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Fig S1. Schematic depiction of the state-based simulation algorithm (A) and the state-based
virtual infection model for whole-blood infection (B). (A) The model is composed of different states
that represent several cell populations during whole-blood infection (colored circles). The model
contains states for killed pathogens in extracellular space (Pxe), immune evasive pathogens (Pi) as
well as two types of immune cells, neutrophils (N;) and monocytes (M;) with j phagocytosed pathogens.
Connections between the states indicate possible state transitions that are characterized by transition
rates (grey colored Greek letters): p for the acquisition of immune escape as well as ¢, and ¢,,for
phagocytosis by neutrophils and monocytes. The figure is adapted from Hulnniger et al., 2014. (B) For
each simulation time t, an individual is randomly selected out of the number of individuals Ns. The current
state of the individual can be left in dependence on the respective rate of the transition. After testing
each individual for possible state transition, the simulation time is increased by the simulation time step
At and the simulation algorithm ends if the simulation time t.nq is reached. The Figure is adapted from

Lehnert et al., 2015.
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Fig S2. Schematic depiction of the agent-based virtual infection model for whole-blood infection
(A) and its simulation algorithm (B). (A) Both immune cell types — monocytes (orange) and neutrophils
(blue) — as well as the pathogenic cells (red: killed pathogens, grey: immune evasive killed pathogens)
are modeled as spherical objects within a continuous three-dimensional environment representing 0.5
Ml of blood. The figure is adapted from Lehnert et al., 2015. (B) First, in the ABM all system components
are instantiated. Afterwards, the interaction of monocytes and neutrophils with the pathogen is simulated
for a time t,,,,. During each discrete time step t for all cells migration and interaction with other cells in

the environment is simulated in random order. The Figure is adapted from Lehnert et al., 2015.
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Fig S3. Flow chart of the SBM parameter estimation algorithm. Calibration of the SBM to the
experimental data is realized by the Metropolis Monte-Carlo algorithm with simulated annealing. The
algorithm is explained in detail in the Supplementary Material Section SBM parameter estimation by

simulated annealing. The flowchart is adapted from Lehnert et al. 2015.
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Fig S4. Flow chart of the ABM parameter estimation algorithm. For calibration of the ABM to the
experimental data the local method of adaptive regular grid search is applied. First, a grid within the
parameter space with predefined boundaries is initiated with a certain grid constant. Afterwards, the
algorithm iterates through the grid and the model is simulated with the current parameter p. The
deviation of the simulation outcome and the experimental data is evaluated using the weighted least
squares error. Furthermore, around the best parameters p, i.e. the parameters with a low E(p), the
parameter space is screened with a more fine-grained grid by bisecting the current grid constant. The

flowchart is adapted from Lehnert et al. 2015.



