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Abstract

Selecting effective corrosion inhibitors from the vast chemical space is not a trivial task, as

it is essentially infinite. Fortunately, machine learning techniques have shown great potential in

generating shortlists of inhibitor candidates prior to large-scale experimental testing. In this work,

we used the corrosion responses of 58 small organic molecules on the magnesium alloy AZ91 and

utilized molecular descriptors derived from their geometry and density functional theory calculations

to encode their molecular information. Statistical methods were applied to select the most relevant

features to the target property for support vector regression and kernel ridge regression models,

respectively, to predict the behavior of untested compounds. We compared the performance of

the two supervised learning approaches and assessed the robustness of our data-driven models by

experimental blind testing.

Keywords: Magnesium, Corrosion inhibitors, Chemical space, QSPR, Feature selection9

I. INTRODUCTION10

Magnesium (Mg), the lightest structural metal, is a promising material in automotive11

and aeronautic engineering due to its outstanding mechanical properties as well as in med-12

ical industries due to its biocompatibility. [1–3] However, Mg-based materials have to be13

protected from corrosion to facilitate their application in advanced engineering applications,14

as Mg is a highly reactive metal. Surface coatings depict a reliable and effective strategy15

to realize the corrosion protection of Mg by adding a barrier layer between the substrate16

and the service environment. [3–5] However, scratches or cracks in the protective coating17

may lead to severe local corrosion reactions. [6] This can be mitigated by incorporating18

corrosion inhibitors into the coatings that will be released on demand and inhibit corrosion19

in the damaged areas. [6–8] It is noteworthy that direct embedding of corrosion inhibitors20

into a coating matrix [9] may impair their functionality by no or limited release [10, 11]21

or may release all corrosion inhibitors at once without control once a defect occurs.[12]22

Application of layered double hydroxides (LDHs) intercalated with corrosion inhibitors is23

one of the promising routes to achieve a controllable active corrosion protection. [12–14]24

∗ xuejiao.li@hereon.de
† christian.feiler@hereon.de
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An LDH is an inorganic sheet-like clay with a brucite structure in its pure Mg(OH)2 form.25

Thanks to the anion exchange property of the LDH structure, the corrosion inhibitors can26

be intercalated into this layered structure and their release can be subsequently triggered27

by exchanging with an aggressive corrosive species (e.g. chloride) to suppress corrosion re-28

actions. [12] Aside from the inorganic corrosion inhibitors commonly intercalated in the29

LDHs such as vanadate [12], tungstate [15], and molybdate [16], organic corrosion inhibitors30

have gained more and more attention recently because a large number of organic compounds31

have shown promising corrosion inhibition for Mg and its alloys.[7] Furthermore, it has been32

demonstrated that small organic molecules can be intercalated into LDHs [17–19].33

However, pure experimental studies on the intercalation of new organic molecules into34

LDHs can be time-consuming, especially when considering the large number of candidate35

molecules to choose from. [20] Aside from that, identification of an effective organic corrosion36

inhibitor to be intercalated into LDHs (see Figure 1) to protect a specific type of Mg alloy37

can be very challenging due to the large number of organic compounds with potentially38

useful properties[21]. Luckily, machine learning-based approaches promise to facilitate the39

screening for useful compounds.40

Machine learning (ML) has developed rapidly in recent years due to the augmentation41

of algorithms and technological advances in computing hardware. [22] While influencing42

our daily life [23, 24], machine learning algorithms have also gained an important role in43

material science [25, 26]. Different algorithms have been applied in material discovery such as44

compound prediction [27–29], structure prediction [30, 31] and predicting material properties45

such as band gap [32], superconductivity [33], bulk and shear moduli [34] and to identify46

effective corrosion inhibitors based on quantitative structure-property relationships (QSPR)47

[35, 36]. For the latter, a number of different machine learning algorihms [21, 37, 38] were48

successfully developed to predict the corrosion inhibiting effect of small organic compounds49

for different types of Mg and its alloys [7, 21, 37], Aluminum alloys [35, 36, 39] and Copper-50

based materials [40]. Naturally, a sufficiently large, diverse and reliable training data set and51

a suitable modeling framework (usually based on one or more machine learning algorithms),52

are two of the crucial prerequisites for the development of predictive QSPR models. A third53

key step is the selection of relevant input features which can either be selected by chemical54

intuition [38] or based on statistical methods [37].55

In this work, corrosion inhibition responses of 58 small organic molecules on Mg alloy56
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FIG. 1: Schematic representation of a layered double hydroxide system with a large

number of organic inhibitor candidates.

AZ91 from a previous work [7] were used to train a QSPR model. AZ91 was the selected57

substrate in this study because our previous experimental work [41] proved that LDHs can58

be directly synthesized at the surface of this alloy as a conversion layer. A potential al-59

gorithm that can be employed to establish a QSPR workflow are support vector machines60

(SVMs) which represent one of the most powerful, precise and robust supervised learning61

methods due to their good theoretical foundations and generalization capacity. [42, 43]62

They have been widely applied to solve various complex real-world problems such as: image63

classification [44], hand-written character recognition [45] and face detection [46] in the past64

twenty years. [42] Applying the same principle as SVMs, support vector regression (SVR)65

was developed to solve regression problems with high accuracy.[47–49] Moreover, approaches66

based on kernel ridge regression (KRR) [50] have been applied by other researchers to de-67

velop reliable models. [48, 49] In the end, the QSPR model developed in this work can68

assist the selection of an effective organic corrosion inhibitor from a large number of organic69
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compounds, whose intercalation into the LDHs will be further investigated to achieve the70

goal of corrosion protection for AZ91.71

II. RESULTS & DISCUSSION72

Schiessler et al. [37] applied statistical feature selection methods and selected the rel-73

evant descriptors to predict the inhibition efficiencies determined for the Mg alloy ZE41.74

In this work, further investigations of the feature selection were carried out which is a key75

element in the development of an ML model that predicts the corrosion IEs of small organic76

molecules. Based on the selected features, two different QSPR models (based on SVR and77

KRR algorithms) are trained to predict the IEs of small organic molecules on AZ91 and their78

accuracy is subsequently validated and compared based on experimental blind testing using79

ten compounds which were not part of the initial data set. An overview of the workflow80

used in this study is illustrated in Figure 2.81

A. Feature selection82

A pool of 2876 distinct molecular descriptors was generated using the cheminformatics83

software package alvaDesc [51] and using density functional theory (DFT) calculations per-84

formed at the TPSSh/def2SVP level of theory employing the quantum chemical software85

package Gaussian 16 [52] as input features for the development of a QSPR model. After86

omitting all molecular descriptors with constant values, the remaining 876 were exposed to87

a sparse selection approach based on recursive feature elimination (RFE) as its potential to88

select relevant features was demonstrated in a recent study. [37] In this work, we added an89

additional step to the feature selection by gradually decreasing the number of used input90

features, starting from the 25-tuple features that were selected using RFE (see the feature91

selection section of Figure 2).92

In the first step, we selected the group of 25 features out of the initial 876 features with93

the application of RFE based on random forests. More details on the selection process of94

the selected 25 features are available in the ’Methods’ section. The list of 25 features serves95

as basis for the following feature importance investigation considering two different ML96

approaches based on SVR and KRR models. In the second step of the feature importance97
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FIG. 2: Schematic representation of the ML workflow used in this study. A database of 58

small organic molecules and their corrosion responses on AZ91 are employed as training

database. First a pool of molecular descriptors to encode their molecular structure is

generated and exposed to a two-step sparse feature selection approach. The most relevant

descriptors are subsequently used to train supervised machine learning models to predict

the behaviour of untested chemicals. The small organic molecules for this step are selected

following our previously published ExChem[21] approach.

investigation, the initially selected 25 features were removed one-by-one in 24 steps. Instead98

of applying RFE, the SVR and KRR models were used directly to select features at each99

step together with hyperparameter optimization and cross validations. At each step, there is100

more than one possibility to remove a feature from the previous step, e.g., there are twenty-101

five possibilities to remove one feature from the selected 25 features. Attempts across all102

possibilities were conducted and the possibility with the lowest averaged root mean squared103

error (RMSE) of the IEs for the test sets in the cross validation was selected at each step104

and plotted in Figure 3. The averaged RMSEs for the train sets in the cross validation105

corresponding to the plot in Figure 3 were listed in the Supporting Information (Table S1).106

For the selected possibility, the removed feature was defined as the least important feature107

in the previous step. In the end, the selected 25 features were ordered according to the108
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previously defined importance, obtaining an order of importance for the features.109

FIG. 3: 25-tuple features selected after the application of RFE based on random forests in

Step 1 were removed one-by-one and the minimum averaged RMSE of the test sets in the

cross-validations varied with the number of features for SVR (in black line) and KRR (in

red line) models.

The trend of the black line in Figure 3 shows that the optimal number of features selected110

for the SVR model equals eight, since the resulting model exhibits the lowest RMSE. The111

selected molecular descriptors are P_VSA_LogP_2, Mor28e, HOMO, MATS4v, Mor06s,112

GATS4p, MATS8m, and Mor15v, ordered by their feature importance. Except for the high-113

est occupied molecular orbital (HOMO) which is obtained from DFT calculations, the other114

seven features are from three descriptor categories (P_VSA-like descriptors, 3D-MoRSE115

descriptors[53] and 2D autocorrelations) obtained from the chemoinformatic software pack-116

age alvaDesc [51]. P_VSA-like descriptors are based on the van der Waals surface area of the117

compounds by summing up all the atomic contributions. 3D-MoRSE descriptors incorporate118

the whole molecule structure information by summarising the atomic pairwise information119

related to the scattering parameter based on electron diffraction and then weighted by either120

of the properties, e.g., mass, Sanderson electronegativity, van der Waals volume and atomic121

polarizability. The 2D autocorrelations descriptors are calculated to provide the interde-122
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pendence between atomic properties (analogous to the 3D-MoRSE descriptors), which are123

connected by a log function.[54] All these three descriptor categories focus on calculating the124

spatial distribution of a generic molecular property rather than only considering the atomic125

configurations.126

In the KRR model, the optimal number of features resulted in eleven as shown by the red127

line in Figure 3. The eleven selected features were identified as Mor15v, HOMO, MATS8m,128

Mor30e, nRNH2, C-018, GATS4p, MATS2i, Mor11e, Mor06s, Mor28e, ordered by their129

feature importance. It is noteworthy that six out of the eleven features are identical with130

those selected for the SVR model. The overlapping features are Mor15v, HOMO, MATS8m,131

GATS4p, Mor06s, Mor28e. This finding implies that the HOMO energies derived from DFT132

calculations, 3D-MoRSE descriptors and 2D autocorrelations descriptors seem to encode133

crucial structural information concerning the prediction of the corrosion inhibition efficiency134

of small organic molecules for AZ91. This observation agrees well with the conclusion from135

Schiessler et al. [37] where DFT calculated features as well as 3D-MoRSE descriptors were136

identified as important input features for an artificial neural network using IEs of small137

organic molecules for the Mg-based alloy ZE41 as a target property. Apart from these three138

feature groups, a number of features encoding functional group counts and atom-centred139

fragments were identified for the top eleven features in the KRR model, e.g., nRNH2 which140

directly encodes the number of aliphatic primary amines. All five compounds that contain141

nRNH2 moieties in our data set are amino acids (Cysteine, Glutamic acid, Glycine, DL-142

norleucine and DL-phenylalanine) which exhibit negative inhibition efficiencies. This finding143

agrees well with the conclusion in ref. 7 that amino acids accelerated corrosion of Mg alloys.144

The corrosion acceleration behaviour of amino acids can be attributed to the solubility of145

their corresponding magnesium complex in water.[55, 56] The feature C-018 from the class146

of atom-centred fragments represents =CHX, where "=" depicts a double bond and X any147

of the following heteroatoms: O, N, S, P, Se or any halogen. In our training data set, this148

specific functional group is present in the compounds Kojic acid, Maltol and Uracil whereas149

all three organic molecules display negative IE values. It has been proven that the complexes150

formed by these three compounds with magnesium are water-soluble. [56–58] Compared to151

the capability to form complexes with metal ions, the solubility of these complexes in water152

appears to be a more decisive factor in determining the efficiency of the organic inhibitors.153

This observation agrees well with the work from Lamaka et al.[7] and Anjum et al.[19]154
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that organic compounds whose complexes have a low solubility in water exhibited a high155

inhibiting effect since they delay corrosion by forming a protective barrier layer.156

Some of the molecular descriptors obtained from chemoinformatics tools like alvaDesc157

are arcane and cannot be easily linked to physical properties since they are derived from158

extensive mathematical manipulations of the chemical graph. To provide a better under-159

standing of the correlation between the used input features and IEs, all respective correlation160

coefficients were determined based on Pearson correlation tests. The Pearson correlation co-161

efficient measures the linear relationship between two sets of data, which varies between -1162

and 1 with 0 implying no correlation while -1 and 1 implying exact negative and positive cor-163

relations, respectively.[59] For both models, the correlation between the individual features164

and the IEs is moderate to weak since the values of the determined correlation coefficients165

in Figure 4a and b are not higher/lower than ±0.5, where the most pronounced negative166

and positive correlations are −0.5 and 0.2, respectively. This observation agrees well with167

the findings of Guyon et al.[60] that the selected features are on its own not necessarily the168

most relevant with respect to the target property. For the correlation between the selected169

features, neither of the correlation is considered as a strong relationship (> 0.9) and most of170

the correlations (over 90%) are interpreted as weak relationships (0.1−0.39) or are negligible171

(< 0.1) according to the definitions in the work of Schober et al.[59]. Moreover, the p-value172

between the used input features and IEs was calculated and illustrated in the Supporting173

Information Figure S1, where the p-value is an indicative measure whether the correlation is174

statistically significant. The weak correlations between most of the selected features largely175

ensure that there is no redundant feature selected as input for the models. Although most176

of the selected features are only weakly correlated with the target property itself, our results177

indicate that they can still be used to build a predictive model when used as a group due to178

underlying synergistic effects which is in good agreement with our previous works.[37, 38]179
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(a) SVR model

(b) KRR model

FIG. 4: Pearson correlation coefficients for the two models. (a) Pearson correlation among

the selected 8-tuple features for the SVR model and IEs. (b) Pearson correlation among the

selected 11-tuple features for the KRR model and IEs.
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In summary, the feature selection method proposed in this work is able to increase the180

accuracy of the predictions in the cross-validation stage by applying the step-wise reduction181

to the group of features which was selected based on RFE in a first step. Moreover, the182

proposed method can be employed to perform RFE for SVR with an radial basis function183

(RBF) kernel, since only the linear kernel is currently supported in scikit-learn [61]. Another184

advantage of this proposed method is that there is no prerequisite on the number of features185

to be selected, therefore all possible combinations of feature groups are explored in the186

feature selection and a comprehensive exploration can be guaranteed.187

B. Model validation188

Hyperparameters for the SVR and KRR models were optimized in a grid search with189

5-fold cross validations together with the feature importance investigation. As a result,190

the set of hyperparameters for the SVR (random_state=10, C=17, γ=0.1) and the KRR191

(random_state=10, α=0.1, γ=0.1) were selected respectively. For both models, the value192

selected for the random state parameter (random_state) is identical which indicates the193

same split of the data set into train and test sets in the cross validations. After the selection194

of the hyperparameters, the full initial data set was used to fit the two models and then these195

models were applied to predict the behavior of the blind test compounds to evaluate their196

robustness. For the selection of the compounds in the blind tests, Trimesic acid and Py-197

romellitic acid were suggested by our experimentalists based on chemical intuition, whereas198

the remaining candidates were selected by following the ExChem approach described in our199

previous work[21], using a database of 7094 commercially available compounds provided by200

Thermo Fisher Scientific. The experimental and predicted values for the 10 compounds in201

the blind tests are listed in Table I where values in red indicate overestimated and in blue202

underestimated predictions. The predicted values for the piperazine derivatives 1 and 2 are203

marked in brown for both models as their predicted acceleration efficiencies are significantly204

less negative than the corresponding experimental values, which are beyond the inhibition205

efficiency range of the chemicals used as initial data set in this work. However, it is note-206

worthy that both compounds were correctly predicted to accelerate the dissolution of AZ91.207

These two compounds were excluded in the following analysis since they are outside of the208

domain of applicability of the used initial data set.209
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TABLE I: Experimental and predicted values (IEs in %) for the blind test compounds.

Index Compound IE (exp.) SVR (pred.) KRR (pred.)

1 1-Acetylpiperazine -563 -172 -108

2 1-Amino-4-methylpiperazine -517 -195 -109

3 2-Hydroxycinnamic acid -24 51 2

4 2-Hydroxyphenylacetic acid -14 -21 -53

5 3-Methylpyrazole 16 9 -17

6 5-Nitrouracil 79 -68 -82

7 Tartronic acid 30 37 60

8 Trimesic acid 67 -89 23

9 Pyromellitic acid 52 34 23

10 Trimethylolpropane 20 -42 -49

The SVR and KRR models performed similarly well for the full initial data set, the blue210

points in Figure 5a and b, where the predicted and experimental values correlated well with211

an RMSE around 10%. The performance of some of the blind test compounds that were212

under- or overestimated, circled by red and blue dashed circles or ellipses in Figure 5 (the213

colors correspond to the ones in Table I), results in a relatively high RMSE value for both214

employed models. From Figure 5, it can be seen that both SVR and KRR models under-215

estimated 5-Nitrouracil (6, IEpred,KRR = -82%, IEpred,SVR = -68%) and Trimethylolpropane216

(10, IEpred,KRR = -49%, IEpred,SVR = -48%) in a similar way. There are other two outliers (2-217
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FIG. 5: Performance assessment of the (a) SVR model and (b) KRR model. Both figures

show the correlation between the predicted values and the measured values from

experiments (IEs in %). The blue points represent the full initial data set (58 compounds,

the names and IEs were listed in the Supporting Information (Table S2)). The orange

points depict the blind test compounds. Please note that 1-Acetylpiperazine (1) and

1-Amino-4-methylpiperazine (2) were excluded from the plot. Although their estimates

were qualitatively correct (1: IEpred,SVR = -172%, IEpred,KRR = -108%, IEexp = -563%; 2:

IEpred,SVR = -195%, IEpred,KRR = -109%, IEexp = -517%), their measured values were far

outside the models domain. For the sake of clarity, the corresponding structures of the

plotted blind test compounds are shown at the bottom of the figure. Red and blue dashed

circles or ellipses mark the over- and underestimated compounds, respectively.

Hydroxycinnamic acid (3) and Trimesic acid (8)) in the SVR model as shown in Figure 5a.218

Even though there are two more outliers in the SVR model, it is important to note that the219

predicted values for the other four compounds in the blind test set correlated well with the220

corresponding experimental values for the acetic acid 4 (IEpred,SVR = -21%, IEexp. = -14%),221

the pyrazole 5 (IEpred,SVR = 9%, IEexp. = 16%) as well as the aliphatic (7 (IEpred,SVR = 37%,222

IEexp. = 30%)) and aromatic (9 (IEpred,SVR = 34%, IEexp. = 52%)) carboxylic acids with223

an RMSE 22% in the SVR model. The RMSE calculated for the non-outlier compounds 3,224

4, 5, 7,8 and 9 in the KRR model results to 34%. These observations indicate that both225
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the SVR and KRR models are able to provide good estimates for majority of the blind test226

compounds. The difference between these two models is that the SVR model can provide a227

higher accuracy of predictions for the non-outlier compounds while there are less outliers in228

the KRR model.229

One out of the 10 compounds (5-Nitrouracil (6)) in the blind test set contains a =CHX230

fragment, suggesting that it has a negative IE value. However, in contrast to the pre-231

dicted negative inhibition efficiency, the experimental result showed that 5-Nitrouracil gave232

adequate inhibition performance. This could be attributed to the nitro compounds of 5-233

Nitrouracil which have been proven to be able to assist the corrosion protection of a variety234

of alloys. [62–64] Moreover, a number of organic compounds with nitro groups were exper-235

imentally tested to have positive inhibition efficiencies for commercial magnesium and the236

Mg ZE41 alloy.[7, 21] This observation is, however, not captured by neither of the employed237

models because of the limited information on the effect of a nitro functionality in our data set238

as there is only one compound (5-Nitrobarbituric acid) that exhibits this functional moiety.239

This strongly indicates that future experimental data set need to include more compounds240

with a nitro moiety to enable the model to recuperate the impact of this group on the241

corrosion inhibiting effect.242

To gain more insights of the compounds which are outliers, we calculated the pairwise243

distances (see the ’Methods’ section) based on the input features between the compounds244

in the blind test and the initial data set used in building the models to evaluate the highly245

similar structures for each blind test compound. Two compounds with high similarity end246

up with a value close to 1 in the similarity matrix. With the similarity decreasing, the value247

in the similarity matrix decreases approaching 0. This yields a similarity value between 0 (no248

similarity) and 1 (identical). Figure 6a and b show the similarity matrix for the eight blind249

test compounds and the initial data set for the SVR and KRR models, respectively. The top250

5 similar structures (containing the names and the inhibition efficiencies) for 5-Nitrouracil (6)251

are shown in Figure 6 for both models. Based on the color shown in the matrix, a similarity252

order from high to low can be extracted for these 5 structures in SVR (Uracil, Glycine,253

5-Nitrobarbituric acid, DL-Phenylalanine, Glutamic acid) and KRR (Uracil, Maltol, Kojic254

acid, Fumaric acid, Urea). It is noteworthy that there are obvious color differences for some255

of the top 5 similar structures such as the difference between Uracil and Urea in the KRR256

model as shown in Figure 6 b. This indicates the limitation of the data set used in this257
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FIG. 6: Similarity matrix of the 8 blind test compounds and the 58 compounds in the data

set for the (a) SVR model and (b) KRR model. The top 5 similar structures containing

the names and the inhibition efficiencies for 5-Nitrouracil (6) are plotted in the figure as an

example. The values below the names are the similarity values. The color scale

corresponds to the values in the matrix where dark blue indicates low / no, green

moderate and yellow high similarity values.

work where there are only 58 data points in total. As a consequence, there are not enough258

structures in the data set with similarities comparable to the similarity between Uracil and259

the blind test compound 5-Nitrouracil (6). The IEs of these 5 similar structures are ordered260

by similarity in Table II. In the last column of Table II, the average of the IEs for these261

5 similar structures is listed. We followed the same process to extract the top 5 similar262

structures and list their IEs and the average IE in Table II for all the other outliers. The263

average values of the IEs exhibit a decent agreement with the predicted values as shown264

in Table II. This indicates that our models are able to capture the similarity connections265

existing in the data set and make according predictions. The similarity connections are266
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however limited by the small size of our data set, resulting in the appearance of these267

outliers. The learning curves for the SVR and KRR models (as illustrated in the Supporting268

Information Figure S2) show that the averaged RMSEs for the test sets in the cross validation269

decrease as the size of the training set increases, although the averaged RMSEs of the test270

sets for both models are higher relative to that of the train sets. One possible remedy is to271

expand the data set, so the averaged RMSEs of the test sets can consistently decrease by272

adding additional training data.273

TABLE II: The IEs in % of the extracted top 5 similar structures from ref. 7 are listed in

the similarity order from high to low (from 1st to 5th, please note that 1st, 2nd, 3rd, 4th, 5th

do no indicate the same structures but refer to those that are most similar to the ones that

were tested in this work.) and the average of these 5 IEs for the outliers in the SVR and

KRR models.

IEexp IEpred 1
st

2
nd

3
rd

4
th

5
th Average

SVR 3 -24 51 26 56 18 45 24 34

6 79 -68 -151 -82 71 -149 -84 -79

8 67 -89 38 11 -90 -125 52 -23

10 20 -42 -27 -27 24 34 -106 -20

KRR 6 79 -82 -151 -168 -90 83 -19 -69

10 20 -49 -27 -91 54 -27 -129 -44

In this work, the performance of two supervised machine learning approaches (SVR and274

KRR) were assessed concerning their robustness to predict the corrosion inhibition of small275

organic compounds for AZ91. The blind tests for the models were carried out to assess276

the reliability of each model. With the data set expanding in size and diversity in the277

future, similarity connections can be improved to increase the domain of applicability of278

the model. Either of the described model approaches can then be applied to predict the279

corrosion inhibition behaviors of a large amount of organic compounds with higher confidence280

and select promising inhibitors for AZ91, thus significantly decreasing material costs and281

environmental impact of experiments while accelerating the discovery of effective corrosion282

inhibitors.283

In summary, small organic molecules exhibit great potential to control the corrosion284

16



behavior of magnesium-based materials. Selecting effective organic corrosion inhibitors from285

the vast space of available compounds is not a trivial task and it cannot be solved by time-286

and resource-consuming experimental investigations alone. Quantitative structure-property287

relationship models based on supervised learning techniques such as SVR and KRR create288

great efficiencies in screening for effective agents for corrosion control.289

In this work, the RBF kernel was used to develop two predictive data-driven models based290

on the available experimental inhibition efficiencies (IEs) of organic compounds for AZ91291

from a previous work.[7] A pool of 876 input features derived from the cheminformatics soft-292

ware package and density functional theory calculations (DFT) were generated and exposed293

to an initial feature selection based on recursive feature elimination to identify the feature294

group consisting of 25 features with the highest relevance for the target property. These 25295

features were subsequently gradually reduced to find the optimal number of features for the296

respective method and the results indicate that lowest RMSE is obtained for 8 features in297

the SVR and for 11 features in the KRR approach. There is a considerable overlap between298

the two groups of selected features as the energy levels of the highest occupied molecular299

orbital (HOMO) derived from DFT, 3D-MoRSE descriptors and 2D autocorrelations de-300

scriptors ended up in the final model for both cases, which agrees well with the findings in301

our previous work.[37]302

Blind tests were carried out to assess the performance of the two model frameworks303

that were investigated in this work. Both models provide robust estimates for the IE of304

the untested chemicals. Of the ten compounds in the blind tests, 1-Acetylpiperazine (1)305

and 1-Amino-4-methylpiperazine (2) were predicted correctly to be strong accelerators with306

IE values more negative than -100% by both models. However, the predicted values were307

not quantitatively correct and neither of the models was able to predict the real values of308

the two compounds (1, IEexp = -563% and 2, IEexp = -517%) since the IE range of the309

compounds in the initial data set is limited to -227% IE. For the other eight compounds,310

2-Hydroxyphenylacetic acid, 3-Methylpyrazole, Tartronic acid and Pyromellitic acid were311

correctly predicted by both models, where the values predicted by the SVR model are closer312

to the real values compared to the KRR model. In addition, both models identified 5-313

Nitrouracil and Trimethylolpropane as outliers, although there are two more outliers for the314

SVR model. For each of the outliers, we observed that there is a distinct variation for the315

IEs of its top 5 highly similar structures extracted from the data set, which might ultimately316
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cause the false prediction of the IE value. This indicates that the similarity connection of317

the structures is limited by available data.318

Moreover, modulators exhibiting an aliphatic primary amine (nRNH2), e.g. in an amino319

acid, or fragments with the general formula R=CHX (an alkene with a terminal function-320

ality X that can either be O, N, S, P, Se or a halogene) cause elevated corrosion rates in321

experimental studies.[7] The results indicate that small organic molecules that exhibit either322

of the above mentioned functional moiety can most likely be excluded from the screening323

for effective corrosion inhibitors. However, they might have beneficial properties for other324

applications such as battery electrolyte additives where a controlled dissolution of the Mg-325

based anode material is required.[65] Additionally, organic compounds with nitro groups326

should be investigated in more detail from experiments since they exhibit rather positive in-327

hibition efficiencies. After that, these experimentally investigated compounds can be added328

to the data set to characterize this moiety and as a consequence to improve the accuracy of329

the predictions for untested structures. Nevertheless, it was shown in this work that data-330

driven models based on SVR and KRR approaches can be applied to predict the corrosion331

inhibition efficiencies. Feeding more training samples to the model will facilitate an active332

design of experiments thereby accelerating the selection of potent inhibitors for AZ91 and333

other materials. Next, the selected inhibitors can be investigated for intercalation in LDH to334

achieve an active corrosion protection of AZ91. Finally, the machine-learning based strate-335

gies developed in this work can also be adapted to explore quantitative structure-property336

relationships in different application fields given sufficient training data is available to train337

the respective models.338

III. METHODS339

58 organic compounds were extracted from the work of Lamaka et al.[7] for AZ91 and340

used as data base in this work. These 58 organic compounds were selected based on the341

following three requirements: the concentration of the tested inhibitor was 0.05m in 0.5342

wt.% sodium chloride electrolyte (NaCl) pH neutral aqueous solution, molecular weight (<343

350 Da) and inhibition efficiencies ranging from -250% to 100%. The concentration was344

selected to be 0.05m due to the fact that the majority of organic compounds were measured345

in this concentration for AZ91 and other concentrations influenced the inhibition efficiency346
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of a chemical compound.[7] The chemical space was explored in a limited range of molecular347

weight since we are interested in seeking for small molecular organic inhibitors. The selection348

of the inhibition efficiency range is a balance between the large number of compounds, which349

is beneficial to build a model, and the small range from the side of the accelerators since the350

exploration of strong accelerators is out of interest in this work.351

A. Feature generation and selection352

After the data extraction, the molecular structures of these 58 compounds were built and353

optimized in the DFT calculations at the TPSSh/def2SVP level of theory using the quantum354

chemical software package Gaussian 16 [52]. DFT-calculated features, especially the highest355

occupied (HOMO) and the lowest unoccupied molecular orbital (LUMO), have been shown356

to be correlated to the corrosion inhibition efficiencies of small organic molecules for some357

Mg-based materials.[38, 66, 67] The optimized structures from DFT were subsequently used358

as input in the cheminformatics software package alvaDesc 1.0.22 [51] to generate more359

features, which were then combined with the HOMO and LUMO features to the initial360

feature set. There are over 800 features for each compound in the initial feature set, which361

significantly exceeds the number of compounds in the initial data set. At first, we applied362

RFE based on random forests to select the 25-tuple features, thus initially reducing the363

feature space. These selected 25 features can be different if we repeat the selection procedure364

due to the random initialization in the random forests. We repeated the selection procedure365

50 times and obtained 50 different groups of selected top 25 features. The feature group with366

the lowest averaged test RMSE of the 5-fold cross validation (as illustrated in the Supporting367

Information Figure S3) in the SVR model was picked out of the 50 feature groups and is the368

basis for searching the most relevant features for the SVR and KRR models, respectively. We369

reduced the 25 features in a stepwise manner (one feature per step) to remove insignificant370

features in the model training. In each step, there is more than one possibility to remove371

one of the total features and all possibilities were investigated. The option which yielded372

the lowest averaged test RMSE was selected at each step and the preserved features were373

used for the next step. The number of considered features ranged from 25 to 1. Applying374

this method, we were able to select the most relevant features which obtained the lowest375

averaged test RMSE for the SVR and KRR models, respectively. After the selection of the376
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optimal features for each model, the continued stepwise procedure resulted in an order of377

importance for the selected features, depending on their removed order.378

B. Support Vector Regression & Kernel Ridge Regression379

SVMs were initially developed as a supervised algorithm for classification. They are con-380

structed as an optimization problem by finding the separation hyperplane with the maximum381

margin, while maintaining correct predictions for most of the training points. [47, 68, 69] The382

concept of SVMs can be adapted and be applicable to regression problems, which evolved383

into SVR. In general, SVR builds a connection between a high-dimensional input vector and384

one-dimensional target values. [48] This connection can be linear, as shown in Figure 7a,385

and nonlinear with the assist of the kernel trick [70]. For SVR, a kernel function can map386

the nonlinear distribution data in the input space to a higher-dimensional space where the387

regression can be in a linear form. The RBF kernel has been used in SVMs for both classifi-388

cation [42, 71, 72] and regression [73, 74] with considerable success. Apart from SVR, KRR389

[75] is known as a similar model form as SVR [48] with the application of a different error390

loss function. While KRR applies a squared error loss, SVR employs an ε-insensitive loss391

as illustrated in Figure 7a and b. In this work, these two methods were applied in solving392

the nonlinear connection between the input features and the target inhibition efficiency of393

small organic compounds with the assist of a RBF kernel.394

We applied the same feature selection process for both the SVR and KRR models and395

obtained the most relevant features for each model, respectively. In this work, the high-396

dimensional input vector is composed of the previously identified most relevant features397

and the target values are the experimental inhibition efficiency extracted from the work of398

Lamaka et al.[7]. The regression is achieved by ε-SVR [76] and KRR, and the results obtained399

from these two methods are compared and discussed in this work. Hyperparameters such as400

γ of the RBF kernel (as seen in the Supporting Information Figure S4), the regularization401

parameter C, which manages the trade-off between the smoothness and overfitting of the ε-402

SVR, and the regularization parameter α for a similar trade-off function in the KRR model,403

are tuned in a 5-fold grid search to find optimal values with respect to the target property.404

Except for these three mentioned parameters, the random state parameter (random_state)405

which controls the split of the train and test sets was also tuned in this work to avoid the406
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FIG. 7: Schematic diagrams of (a) a SVR with the ε-insensitive loss function and (b) a

KRR with the squared error loss function.

biased split because of the relatively small data set (58 compounds) and large inhibition407

efficiency range (from -250% to 100%). The distribution of the inhibition efficiencies is408

provided in the Supporting Information (Figure S5).409

C. Similarity calculation410

The similarity calculation used in this work is based on a distance metric where the411

selected input features are the coordinates of each compound in the corresponding high412

dimensional feature space. The RBF kernel used in the SVR and KRR model was applied413
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in the similarity calculation, which is defined as414

k(x, y) = exp(−γ||x− y||2) , (1)

where x and y are the vectors of the selected input features for two compounds, respectively.415

D. Corrosion Experiments416

The data set used in building the SVR and KRR models was extracted from the work417

of Lamaka et al.[7] and therefore the validation for these two models (blind tests) has been418

carried out with the same experimental setup and under the same conditions. The IE of419

compounds was calculated based on a hydrogen evolution test, in which the amount of420

evolved hydrogen due to the corrosion of magnesium is measured during immersion in a421

NaCl solution. 0.5 g of AZ91 Mg chips with the surface area of 430 ± 29 cm2/g from the422

same batch used in work of Lamaka et al was immersed in 0.5 wt.% NaCl solution without423

(reference solution) and with the untested compounds. The concentration of compounds424

was 0.05m and the pH of solutions was adjusted to 7 ± 0.1 by NaOH/HCl. The hydrogen425

evolution measurements were repeated three times for each solution and the average of426

calculated IEs was used for the corresponding blind test data point. The IE was defined by427

the following equation428

IE =
V 0

H2
− V Inh

H2

V 0
H2

100% , (2)

where V 0
H2

and V Inh
H2

are the volumes of H2 evolved after 20 h of immersion in the refer-429

ence NaCl solution and the NaCl solution containing the investigated chemical compound,430

respectively. More details on the hydrogen evolution tests are available in the original431

publication[7].432
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