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2. Additional file 2 : Connection between GAMLSS for Counts and the Combined
Model
This additional file provides the relationship between GAMLSS for counts and the combined model.

The derivations depicted the connection between marginal and hierarchical interpretation of Negative

Binomial I GAMLSS model.
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1 Introduction

A connection is established between a particular member of the GAMLSS family for count data,
as proposed by Rigby and Stasinopoulos (2010) and the combined model for count data as
proposed by Molenberghs, Verbeke, and Demétrio (2007) and studied further in Molenberghs
et al. (2010). The GAMLSS under investigation is based on the Negative Binomial Type I
parameterization of Rigby and Stasinopoulos (2010).

Upon re-parameterization, the models are identical, apart from the choice to place normal
random-effects on the variance parameter, in addition to the mean parameter, in the GAMLSS-
NBI case.

2 The Combined Model

Molenberghs, Verbeke, and Demétrio (2007) and Molenberghs et al. (2010) use the following
parameterization for longitudinal (or otherwise hierarchical) count data.

Yij ∼ Poi(θijκij), (1)

κij = exp
(
x′
ijξ + z′

ijbi
)
, (2)

bi ∼ N(0, D), (3)

E(θi) = E[(θi1, . . . , θini)
′] = ϑi, (4)

Var(θi) = Σi. (5)

Here, Yij is the count for subject i at time j or, more generically, for repetition j within inde-
pendent unit i. Further, the conditional mean, given the random effects is:

E(Yij |bi, ξ, θij) = µc
ij = θijκij , (6)

where the random variable θij ∼ Gij(ϑij , σ
2
ij), κij = g(x′

ijξ + z′
ijbi), ϑij is the mean of θij and

σ2
ij is the corresponding variance. Finally, bi ∼ N(0, D). Write

ηij = x′
ijξ + z′

ijbi. (7)

The generic distribution G in the count case is chosen to be gamma, in such a way that its two
parameters multiply to 1, i.e., is of the form Gamma(αj , βj) with αj · βj = 1. This implies that
the mean of θij equals 1, so that the mean of Yij equals κij .

These authors partially marginalize the conditional distribution over the gamma random effects,
leading to:

f(yij |bi) =
(

αj + yij − 1
αj − 1

)
·
(

βj
1 + κijβj

)yij

·
(

1

1 + κijβj

)αj

κ
yij
ij , (8)

where κij = exp[x′
ijξ + z′

ijbi]. Their motivation is to have a form that depends on normal
random effects only, which allows maximization of the corresponding likelihood using a software
tool for non-linear mixed-effects models, such as the SAS procedure NLMIXED or the R function
nlme.

3 Rigby and Stasinopoulos’ Negative Binomial Type I Model

Rigby and Stasinopoulos (2005, 2010) propose a general framework where four model elements
are allowed to be governed by both fixed and random effects, referred to as GAMLSS. Gener-
ically, these four parameters correspond to a mean function, a variance function, a skewness
function, and a kurtosis function. It is important to realize that not all four need to be present.
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In particular for non-continuous data (e.g., binary data, counts), some functions are induced by
others (cf. the mean-variance relationship in certain exponential family models, and hence in
the ensuing generalized linear models). The GAMLSS also allows for smoothing parameters.

In their construction of the negative-binomial version of the model, these authors take the
following steps:

• The negative-binomial model is generated, in accordance with Breslow (1984), by placing
a gamma distribution on the Poisson parameter.

• The parameterization of the gamma distribution is such that it contains a mean and a
variance parameter.

• These mean and variance parameters are in turn parameterized by making use of both fixed
effects and random effects. The latter random effects are assumed normally distributed.

Rigby and Stasinopoulos (2010, Section 10.14.1, p. 219) present the Negative-binomial Type I
model as follows (Type II also exists but is less relevant for us here), where we have introduced
the same index system as in (8):

p(yij |µij , σij) =
Γ
(
yij +

1
σij

)
Γ
(

1
σij

)
Γ (yij + 1)

(
σijµij

1 + σijµij

)yij (
1

1 + σijµij

)1/σij

. (9)

The corresponding moments are:

E(Yij) = µij , (10)

V (Yij) = µij + σijµ
2
ij . (11)

4 Connection Between Both Models

Rewrite (8), by expanding the non-integer combinatorial coefficient using Gamma functions,
and by allowing the Gamma parameters to depend on j as well:

f(yij |bi) =
Γ (αij + yij)

Γ (αij) Γ (yij + 1)
·
(

βij
1 + κijβij

)yij

·
(

1

1 + κijβij

)αij

κ
yij
ij . (12)

Comparing (12) with (9) leads to the identities:

αij =
1

βij
=

1

σij
,

κij = µij .

This allows us to write the moments (10)–(11) in both formulations:

E(Yij) = µij = κij , (13)

V (Yij) = µij + σijµ
2
ij = κij + βijκ

2
ij . (14)

It is very important that the (partially conditional) mean function depends on µij ≡ κij only.
Indeed, even when both µij and σij depend on (normally distributed) random effects, the mean
function depends only on the random effects in µij . This simplifies the full marginalization of
the mean, as we will see next.
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5 Full Marginalization of the Mean

Expression (13) is the mean function marginalized over the gamma distribution, but with nor-
mally distributed random effects present in the linear predictor of the form (7) as in the combined
model, or of the form

g1(µi) = Xi1ξ +
K1∑
k=1

Zik1γik1, (15)

as in a GAMLSS, with a similar function for the σij parameter. Note that the random-effects
term on the right hand side of (15) could be written as a single term, by stacking all random
effects γik1 and using the Zik1 as the diagonal blocks in a block-diagonal design matrix.

To fully marginalize µij , we can make use of Eqn. (35) in Molenberghs et al. (2013):

E(Yij) =

∫
θ

∫
b
θije

x′
ijξ+z

′
ijbiφ(bi)dbi

= E(θij)e
x′

ijξ+
1
2
z′

ijDzij = elnE(θij)+x′
ijξ+

1
2
z′

ijDzij . (16)

Here, φ(bi) is the density of bi ∼ N(0, D). This expression simplifies due to the parameterization
used for the Gamma distribution, i.e., E(θij) = 1, and hence:

E(Yij) = ex
′
ijξ+

1
2
z′

ijDzij . (17)

When other than the unity constraint αij · βij ≡ 1 is used, the logarithmic term in in (16) must
be retained.

If further the random-effects structure is limited to a random intercept with variance d, then:

E(Yij) = ex
′
ijξ+

1
2
d.

This implies that all parameters in ξ, except the intercept, have a marginal interpretation. More
generally, if the random-effects structure in (15) is restricted to intercept(s), regardless of the
distribution of such effects, the fixed-effects parameters retain their interpretation.

If covariates are present in the random-effects structure, and these are normally distributed, then
(17) still offers a parametric description of the marginal mean function, and the corresponding
parametric linear predictor function, which will then depend on both ξ as well as D.
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