ₃	II	8/1.5/8/1.5/8 min	120W 2 pa

3

4

5

$$\gamma_{Sn_xO_y/Mo} = \frac{E_{Sn_xO_2/Mo} - E_{Sn_xO_y} - E_{Mo}}{2A}$$

6

Table S3. Interfacial formation energy of the three SnO₂/Mo interface models.

Model	$\Gamma_{Sn_xO_y/Mo}$ (eV/Å ²)
1	-0.078
2	-0.367
3	-0.209

7

8

9 **Table S4.** Atomic valence and valence charge for the elements of Mo and Sn at the

10 interface of MSM electrode.

	Mo	Mo ¹⁺	Mo ⁴⁺	Mo ⁶⁺
Bader charge (e)	6.00	5.46	4.10	3.64
	Sn	Sn ²⁺	Sn ⁴⁺	
Bader charge (e)	4.00	2.80	1.69	

11

12

1 **References**

2 1. Son, S. B. et al. An artificial interphase enables reversible magnesium chemistry in
3 carbonate electrolytes. *Nat. Chem.* **10**, 532-539 (2018).

4 2. Hu, R. et al. Inhibiting grain coarsening and inducing oxygen vacancies: the roles
5 of Mn in achieving a highly reversible conversion reaction and a long life SnO₂-Mn-
6 graphite ternary anode. *Energy Environ. Sci.* **10**, 2017-2029 (2017).

7 3. Wang, C. S., Appleby, A. J. & Little, F. E. Electrochemical study on nano-Sn,
8 Li_{4.4}Sn and AlSi_{0.1} powders used as secondary lithium battery anodes. *J. Power Sources*.
9 **93**, 174-185 (2001).

10 4. Sarkar, A. et al. High entropy oxides for reversible energy storage. *Nat. Commun.*
11 **9**, 3400 (2018).

12 5. Hu, R. et al. Dramatically enhanced reversibility of Li₂O in SnO₂-based electrodes:
13 the effect of nanostructure on high initial reversible capacity. *Energy Environ. Sci.* **9**,
14 595-603 (2016).

15 6. Ma, H. C. et al. Synthesis of visible-light responsive Sn-SnO₂/C photocatalyst by
16 simple carbothermal reduction. *Energy Environ. Sci.* **4**, 3067-3074 (2011).

17 7. Meduri, P., Clark, E., Dayalan, E., Sumanasekera, G. U. & Sunkara, M. K.
18 Kinetically limited de-lithiation behavior of nanoscale tin-covered tin oxide nanowires.
19 *Energy Environ. Sci.* **4**, 1695-1699 (2011).

20