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2. Additional file 2 : Connection between GAMLSS for Counts and the Combined
Model

This additional file provides the relationship between GAMLSS for counts and the combined model.
The derivations depicted the connection between marginal and hierarchical interpretation of Negative
Binomial I GAMLSS model.



1 Introduction

A connection is established between a particular member of the GAMLSS family for count data,
as proposed by Rigby and Stasinopoulos (2010) and the combined model for count data as
proposed by Molenberghs, Verbeke, and Demétrio (2007) and studied further in Molenberghs
et al. (2010). The GAMLSS under investigation is based on the Negative Binomial Type I
parameterization of Rigby and Stasinopoulos (2010).

Upon re-parameterization, the models are identical, apart from the choice to place normal

random-effects on the variance parameter, in addition to the mean parameter, in the GAMLSS-
NBI case.

2 The Combined Model

Molenberghs, Verbeke, and Demétrio (2007) and Molenberghs et al. (2010) use the following
parameterization for longitudinal (or otherwise hierarchical) count data.

Yi; ~ Poi(0;kij), (1)

Kij = €xp (w;gf + Z;jbi) ) (2)

b; ~ N(0,D), 3)

E(6;) = E[(0a,-..,0im,)] = 9, (4)
Var(6;) = . (5)

Here, Y;; is the count for subject 7 at time j or, more generically, for repetition j within inde-
pendent unit ¢. Further, the conditional mean, given the random effects is:

E(Yij]bi, &, 0:5) = pg; = Oijrij, (6)

where the random variable 0;; ~ G;; (05, a%), Kij = g(w;jé + z;jbi), ¥;; is the mean of 6;; and

2 is the corresponding variance. Finally, b; ~ N(0, D). Write

The generic distribution G in the count case is chosen to be gamma, in such a way that its two
parameters multiply to 1, i.e., is of the form Gamma(a;, 3;) with «; - 5; = 1. This implies that
the mean of 6;; equals 1, so that the mean of Y;; equals x;;.

These authors partially marginalize the conditional distribution over the gamma random effects,

leading to:
Yij &
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where k;; = exp[z;;€ + z];b;]. Their motivation is to have a form that depends on normal
random effects only, which allows maximization of the corresponding likelihood using a software
tool for non-linear mixed-effects models, such as the SAS procedure NLMIXED or the R function
nlme.

3 Rigby and Stasinopoulos’ Negative Binomial Type I Model

Rigby and Stasinopoulos (2005, 2010) propose a general framework where four model elements
are allowed to be governed by both fixed and random effects, referred to as GAMLSS. Gener-
ically, these four parameters correspond to a mean function, a variance function, a skewness
function, and a kurtosis function. It is important to realize that not all four need to be present.



In particular for non-continuous data (e.g., binary data, counts), some functions are induced by
others (cf. the mean-variance relationship in certain exponential family models, and hence in
the ensuing generalized linear models). The GAMLSS also allows for smoothing parameters.

In their construction of the negative-binomial version of the model, these authors take the
following steps:

e The negative-binomial model is generated, in accordance with Breslow (1984), by placing
a gamma distribution on the Poisson parameter.

e The parameterization of the gamma distribution is such that it contains a mean and a
variance parameter.

e These mean and variance parameters are in turn parameterized by making use of both fixed
effects and random effects. The latter random effects are assumed normally distributed.

Rigby and Stasinopoulos (2010, Section 10.14.1, p. 219) present the Negative-binomial Type I
model as follows (Type II also exists but is less relevant for us here), where we have introduced
the same index system as in (8):
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The corresponding moments are:

E(Yy) = i (10)
V() = pij+ oijp;. (11)

4 Connection Between Both Models

Rewrite (8), by expanding the non-integer combinatorial coefficient using Gamma functions,
and by allowing the Gamma parameters to depend on j as well:

Yij Qij
f(ij|bi) = Ly + yy) ( Bij ) <1> KUY (12)

[ (i) T (yis +1) \1+ ki Bij 1+ KijBij

Comparing (12) with (9) leads to the identities:

1 1

Q5 = = )
Bij ij

Kij = Hij-

This allows us to write the moments (10)—(11) in both formulations:

E(Y;) = py = ki, (13)
V(Yy) = i+ oijpgy = rij + Bihi. (14)

It is very important that the (partially conditional) mean function depends on p;; = k;; only.
Indeed, even when both p;; and 0;; depend on (normally distributed) random effects, the mean
function depends only on the random effects in p;;. This simplifies the full marginalization of
the mean, as we will see next.



5 Full Marginalization of the Mean

Expression (13) is the mean function marginalized over the gamma distribution, but with nor-
mally distributed random effects present in the linear predictor of the form (7) as in the combined

model, or of the form
Ky

91(1;) = X + > ZigaVina (15)
=1

as in a GAMLSS, with a similar function for the o;; parameter. Note that the random-effects
term on the right hand side of (15) could be written as a single term, by stacking all random
effects ~,;,; and using the Z;;; as the diagonal blocks in a block-diagonal design matrix.

To fully marginalize y;;, we can make use of Eqn. (35) in Molenberghs et al. (2013):

E(Y;;) = //eije‘”ij&zéjbi(p(bi)dbi
0.Jv
— E(aij)ew;j£+%z{£jDzij _ M EW)+x €452 DZi; (16)

Here, ¢(b;) is the density of b; ~ N (0, D). This expression simplifies due to the parameterization
used for the Gamma distribution, i.e., E(6;;) = 1, and hence:

B(Yy) = S Ha# 0%, (17)

When other than the unity constraint ;- 8;; = 1 is used, the logarithmic term in in (16) must
be retained.

If further the random-effects structure is limited to a random intercept with variance d, then:
E(Y;) = %ubtad,

This implies that all parameters in &, except the intercept, have a marginal interpretation. More
generally, if the random-effects structure in (15) is restricted to intercept(s), regardless of the
distribution of such effects, the fixed-effects parameters retain their interpretation.

If covariates are present in the random-effects structure, and these are normally distributed, then
(17) still offers a parametric description of the marginal mean function, and the corresponding
parametric linear predictor function, which will then depend on both & as well as D.
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