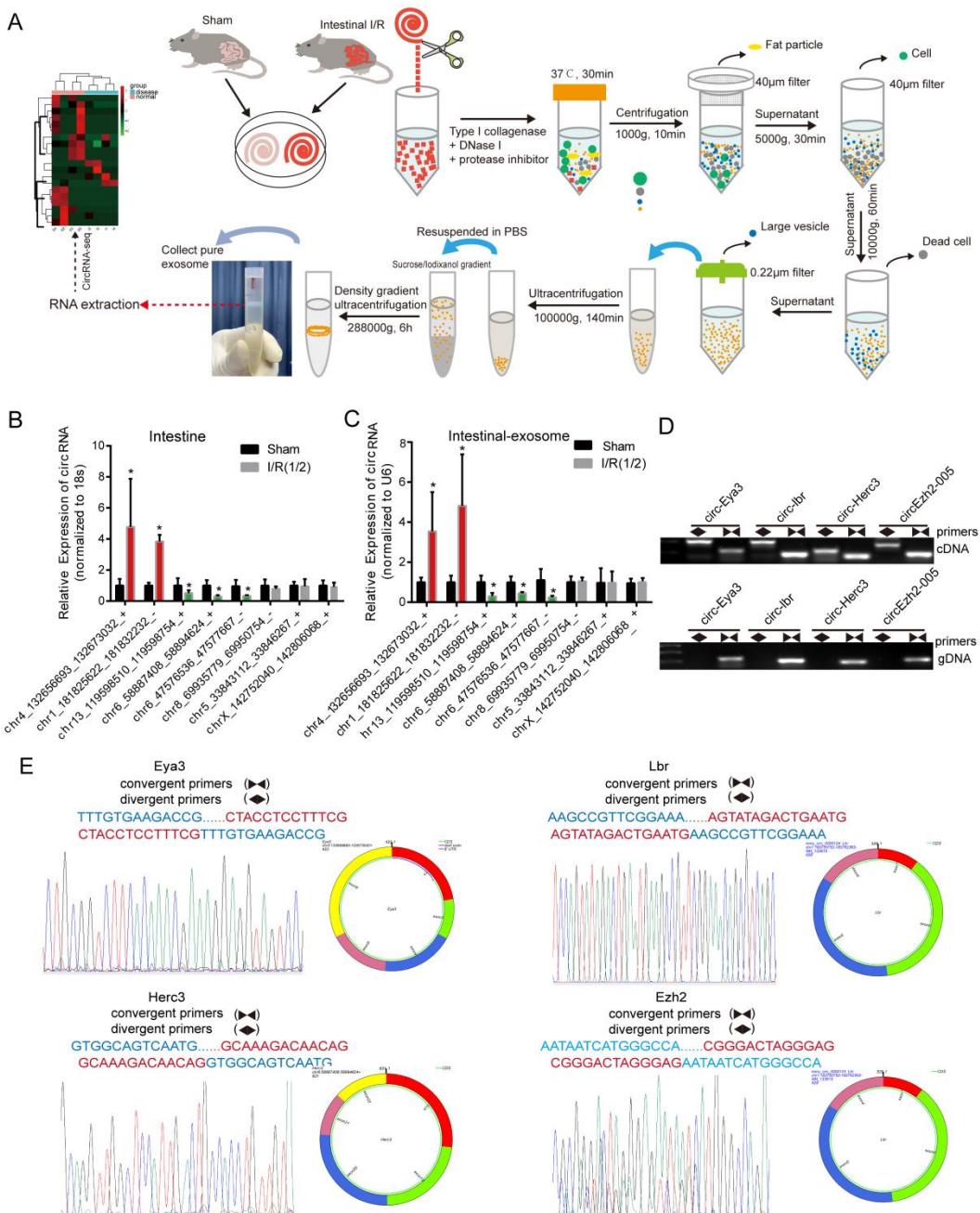
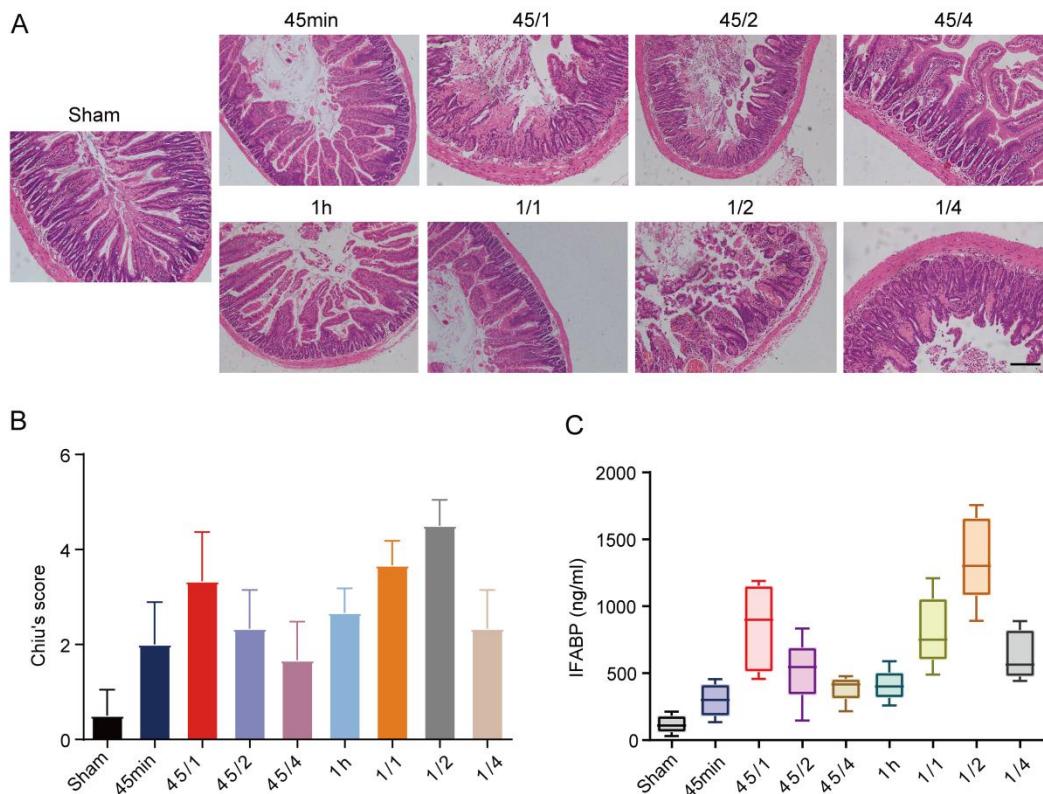


Supplementary Materials for


Exosomal circEZH2_005, an intestinal injury biomarker, alleviates intestinal ischemia/reperfusion injury by mediating hnRNPA1/Gprc5a signaling

Wenjuan Zhang#, Bowei Zhou#, Xiao Yang, Jin Zhao, Jingjuan Hu, Yuqi Ding, Shuteng Zhan, Yifeng Yang, Jun Chen, Fu Zhang, Bingcheng Zhao, Fan Deng, Zebin Lin, Qishun Sun, Fangling Zhang, Zhiwen Yao, Weifeng Liu, Cai Li* and Ke Xuan Liu*

*Corresponding author. Email:liukexuan705@163.com; licaisysu@163.com.


This PDF file includes:

Figs. S1 to S9
Tables S1 to S4

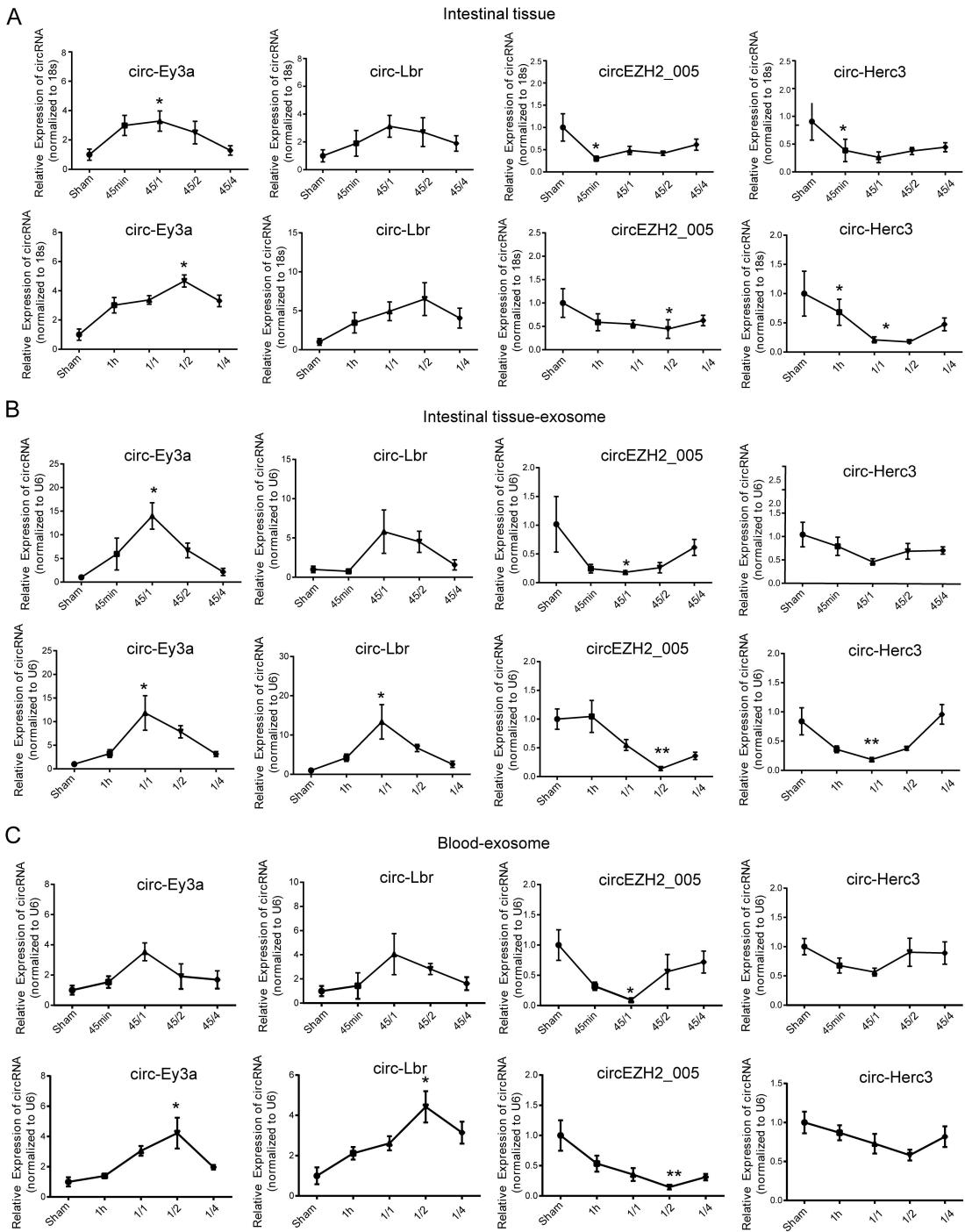
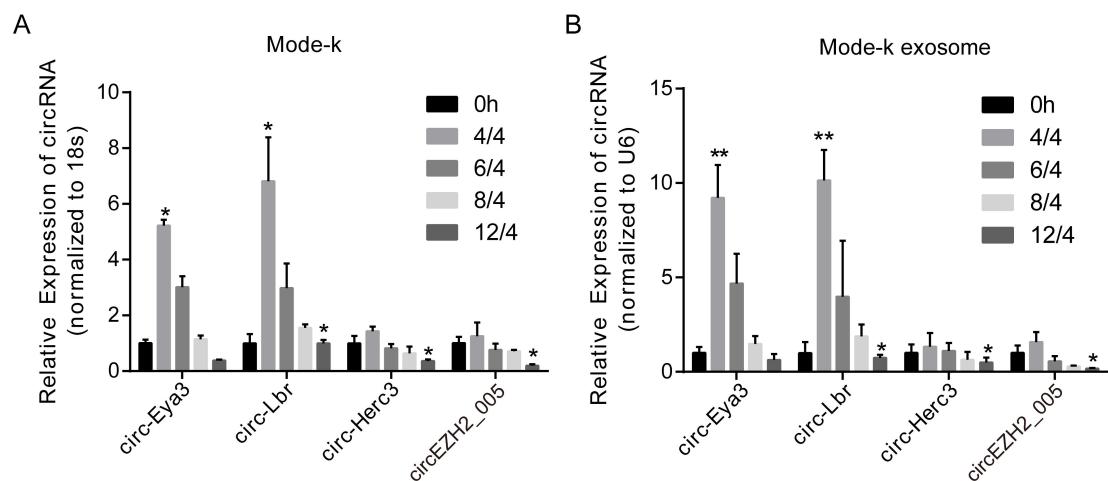
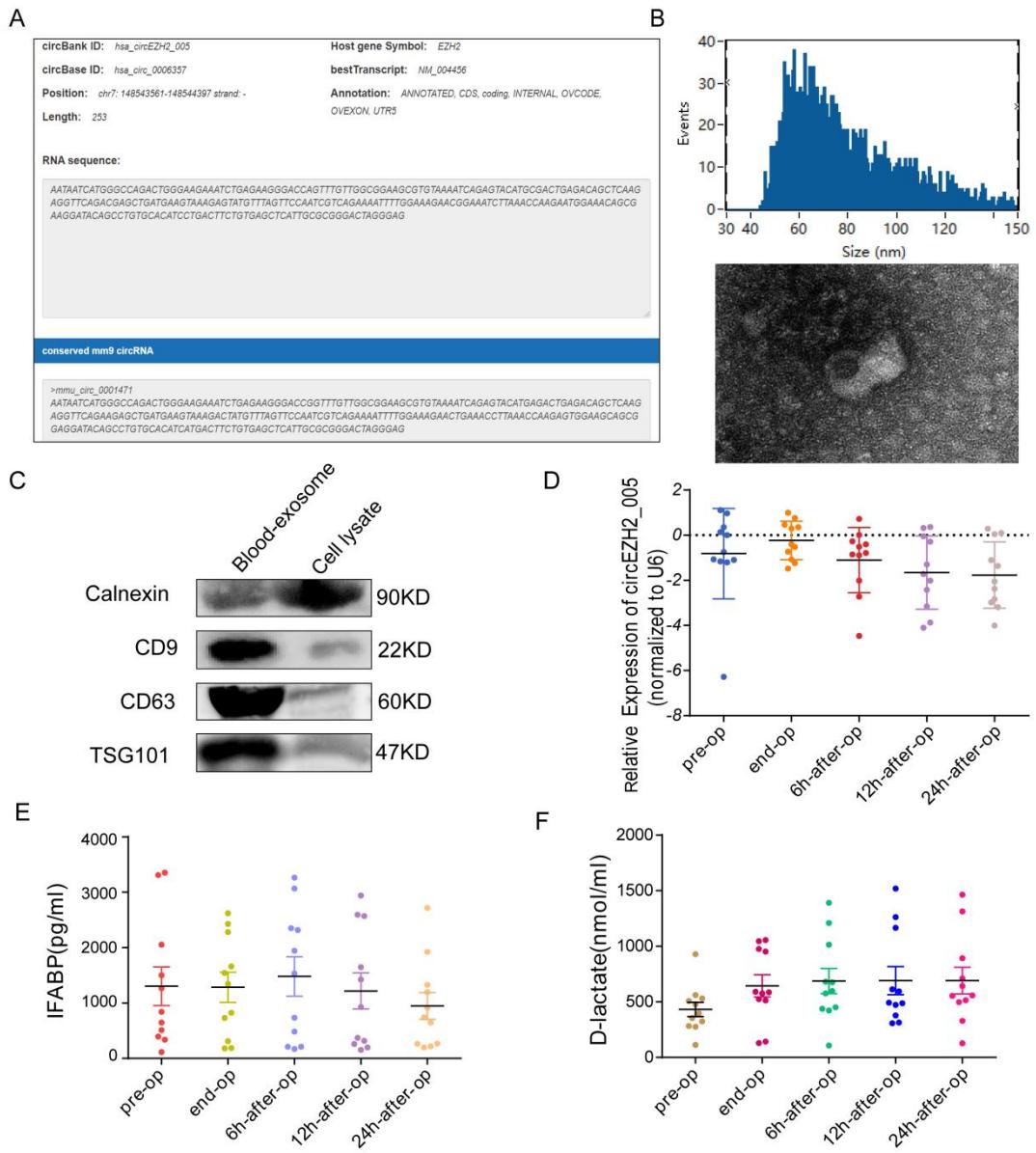


Fig. S1. Identification of the top four differentially expressed circRNAs. (A) The experimental scheme of exosome extraction from intestinal tissue. (B, C) RT-qPCR assay to illustrate the accuracy of circRNA-seq data from exosomes and confirmation of the eight highly expressed circRNAs. Data were presented as means \pm SEM, n=5. (D) The amplification of circRNAs from cDNA or genomic DNA (gDNA) with divergent and convergent primers was shown by PCR. (E) Schematic illustration illustrating the generation of the top four putative target circRNAs from its host gene, then validated by Sanger sequencing.

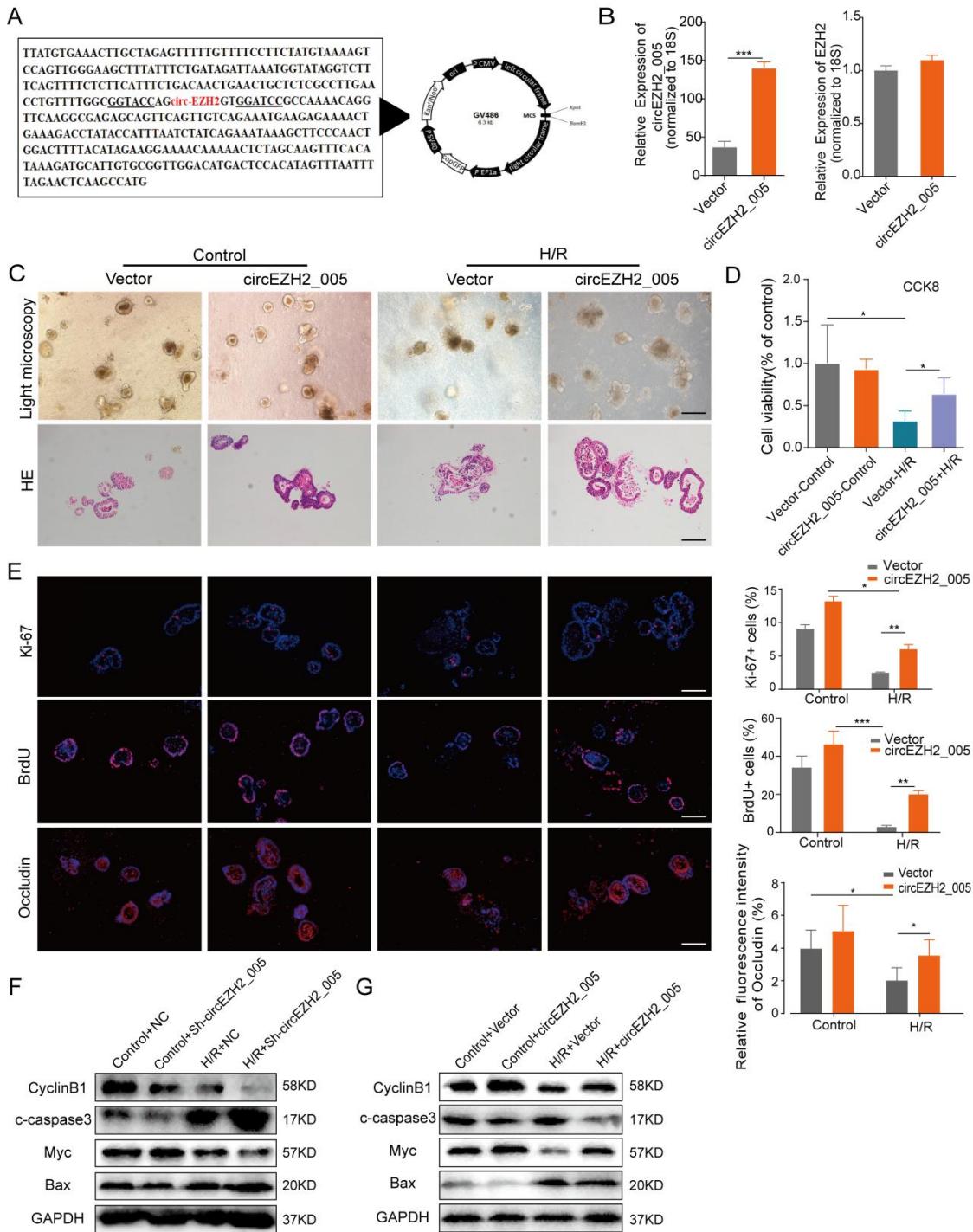
37
38


39
40 **Fig. S2. Intestinal I/R model mice were established at different time points.** (A) Mice were
41 subjected to intestinal I/R mode and underwent different time points of ischemia (45 min and 1h
42 of ischemia) and different time points of reperfusion (1h, 2h, and 4h of reperfusion), the
43 histopathological was estimated by the H&E staining (n = 6). (B) Chui's score was used to assess
44 the intestinal injury. (C) The ischemia-reperfusion-induced intestinal damage was evaluated by
45 the serum I-FABP levels (n = 6). The data were analyzed by one-way ANOVA (Tukey's test)
46 and presented as mean \pm SEM. (* p <0.05, ** p <0.01, *** p <0.001).
47


48

49 **Fig. S3. The expression of the top four differentially expressed circRNAs. (A)** RT-qPCR for
50 the expression of the top four differentially expressed circRNAs in intestinal tissues at different
51 time points of intestinal I/R mice mode. **(B)** Expression of the top four differentially expressed
52 circRNAs in intestinal tissue exosomes at different time points of intestinal I/R mice mode. **(C)**
53 Expression of the top four differentially expressed circRNAs in plasma exosomes at different
54 time points of intestinal I/R mice mode. The data were analyzed by one-way ANOVA (Tukey's
55 test) and presented as mean \pm SEM, n=4. (* p < 0.05, ** p < 0.01).

56
57
58
59
60
61
62
63
64
65



66
67 **Fig. S4. The expression of the top four differentially expressed circRNAs in cells.** RT-qPCR
68 for the expression of the top four differentially expressed circRNAs in intestinal epithelial cell
69 (Mode-K cell) and exosomes of cell supernatant subjected to different time points of hypoxia (4h,
70 6h, 8h, and 12h) and 4h of reoxygenation. The data were analyzed by one-way ANOVA (Tukey'
71 s test) and presented as mean \pm SEM, n=3. (*P < 0.05, **P < 0.01).

72
73
74
75
76
77
78
79
80
81

Fig. S5. Isolating and analyzing plasma exosomes from clinical patients. (A) Analysis of conservation of circEZH2_005 in humans and mice using circBank database. (B) The particle size and electron micrograph of plasma exosomes extracted by commercial kit. (C) The exosome-specific markers CD9, CD63, TSG101, and Calnexin were shown by western blot. (D) RT-qPCR analysis of exosomal circEZH2_005 expression in the plasma of patients without intestinal I/R injury in preoperative, end operative, 6 hours after operative, 12 hours after operative, and 24 hours after operative (n=11 in controls). (E, F) Plasma I-FABP and D-lactate levels were assessed by ELISA (n=11 in controls). The data were analyzed by one-way ANOVA (Tukey's test) and presented as mean \pm SEM. (* p <0.05, ** p <0.01, *** p <0.001).

82 **Fig. S6. CircEZH2_005 protects intestinal organoids from H/R injury in vitro.** (A) The
83 overexpression sequence of circEZH2_005 (the two end sequences of circEZH2_005 are partial
84 concyclic sequences) was connected to the gv486 vector to construct circEZH2_005
85 overexpression plasmid, and then packaged on adenovirus vector. (B) RT-qPCR analysis of
86 circEZH2_005 overexpression and EZH2 expression in circEZH2_005 -adenovirus transfected
87 cells (n = 3). (C) Organoid morphology was observed by light microscopy and HE staining, scale
88 bar is 100 μ m (n = 3). (D) The organoid viability was analyzed by CCK-8 (n = 5). (E)

89 Immunofluorescence staining for the Ki-67, BrdU, and occludin in the organoids for
 90 proliferation analysis, scale bar is 100 μ m (n = 3). **(F)** Western blot was conducted to analyze
 91 apoptotic and proliferation-related proteins induced by H/R and circEZH2_005 interference (n =
 92 3). **(G)** Western blot was conducted to analyze apoptotic and proliferation-related proteins
 93 induced by H/R and circEZH2_005 overexpression (n = 3). The data were analyzed by the one-
 94 way ANOVA (Tukey's test) and presented as means \pm SEM. (* p < 0.05, ** p < 0.01, *** p
 95 <0.001).

96

97

98

99

100

100

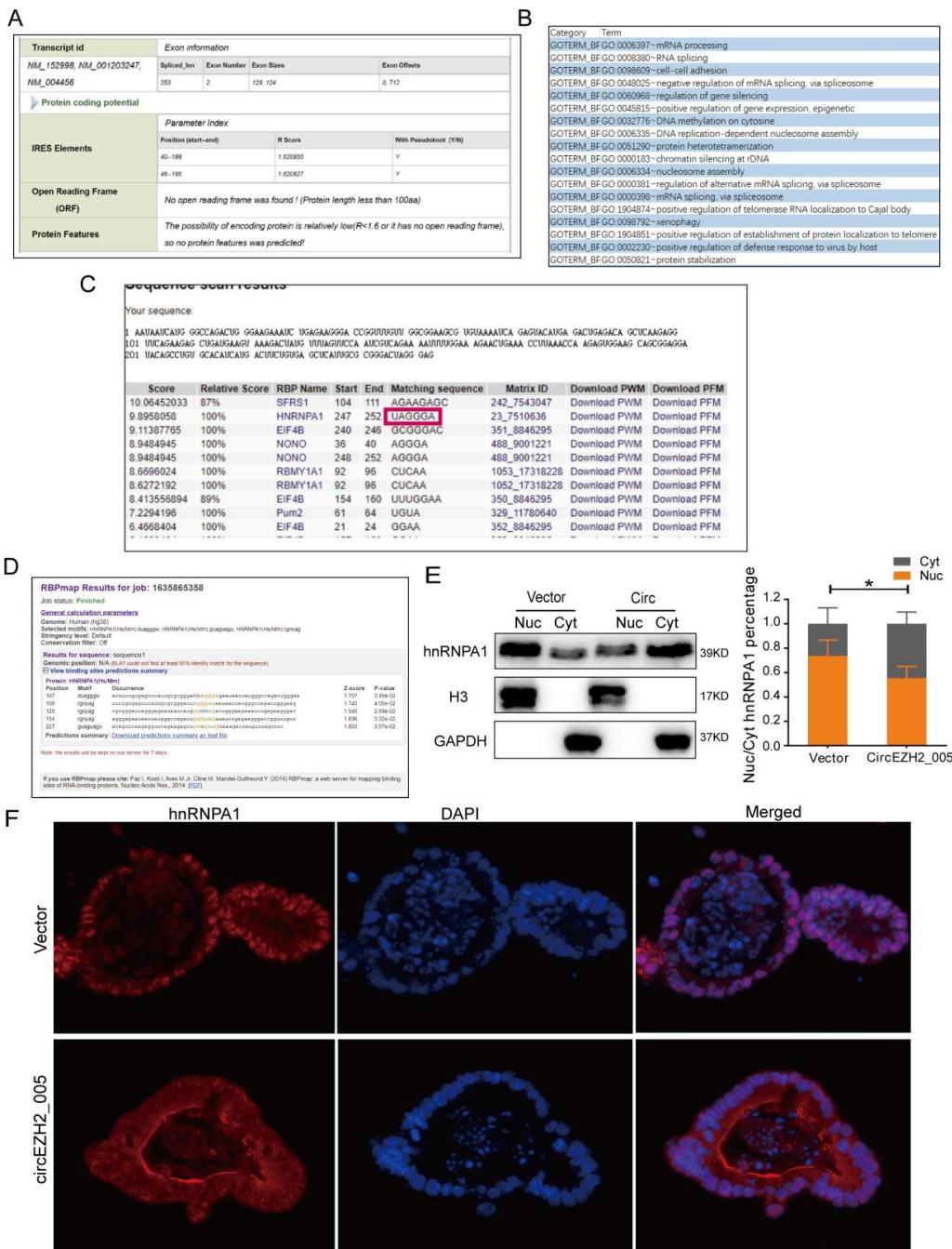
101

Group	Vector (grey)	circEZH2_005 (orange)
Sham	1.0	~3.3 (**)
I/R	~0.4	~2.2 (**)

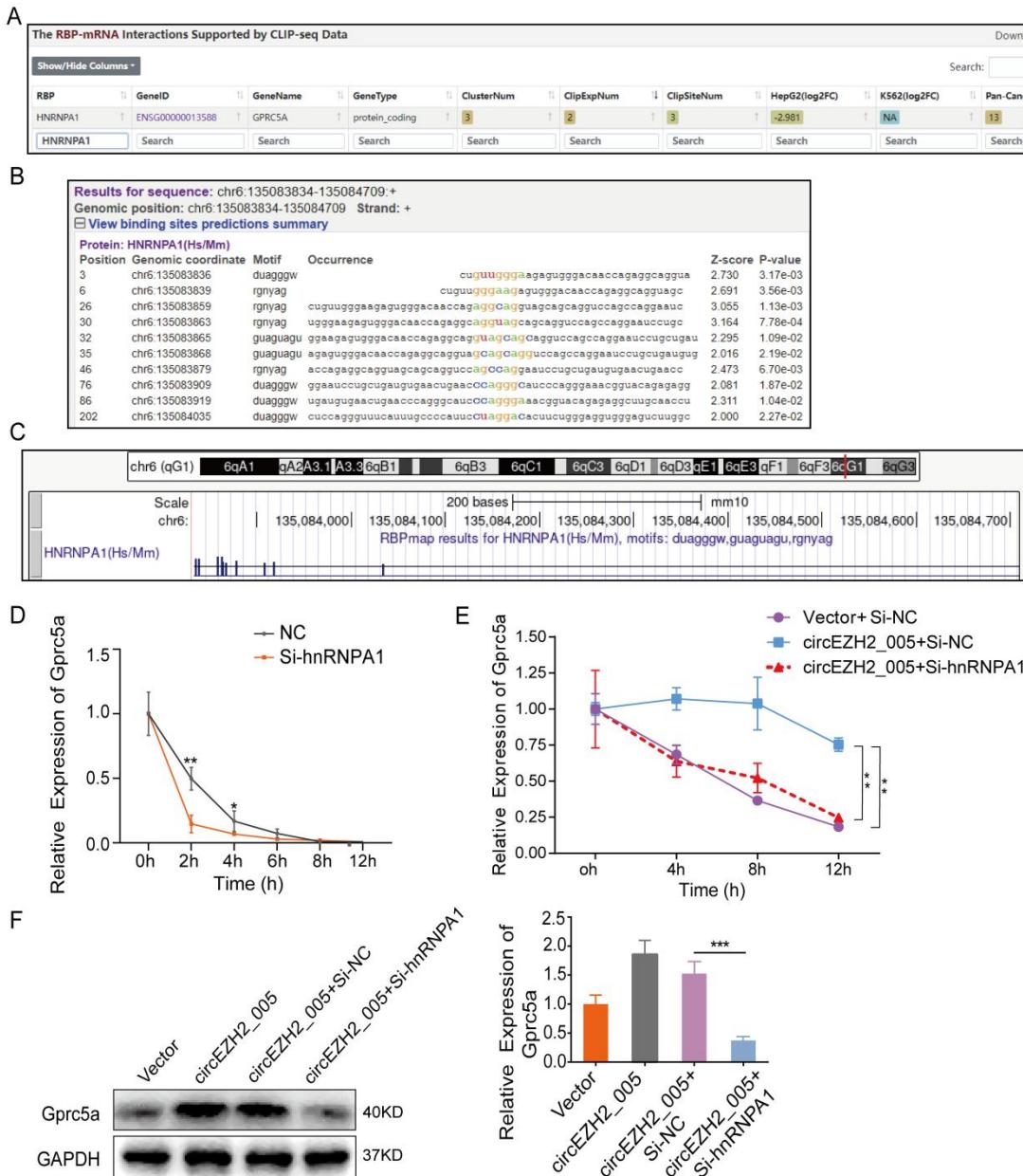
102

103 Fig. S7. Effect of circEZH2 005 overexpression in the mouse. (A)

Fluorescence in vivo imaging was used to detect the overexpression position of circEZH2_005 adenovirus vector in mice after microinjecting with circEZH2_005 adenovirus. **(B)** RT-qPCR analysis of circEZH2_005 overexpression in intestinal tissues and intestinal crypt cell ($n = 3$). (* $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$).


108

109


110

110

111

114 **Fig. S8. Bioinformatics database analysis of circEZH2_005-bound proteins.** (A) The
115 CircRNADb website analyzed whether circEZH2_005 was able to translate the protein. (B) GO
116 enrichment analysis was used to cluster and characterize the biological processes of circ-EZH2-
117 binding proteins. (C) Proteins for circEZH2_005 binding are predicted by the RBPDB database.
118 (D) Association between circEZH2_005 and hnRNPA1 was predicted by the RBPmap database.
119 (E) Western blot was conducted to analyze the expression of cytoplasmic (Cyt) and nuclear (Nuc)
120 hnRNPA1 in circEZH2_005-overexpressed intestinal crypt stem cells (n = 3). (F)
121 Immunofluorescent of hnRNPA1 (red) in the organoids after overexpressing circEZH2_005.
122 DAPI (blue) for nuclear staining, scale bar=50 μ m (n = 3).

Fig. S9. CircEZH2_005 prevents intestinal I/R injury by stabilizing Gprc5a. (A) The starBase data predicted that hnRNPA1 can bind to the mRNA of Gprc5a. (B) The hnRNPA1 binding sites in the Gprc5a 3'UTR region predicted by RBPmap. (C) The bottom blue vertical lines represented the hnRNPA1 binding sites in 3'UTR of Gprc5a mRNA. (D) The rate of degradation of the *Gprc5a* was assessed after transfection with hnRNPA1 siRNA in intestinal crypt stem cells. (E) The degradation rate of Gprc5a mRNA in intestinal crypt stem cells was evaluated after circEZH2_005 overexpression and hnRNPA1 interference simultaneously. (F) Western blot assay examined whether interfering with hnRNPA1 could reverse the effect of circEZH2_005 on Gprc5a protein expression (n = 3).

137 **Supplementary Tables**138
139
140**Supplementary Table S1. Baseline characteristics for AGI on the first operative day**

	Total (n=50)	AGI < 2 (n=11)	AGI ≥2 (n=39)	p-Value
Age, median (IQR)	58.0 (53.0-65.5)	53.0 (39.0-56.0)	59.0 (55.0-70.0)	0.011
Sex, n (%)				0.594
Male	17 (34)	3 (27)	14 (36)	
Female	33 (66)	8 (73)	25 (64)	
BMI (kg/m ²), mean ± SD	23.8±0.5	22.2±1.2	24.2±0.6	0.095
ASA, n (%)				0.737
III	44 (88)	10 (91)	34 (87)	
IV	6 (12)	1 (9)	5 (13)	
Duration of anesthesia (min), median (IQR)	329.0 (309.3-365.0)	318.0 (306.0-355.0)	330.0 (310.0-365.0)	0.482
Duration of surgery (min), median (IQR)	272.5 (244.5-302.0)	273.0 (242.0-291.0)	272.0 (245.0-302.0)	0.815
CPB total time (min), median (IQR)	135.0 (94.8-164.8)	106.0 (93.0-156.0)	142.0 (95.0-167.0)	0.426
Postoperative				
Duration of postoperative intubation (min), median (IQR)	1227.5 (1039.3-1665.0)	1077.0 (470.0-1270.0)	1245.0 (1053.0-2650.0)	0.015
Duration of postoperative fasting (min), median (IQR)	1622.5 (1393.8-2043.3)	1372.0 (1260.0-1580.0)	1732.0 (1478.0-2540.0)	0.006

141 **Abbreviations:** IQR, interquartile range; SD, standard deviation; AGI, acute gastrointestinal injury; BMI,
142 body mass index; ASA: American Society of Anesthesiologists physical status; CPB: cardiopulmonary bypass.
143
144
145
146
147
148
149
150
151
152
153

154
155
156

Supplementary Table S2. The sequences of primers used for qRT-PCR

Gene name	Sequence (5'-3')
CircEZH2_005 (forward)	TTTAGTTCCAATCGTCAG
CircEZH2_005 (reverse)	CTCAGATTCTTCCCAGT
Circ-Eya3 (forward)	ACCCAAACTTACGGACTA
Circ-Eya3 (reverse)	CTCAGGCTTCTCATCACT
Circ-Lbr2 (forward)	CTGCTCCACTTCCCTCCA
Circ-Lbr2 (reverse)	CACGCTGACGCTGTTCC
Circ-Herc3 (forward)	ACAACAGGTGGCAGTCAA
Circ-Herc3 (reverse)	ACAAGGTGGTTCCTACGG
U6 (forward)	AACGCTTCACGAATTGCGT
U6(reverse)	GCTTCGGCAGCACATATACTAA
Gprc5a (forward)	TACAACGTGCCCTAGCGGT
Gprc5a (reverse)	TGAGGAAAACGAGTGCAAACAT
hnRNPA1(forward)	GAAACAACCGACGAGAGTCTG
hnRNPA1 (reverse)	TGTGTGGTCTTGCATTGATGG
TNF- <i>α</i> (forward)	CCCTCACACTCAGATCATCTTCT
TNF- <i>α</i> (reverse)	GCTACGACGTGGGCTACAG
IL-6 (forward)	TAGTCCTCCTACCCCAATTCC
IL-6 (reverse)	TTGGTCCTTAGCCACTCCTTC
EZH2 (forward)	AGTGACTTGGATTTCCAGCAC
EZH2 (reverse)	AATTCTGTTGTAAGGGCGACC
Hspa12a (forward)	TCGGGGACACAGGAATAACAC
Hspa12a (reverse)	GGTAAAGCTGTAGGCATAGCC
Cldn4 (forward)	GTCCTGGGAATCTCCTTGGC
Cldn4 (reverse)	TCTGTGCCGTGACGATGTTG
Eno3 (forward)	CACAGCCAAGGGTCGATTCC
Eno3 (reverse)	CCCAGGTATCGTGCTTGTCT
Tmem146(forward)	ACACACACAAGCATCTACTTG

Tmem146 (reverse)	AGAGGACTGCACATTCACTGT
Jun (forward)	TGTGCCCAAGAACGTGAC
Jun (reverse)	CCGGGTTGAAGTTGCTGAG
Gp1bb (forward)	TGACCGGCAACAAACCTGAC
Gp1bb (reverse)	CAGCAGAGTAGACCGGGTG
Elmo1 (forward)	TGTAACCCACGATTGCAGGA
Elmo1 (reverse)	TGCAGACATCCGTGAGTGTTC
Tlco2 (forward)	GCCTCTGGATGGATGAGTCT
Tlco2 (reverse)	GCATGAGGATAAACGGGTAGGG
Lama3 (forward)	CTGTGACTACTGCAATTCTGAGG
Lama3 (reverse)	CAAGGTGAGGTTGACTTGATTGT
18S (forward)	ACACGGACAGGATTGACAGA
18S (reverse)	GGACATCTAAGGGCATCACA

157
158
159
160
161
162
163
164
165
166
167 **Supplementary Table S3. Sequences of circEZH2_005 used for RNA pulldown analysis in**
168 **the study**
169

Gene name	Sequences (5'-3')
mmu_circ_0001471(3bio)_ChIRP Probe_1	GATTATTCTCCCTAGTCCCG
mmu_circ_0001471(3bio)_ChIRP Probe_2	ATGATTATTCTCCCTAGTCC
mmu_circ_0001471(3bio)_ChIRP Probe_3	CCATGATTATTCTCCCTAGT
mmu_circ_0001471(3bio)_Scramble ChIRP NC_1	CCTCGCAGTTGTTACACCT

170
171
172
173
174
175

176
177
178
179
180
181
182
183

Supplementary Table S4. Si-RNAs were used in the study.

Gene name	Sequence
si-mmu_circ_0001471_001	CGGGACTAGGGAGAATAAT
si-mmu_circ_0001471_002	GGACTAGGGAGAATAATCA
si-mmu_circ_0001471_003	CTAGGGAGAATAATCATGG
si-hnRNPA1-1	GGAUUGGAAGAGUUGUGGAATT
si-hnRNPA1-2	GAGGGCUGAGCUUCGAAACAATT
si-hnRNPA1-3	GAACAUCAACCUACGAGAUUAUTT
si-Gprc5a-1	UCACCUUCGCCUUCAUCAUCATT
si-Gprc5a-2	CUGGAUCGUUCUGCUCCUGAUTT
si-Gprc5a-3	CAGGACCAACGUCAAUGUCUUTT

184