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Appendix
1. Analytical and numerical wave calculations illustrative for the missing experiment
The wave theory of diffraction shows, through the diffraction integral (an expression of the Huygens principle), that all the points above the diffracting edge contribute/ spread diffracted light in the geometrical shadow. We present the predictions of the diffraction integral for the light in the geometrical shadow of a straight diffracting edge. We underline here that in the wave view, all the points around the diffracting edge, not only those in the illuminated spot on the diffracting edge, contribute diffracted light in the geometrical shadow. This presentation also suggests where in geometrical shadow, we can measure the effect of increasing of the beam thickness transversal to the diffracting edge.
We use the Rayleigh-Sommerfeld (RS) formula for the diffraction integral [1] which is simpler than the Fresnel-Kirchhoff formula [1,2] and accurate at  distances in the fringe zones [1 in Sec. 3.1, and 3 in Sec. 8.4], that is not close to the diffracting . If U characterizes the electrical potential (a complex number) of the incident beam of light, in the electromagnetic theory of light, then the RS formula states that the electrical potential U at a point P0 behind a screen with the aperture 
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 of fig. 1, is given by an integral over the entire area of the aperture, with the elementary area 
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 [1],
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where 
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 is the light wavelength of the wave. The other quantities in eq (1) are defined in fig. 1. 
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 is the cosine of the angle between the directions 
[image: image7.wmf]n

r

 and 
[image: image8.wmf]01

r

uur

 .  In this formula one assumes that the values of U at the points P1 on the surface 
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of the aperture are the same as when the screen and the aperture are not present. Here U could characterize a round or elliptic laser beam [3], or a plane wave beam [1].  
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Fig. 1 The diffraction of light on an aperture 
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 in a non-transparent plate. To calculate the diffracted light by the aperture U(P0) we can use the Rayleigh-Sommerfeld formula where the electrical potential U is assumed known at point P1 in the aperture – the value of U given by the Maxwell equations in the absence of the plate. 
The formula (1) is an expression of the Huygens principle, and says that each point P1 on the wave front 
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 contributes a number of 
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spherical waves 
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 towards the point P0. In other words, in the wave theory any point P1 in the aperture 
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 contributes to a given point P0, even if this point is in the geometrical shadow, i.e. not in the area directly illuminated by the incident beam of light. In the wave theory of light, the intensity of the optical field at a point P is the square of the modulus of the complex electrical potential U(P),
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Fresnel Approximation. We use the Fresnel approximation [1] for the diffraction integral because its results are clearly valid at points of interest here, starting with points relatively far from the diffracting edge, but not too far from the beam axis. It would be simpler to use the Fraunhofer approximation (and the associated Fourier transform) but this approximation is valid only for too large distances from the diffracting edge – more than 1500 m from the diffracting edge, [1]. Assume that  the electrical potential 
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. In order to produce a closed form from eq. (1) we need an approximation that allows the exponential to be factorized in terms dependent only on one integration coordinate. According to Fig. 1, 
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Generally, we are interested in a diffraction pattern at large 
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and we assume that 
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 is much greater than the rest of the difference quantities in eq. (7). In this case,

                
[image: image21.wmf]2222

010101010101

2222

0101010101

1()/()/

(1()/2()/2)

rzxxzyyz

zxxzyyz

=+-+-

»+-+-

                 (4)

The above assumption is also consistent with assuming
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. Therefore 
eq. (1) for the electrical potential becomes,

                 
[image: image23.wmf]exp()

()(,,)

exp(()())

01

0111

01

22

0101

01

jkz

UPUxyz

jz

k

jxxyyds

2z

S

l

-

=

éù

×--+-

ëû

òò

      

            
[image: image24.wmf]2

01

0001101

0101

2

1101

01

exp()

(,,)()exp(())

2

()exp(())

2

jkz

k

UxyzdxFxjxx

jzz

k

dyGyjyy

z

l

-

éù

=--

ëû

éù

×--

ëû

ò

ò

   (5)

This formula is called the Fresnel approximation of eq. (1).
Gaussian Beam.  According to [4, pg. 10.6 – 10.8] “the low power beam from  helium-neon lasers are closely approximated by a Gaussian beam (also called a pure or fundamental mode beam)”. Indeed, the propagation factor 
[image: image25.wmf]2
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 for such helium-neon lasers, which measure the deviation of the beam propagation from a pure Gaussian beam,  is close to 1. The higher the power of the laser, the more complex is mathematical description necessary for the beam. Hence, for our illustrative purpose (not absolutely necessary) of the wave approach for the straight line diffraction, we can use a pure Gaussian beam. An elliptic Gaussian beam [5] is a solution of the Maxwell equations. A Gaussian beam that propagates in air (unity index of refraction)along the z axis is defined [5, 6] by the following electrical potential,
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 Here, 
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The quantities
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 are the beam minimum waists (ellipse semi-axes) at the positions
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 are the values at which the beam field amplitude |U| decreases by a factor 1/e compared to its value on the beam axis. 
A circular Gaussian beam. This beam becomes a circular beam along the z axis when
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. When its minimum waist
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where 
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. For this circular beam we can define an illustrative surface: the surface on which the Gaussian amplitude is 1/e from its value on the propagation axis z. Indeed, taking 
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 we have the surface 
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 on which the amplitude is 1/e from amplitude on z axis. This surface becomes the curve 
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 for y = 0. From this we can define the illustrative divergence angle 
[image: image58.wmf]q

 for the propagation of the Gaussian beam along the axis z: 
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for large z.
The diffraction of an elliptic Gaussian beam. Assume that the diffracting half-plane edge/ screen is defined by the conditions 
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 is positive or negative number to position the half-screen off the axis of the circular Gaussian beam. The position of the screen for the diffraction pattern is considered at 
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. The diffracted light in this case can be derived by using eq. (6) as 
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F(x1,z1)G(y1,z1)H(z1) in the Fresnel approximation - eq. (5) of the diffraction formula – eq (1). The integration domain will be   
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. For a plane wave diffraction, “ymax” is very large (i.e., 
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, ymax) defines a one-dimensional slit. These slit-type and plane wave cases are described by,
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In the plane wave case, ymax goes to infinity. and
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In eq. (9) the coefficients are defined as follows,
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  where       
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Hence,
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with         
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According to [7] the integrals in eq. (9) , and based  on 
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where,
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Or,
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where 
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 In order to express these equations in a more computational form let us define                                              
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Notice that since  
[image: image89.wmf]cos0,sin0

jj

>>

,   it follows that 
[image: image90.wmf]cos/20,sin/20.

jj

>>


Hence we have the following expressions,
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Let us also define
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Hence,  
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Similar expressions are true for 
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and hence, 
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Similarly,
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From eq. (11)
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where,
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Based on eqs. (14), (22) and (22’)
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Similarly,
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where,
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Therefore,    
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Notice that when ymax goes to infinity then,
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The numerical calculations. The direct calculation of cerf (u+jv) from eq. (28’) is difficult because it leads to multiplying very large numbers with very small numbers which results in very large errors. Rather, the calculation of cerf(u+jv)  can be based on the calculation of the Fadeeva function w(-v+ju) by the following derivation. From Ref. [7] we have,
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where z = u+jv, or z = p+jq

Hence,                                
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Therefore eq. (28) becomes  
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Again, when pmax goes to infinity then,
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A Fortran program for eqs. (23 – 31) : Edgediffraction_gaussianbeam.

We developed a computer program in Fortran for the calculation of the diffraction integral for a Gaussian beam based on eqs. (23-31). The calculation of the function w(-v+ju) is done  with the routine Function wwerf (z)  [8-11]. We tested the program in various ways. 

a) For a perfectly round beam it produces the value of A(z1)/2 for eq. (23) for (x0, y0, z0) = (0,0,z0) as it should. This means that the light intensity on the beam axis (i.e., the square value of eq. (23))  is A(z1)*A(z1)/ 4. The program shows that when 
[image: image118.wmf]e

 is a large negative number, that is when there is no diffraction edge in the path of the beam, the program gives for the diffraction integral the values of the Gaussian beam, as it should. Also, when 
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 is a very large positive number, that is when the Gaussian beam of light is blocked by the diffracting edge, the program gives very small numbers for the diffraction integral, that is no beam passes the diffracting edge.

b) The graph in Fig. 2 compares the results for a thick beam with the results for a plane wave.
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FIG. 2  Testing the program for the diffraction of a Gaussian beam. The diffracted amplitude at 4000 mm behind the diffracting half-plane for a thick (10 mm diameter) Gaussian beam is compared with the standard case of the diffracted amplitude for a plane wave. The comparison shows that the numerical calculations are satisfactory. 

2. Calculations of the measurement points for our experiment
In our experiment a laser beam hits perpendicularly with its axis a straight diffracting edge, and the intensity of light is measured in the geometrical shadow of the diffracting edge.  This experiment verifies systematically if the intensity of the diffracted light in any point in the geometrical shadow, especially at large distances, increases when the thickness of the diffracting beam increases transversally to the diffracting edge. Surprisingly, this dependence, although is the most fundamental prediction for understanding the nature of light (more important than the diffracting fringes, for the nature of light) because a very large (infinite) volume, was not systematically measured yet. Our experimental setup includes three systems: a highly stable laser with a fine positioning/ orientation system, a fine edge/ slit system with micrometric positioning system, and a detector system: a linear detector - PDF10A, Femtowatt Photoreceiver from Thor, and a two-dimensional camera - the Little Guy beam profiler from Ankron, with a fine positioning system. Our laser is a  Micro-g Lacoste laser - a high quality He-Ne, 1mW. 

This experiment tests if the Huygens principle, or the wave diffraction integral is valid for the diffracted light in the geometrical shadow, that is if the later depends on the thickness of the beam transversal to the diffracting edge, while maintaining the same distribution of light along the diffraction edge. We answer the following questions. How the calculations and the experiment can vary this transversal thickness of the beam and maintain the longitudinal distribution of light along the diffracting edge?  At what distance from the laser we need to measure the light in the geometrical shadow in order to see if there is a dependence on the beam thickness across the diffracting edge? By following a systematic measurement, or calculations with the elliptical Gaussian beam, naturally allows answering these questions. 

Our Micro-g Lacoste laser, is a highly stable in intensity and direction 1mW laser, with a minimum beam radius (waist) 
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w

= 0.3 mm at the exit from the laser, and with a beam divergence 0.65 mrad, polarized beam. The diffracting edge is placed at distances 1500 mm where  
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 of eq. (7) becomes proportional  with z. For 
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= 3000 we have 
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mm and
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= 1 mm at z = 4500 mm.
The laser and the origin of the beam is placed at z = 0, the plane of the diffracting edge is placed in the semi-plane (
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a fixed point beyond 
[image: image136.wmf]R

z

. The edge itself extends parallel with the x axis and touches the z axis at 
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  The points where we calculate or measure the diffracted light are on the line (0, 
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) with 
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 such that 
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 is a large distance from the diffracting edge, that is a line parallel with the y axis, at large distance in the geometrical shadow. Below we show that the latter distance needs to be in a range difficult to measure, namely 100 m to 500 m, that is not in the 5 m which is normally accessible. 

In the calculations, for a given position of the diffracting edge on the z axis, we compared two cases of traversal thickness but with the same longitudinal (along the diffracting edge) distribution of light. In the first case (case 1), which is the reference case, we use the same position along the beam axis 
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z

= 0 in eq. (7) for the two minimum waists of the Gaussian beam – the one on the x axis (along the diffracting edge) and the one on the y axis (traversal to the diffracting edge). The diffracting edge is placed at the distance 
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-
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z

= 1.5 m from the beam waists. In the second case (case 2) the position of the minimum waist on the y axis is kept as in the first case while the position of the minimum waist on the x axis is moved forward at larger values of 
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along z axis. At the same time the position 
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z

of the diffracting edge is also moved forward, so that the distance 
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 remains constant, which is the same as in the case 1. As a result of this variation the traversal (y axis) distribution of the light on the diffracting edge varies. Namely, the traversal thickness of the beam falling on the diffracting edge increases, but the distribution along the diffracting edge is similar and by normalization can be made  the same. The comparison of the calculated diffracted light in these two cases characterizes the predicted effect of increasing the beam thickness, transversal to the diffracting edge, on the diffracted light in the geometrical shadow. 

The numerical calculations with our Fortran program Edgediffraction Gaussianbeam show the following differences between the light intensities for the two cases: 1) Less than 1% for 
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 = 5 m and  
[image: image151.wmf]0

y

 in the range of 10 mm to 25 mm below z axis that is in the geometrical shadow. 2)  5% for 
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 = 50 m and  
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 = 10 mm, and 5 % for 
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 = 50 m and  
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 = 25 mm below z axis that is in the geometrical shadow. 3)  Around 75 % for 
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 = 100 m and  
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 in the range of 10 mm to 25 mm below z axis that is in the geometrical shadow. 4) Around 250 % for 
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 = 500 m and  
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 in the range of 10 mm to 25 mm below z axis that is in the geometrical shadow. Therefore, these numerical results show that we need to measure the diffracted light in the geometrical shadow for 
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 in the range from 100 m to 500 m, better for 
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 close to 500 m. We needed a long time to explore by calculations where we need to measure. Initially we were looking at distances 
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 from 5 m to 10 meters.  
Experimentally, the beam waists for our laser are in the same place 
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= 0 mm on the z axis, as used in the Case 1 above. By placing a divergent cylindrical lens of a certain focal distance f at a  position 
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, before the diffracting edge for Case 1, with the axis of the cylindrical lens parallel with the x axis. Then the beam spreads more along y axis, as if a second beam waist 
[image: image166.wmf]new
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along z axis (smaller than 
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from the Case1) is created at the distance d before the lens, as necessary for the Case 2. By varying the position 
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z

and the focal distance f we can have the same distribution of light falling on the diffraction edge along the x axis, but a broader light beam falls transversally to the diffracting edge. Hence it is possible to reproduce experimentally the Case 1 and Case 2 above. Certainly the normalization of the beam at the diffracting edge for the two cases is necessary in order that the distribution of light falling on the diffracting edge be the same in the two cases. 
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