

# Supporting Information

# A Free-standing Nanoporous NiCoFeMoMn High Entropy Alloy as An Efficient Electrocatalyst Fast Driving Water Splittting

Hao Liu<sup>1,2,3</sup>, Hongye Qin<sup>1</sup>, Jianli Kang<sup>1\*</sup>, Liying Ma<sup>1\*</sup>, Guoxin Chen<sup>3\*</sup>, Qin Huang<sup>4</sup>,

Zhijia Zhang<sup>2</sup>, Enzuo Liu<sup>1</sup>, Huanming Lu<sup>3</sup>, Naiqin Zhao<sup>1</sup>

<sup>6</sup> <sup>7</sup> <sup>1</sup>School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China

<sup>8</sup> <sup>2</sup>School of Materials Science and Engineering, Tiangong University, Tianjin 300387,  
<sup>9</sup> China

10 <sup>3</sup>Ningbo Institute of Materials Technology & Engineering, Chinese Academy of  
11 Sciences, Ningbo 315201, China.

12 <sup>4</sup>Guangdong Institute of Semiconductor Industrial Technology, Guangdong Academy  
13 of Sciences, Guangzhou 510651, China

\*Corresponding author. E-mail: jianlikang@tju.edu.cn (J. Kang); lyma@tju.edu.cn (L.-Y. Ma); gxchen@nimte.ac.cn (G. Chen)

16

1 1.1 Synthesis of the precursor high entropy NiCoFeMoMn ribbons.  
2 The high entropy alloy with theoretical atomic ratio of  $\text{Ni}_{14}\text{Co}_{14}\text{Fe}_{14}\text{Mo}_6\text{Mn}_{52}$  was  
3 prepared by mixing the metal particles of nickel (Ni), cobalt (Co), iron (Fe),  
4 molybdenum (Mo) and manganese (Mn) with purity higher than 99.9%. The  
5 precursor high entropy NiCoFeMoMn alloy ribbons was prepared by arc melting and  
6 single-roller melt spinning. In order to ensure that the components of the prepared  
7 high entropy alloy are more uniform, Firstly, NiCoFeMo was prepared into alloy ingot  
8 by arc melting under a Ti-gettered argon atmosphere in a water-cooled copper  
9 crucible. After that, the prepared NiCoFeMo alloy ingot and metal Mn are prepared to  
10 form the precursor high entropy NiCoFeMoMn ribbons by single-roller melt spinning.  
11 When the material passes through the cold surface of the copper roller, it will be  
12 rapidly quenching to room temperature to form a face centered cubic (FCC) high  
13 entropy alloy ribbons with the size of  $25\mu\text{m}$  thick and  $\sim 2\text{mm}$  wide. The precursor high  
14 entropy NiCoFeMoMn ribbons are cut into a thin sheet metal with the size of 1cm  
15 length and 0.2cm wide for preparation of nanoporous-NiCoFeMoMn high entropy  
16 alloy catalyst.

17 2.2 Synthesis of the nanoporous-NiCoFeMoMn catalyst.  
18 The np-NiCoFeMoMn catalyst was fabricated by a facile one step electrochemistry  
19 dealloying process in the 1.0 M  $(\text{NH}_4)_2\text{SO}_4$  (Shanghai Macklin Biochemical Co., Ltd)  
20 solution using an electrochemical workstation (CHI 760) in a standard three electrode  
21 system with a graphite rod as the counter electrode and Ag/AgCl electrode as  
22 reference electrode. Under the voltage of - 0.5V (vs Ag/AgCl), different surface  
23 morphology and atomic proportion can be obtained by controlling different corrosion  
24 time intervals of 2, 3, 4, 5 and 6h to remove metal components. The dealloyed high  
25 entropy alloys were rinsed at least three times with deionized water to eliminate  
26 residual chemical reagent before storing in anhydrous ethanol until electrochemical  
27 testing is performed.

28 2.3 Materials characterization

29 A Bruker D8 Advance Davinci X-ray diffraction (XRD) instrument was employed by  
30  $\text{Cu}-K\alpha$  radiation with a monochromator to identify the FCC-phase structure of the

1 HEA and the structural evolution during the dealloying process. The diffraction  
2 patterns were recorded by continued scanning in the  $2\theta$  range of  $20^\circ$ – $100^\circ$ . Zeiss  
3 Auriga is used to show the surface morphology and element composition with  
4 energy-dispersive X-ray spectroscopy (EDS). Transmission electron microscopy  
5 (TEM) images were taken on an FEI TF20 field-emission transmission electron  
6 microscope operating at 200 kV, selected area electron diffraction (SAED),  
7 high-resolution transmission electron microscopy (HR-TEM) images, scanning  
8 transmission electron microscopy (STEM) images and energy-dispersive X-ray  
9 spectroscopy images are also obtained by this device. The TEM specimens was  
10 prepared on using a Zeiss focused ion beam/scanning electron microscope (FIB/SEM).  
11 The surface characteristics of the samples were investigated using Kratos Axis Ultra  
12 DLD X-ray photoelectron spectrometer (XPS). The specific surface area and pore size  
13 distribution were determined by nitrogen adsorption-desorption tests using the BET.  
14 The contact angles of droplets on the sample surfaces were recorded by Dataphysics  
15 OCA20.

16 2.4 Electrochemical measurements.

17 The catalyst of electrochemical measurements throughout in this work was tested in  
18 1.0 M KOH (Shanghai Wokai Biochemical Co., Ltd) solutions using an  
19 electrochemical workstation (CHI 760) in a standard three electrode system with a  
20 graphite rod or Pt sheet as the counter electrode and Ag/AgCl electrode as reference  
21 electrode, respectively. The Ag/AgCl electrode was rinsed with deionized water  
22 before use. All the potential in this work are calibrated by reversible hydrogen  
23 electrode (E vs. RHE) on the basis of the Nernst equation with iR compensation. The  
24 dealloyed np- NiCoFeMoMn high entropy alloy and a Pt sheet are directly used as the  
25 working electrodes. The current density was Calculated by the geometric area of the  
26 specimens. Linear sweep voltammetry (LSV) was tested with a scan rate of  $1 \text{ mV s}^{-1}$ .  
27 Electrochemical impedance spectroscopy (EIS) was carried out from 0.01 to  $10^5 \text{ Hz}$ . A  
28 series of cyclic voltammetries (CVs) were carried out at sweep rates of  $5$  -  $100 \text{ mV s}^{-1}$   
29 at non-faradaic overpotentials to demonstrate the current charging and discharging  
30 capacitance for estimating the double-layer capacitance ( $C_{dl}$ ). The electrochemical

1 surface area (ECSA) value was obtained according to the equation of  $ECSA = C_{dl}/C_s$ ,  
 2 where  $C_{dl}$  is the measured double-layer capacitance and  $C_s$  is the specific capacitance.  
 3 In this work, we assumed the  $C_s$  value at  $40 \mu\text{F cm}^{-2}$  due to the flat surface of the  
 4 HEAs. The stability measurement was carried out at a static current density of 100  
 5 and  $500 \text{ mA cm}^{-2}$  by a chronoamperometry method without iR compensation. For the  
 6 electrochemical test, the catalysts inks ( $5 \text{ mg mL}^{-1}$  for Pt/C) were prepared by  
 7 dispersing the catalyst in a mixture of water and isopropyl alcohol at volume ratio of  
 8 5:5 with 0.05wt% Nafion as a binder by sonicating for 30 min to get a uniform  
 9 suspension. An aliquot of  $8 \mu\text{L}$  of Pt/C was deposited on the polished 5 mm glassy  
 10 carbon electrode.

## 11 2.5 Calculation of price activity

12 In order to compare price activities of Pt/C and np-NiCoFeMoMn 6h, their mass  
 13 activity was calculated first. The overpotential of -100 mV was selected to evaluate  
 14 the mass activity and price activity. The details are as follows:

$$15 j_{\text{mass}}^{\text{Pt/C}} = \frac{j_{\text{area}}^{\text{Pt/C}} (\text{mA/cm}^2)}{\text{mass}_{\text{Pt}}} = \frac{31.47(\text{mA/cm}^2)}{0.2(\text{mg/cm}^2)} = 157.35 \text{ A/g}$$

$$j_{\text{mass}}^{\text{np-HEA}} = \frac{j_{\text{area}}^{\text{np-HEA}}}{\text{mass}_{\text{np-HEA}}} = \frac{463.87(\text{mA/cm}^2)}{6.81(\text{mg/cm}^2)} = 68.12 \text{ A/g}$$

$$16 j_{\text{price}}^{\text{Pt/C}} = \frac{\text{mass-activity}_{\text{Pt/C}}}{\text{price}_{\text{Pt/C}}} = \frac{157.35(\text{A/g})}{974/28.3495(\text{dollar/g})} = 4.6(\text{A/dollar})$$

$$j_{\text{price}}^{\text{np-HEA}} = \frac{\text{mass-activity}_{\text{np-HEA}}}{\text{price}_{\text{np-HEA}}} = \frac{68.12(\text{A/g})}{0.0187(\text{dollar/g})} = 3642.8(\text{A/dollar})$$

17

## 18 2.6 Model Confirmation

19 The special quasi-random structure method using a Monte Carlo algorithm  
 20 implemented in ATAT software is employed to model the segregation area  
 21 ( $\text{Mn0.4Fe0.15Co0.15Ni0.15Mo0.15}$ ) and uniform area  
 22 ( $\text{Mn0.2Fe0.1Co0.1Ni0.3Mo0.3}$ ) alloy supercells<sup>1-3</sup>, as well as keep the same chemical  
 23 atomic ratio both in bulk and on surface. Pair correlation functions up to the third  
 24 nearest neighbors were optimized where the maximum mismatch between the special

1 quasi-random structure and the ideal target alloy was below 0.04. The longest distance  
2 when calculating the correlation functions is set as 1.2. After MCSQS optimization,  
3 the software generated 16 and 19 geometric structures for segregation area  
4 (Mn0.4Fe0.15Co0.15Ni0.15Mo0.15) and uniform area  
5 (Mn0.2Fe0.1Co0.1Ni0.3Mo0.3) respectively. We chose the structure with best lower  
6 objective function as our supercell model. The slab models are built with vacuum  
7 added in the 111 direction.

8 2.7 Parameter Determination

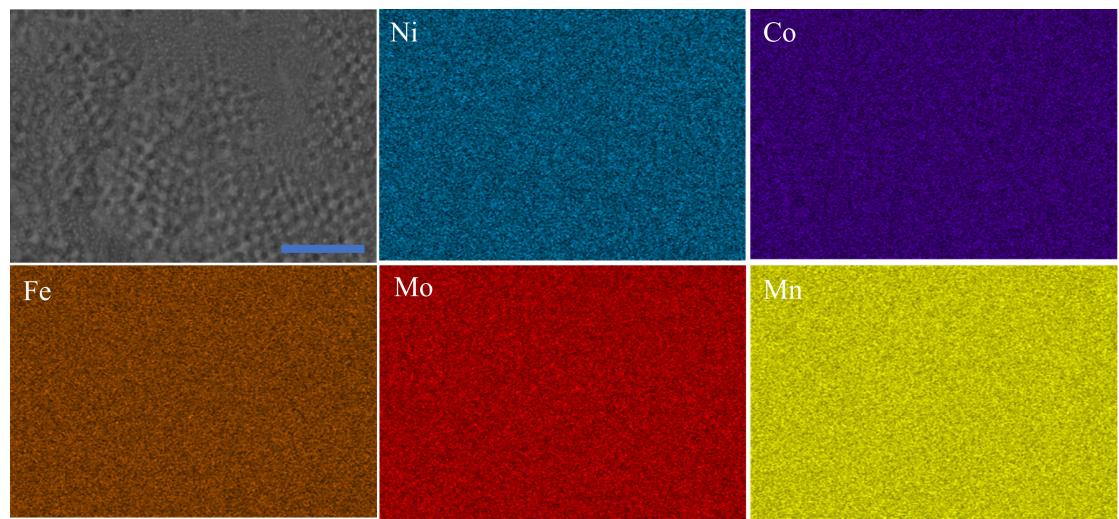
9 At least six volumes are used to to the 4-parameter Birch-Murnaghan equation of  
10 states (EOS) fitting to obtain equilibrium properties<sup>4</sup>. The optimized lattice parameters  
11 for bulk segregation area and and uniform area unit cell parameters were 3.625 and  
12 3.695 Å, respectively, in agreement with experimental XRD values of Å.

13 2.8 DFT Caculation

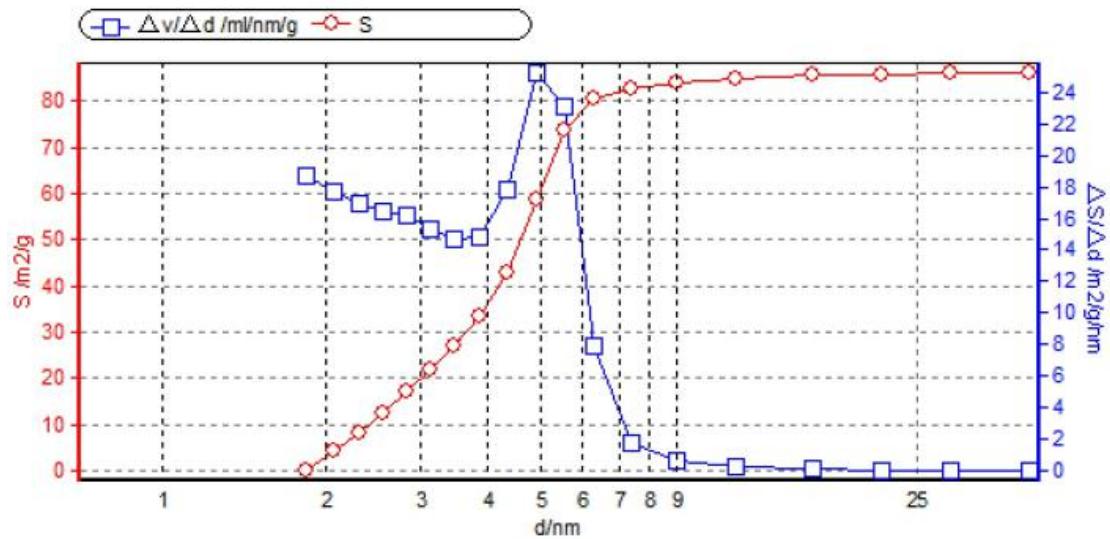
14 All spin polarized DFT calculations were performed using the projected augmented  
15 wave pseudopotentials<sup>5, 6</sup> and Perdew-Burke-Ernzerh of generalized gradient  
16 exchange approximation correlational functional as implemented in computational  
17 package VASP<sup>7, 8</sup>. The kinetic energy cutoff was set to 600 eV for the plane-wave  
18 basis set and the DFT dispersion correction (DFT-D3) method was used to treat the  
19 van der Waals interactions<sup>9</sup>. Brillouin zone integration was sampled with the gamma  
20 centred  $2 \times 4 \times 1$  and  $3 \times 3 \times 1$  MonkhorstPack mesh k-point for segregation and  
21 uniform surface calculations<sup>10</sup>. The force and energy convergence criteria were set to  
22 0.02 eV Å<sup>-1</sup> and 10<sup>-6</sup> eV, respectively. The water adsorption energies ( $E_{H2O}$ ) at HEA  
23 surfaces were calculated by the equation of  $EH2O = Esurf + H2O - Esurf - EH2O$ ,  
24 where the  $Esurf$  and the  $Esurf + H2O$  are the total energies of the surface before  
25 and after water adsorption, and  $EH2O$  is the energy of a free water molecule

26 In order to understand the catalytic performance for HER, the H adsorption free  
27 energy under standard conditions (pH = 0, p(H2) = 1 bar) was computed. The

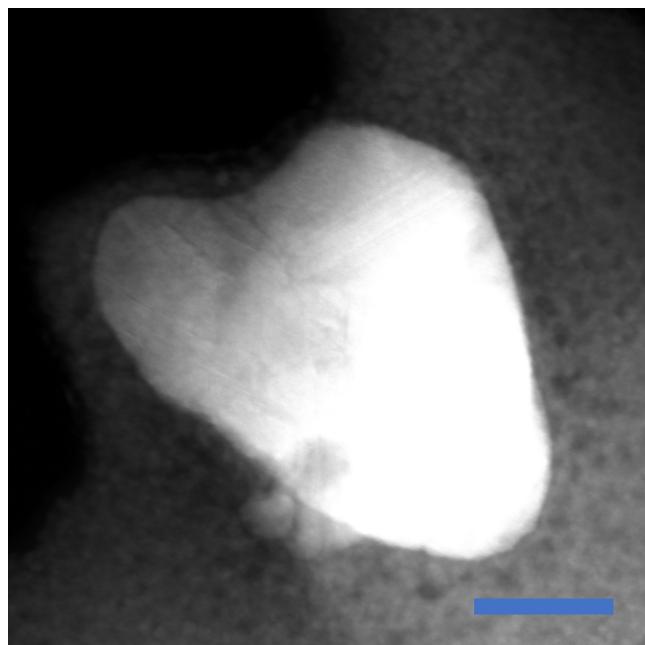
28 hydrogen adsorption Gibbs free energy  $\Delta G_H$  is defined as


29  $\Delta G_H = \Delta E_H + \Delta E_{ZPE} - T\Delta S_H$ , where  $\Delta E_H$  is the differential hydrogen adsorption

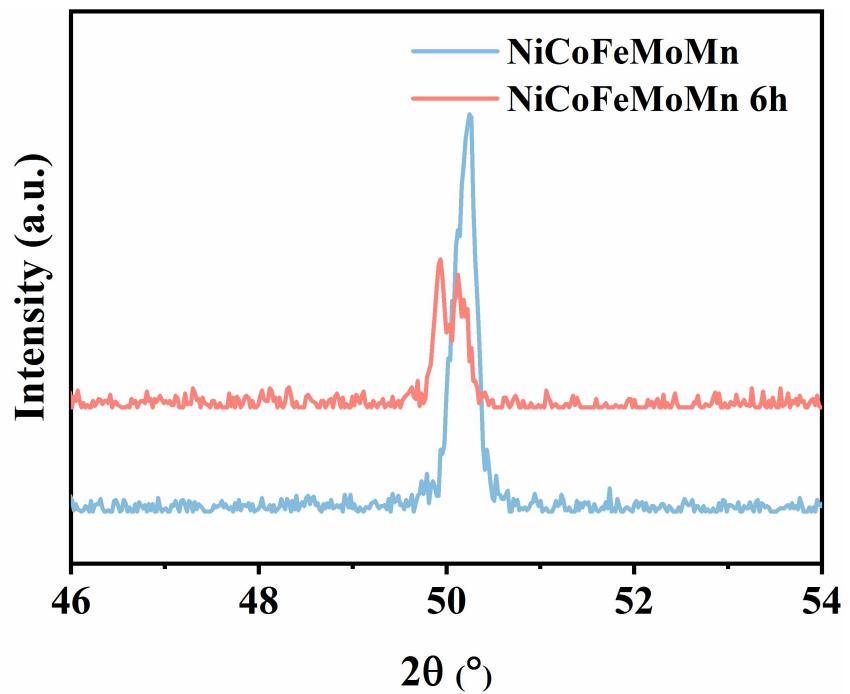
1 energy,  $\Delta E_{ZPE}$  is the difference between the zero-point energy of the hydrogen  
2 adsorbed state and the gas phase H<sub>2</sub>. Since the vibrational entropy contribution of the  
3 hydrogen adsorbed state is very small, where  $S_{H_2}^0$  is the entropy of H<sub>2</sub> in the gas  
4 phase at the standard conditions. Therefore, the overall contribution can be rewritten


5 as  $\Delta G_H = \Delta E_H + 0.24 \Delta S_H \approx -\frac{1}{2} S_{H_2}^0$  at room temperature<sup>11</sup>.

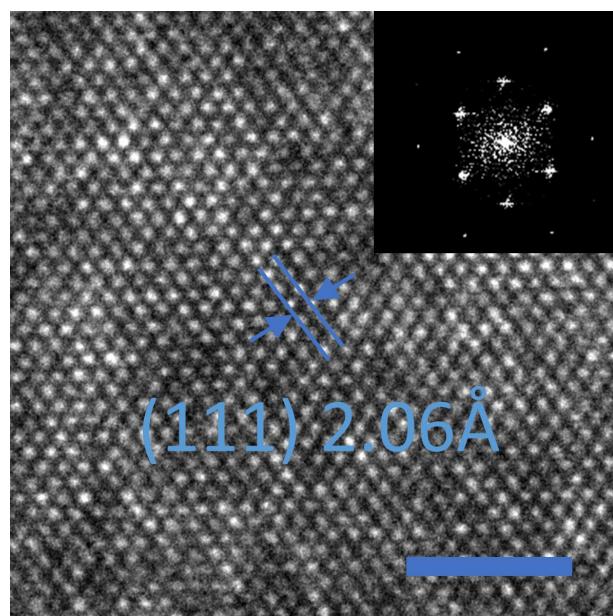
6 2.9 Formation mechanism of morphology after dealloyed


7 We think that the change may be due to the different composition between SA  
8 and un-SA, which leads to different open circuit voltage. In order to verify this  
9 hypothesis, we prepared two ribbons according to the composition of SA and  
10 un-SA, respectively. The open circuit voltages of the two ribbons were  
11 measured by CHI760E electrochemical workstation, the value of un-SA and SA  
12 are -0.58 and -0.49V (vs Ag/AgCl). Therefore, when electrochemical dealloying  
13 is performed at - 0.5V (vs Ag/AgCl), SA will not be dealloyed. At the same time,  
14 it forms larger pores due to the corrosion of un-SA area near SA area is more  
15 serious.

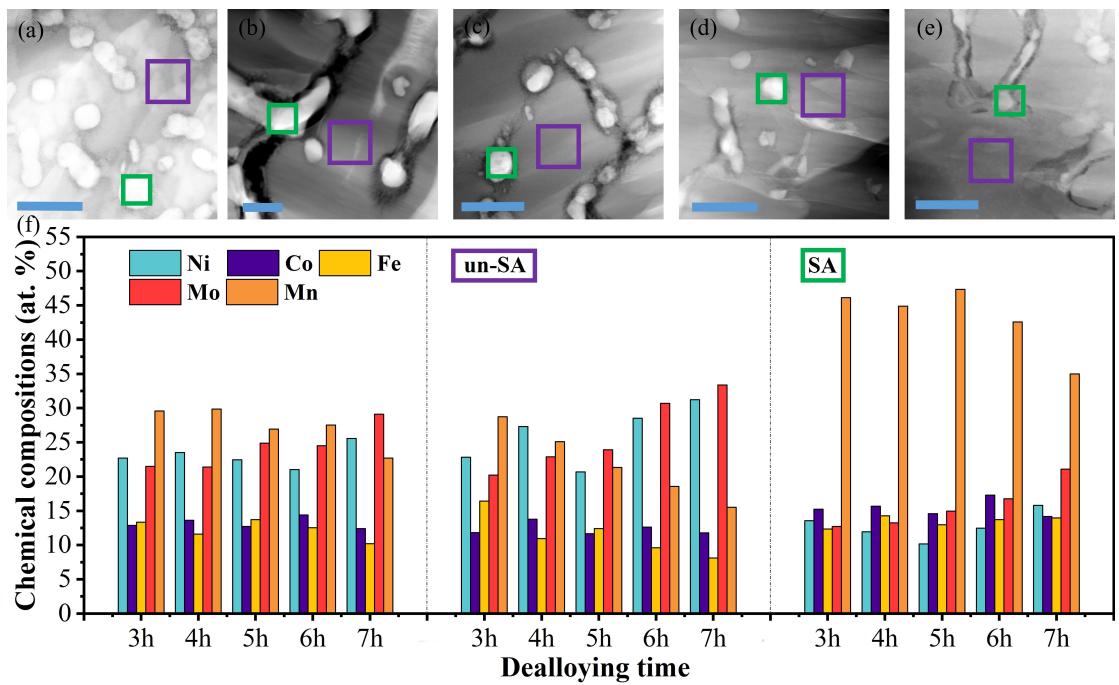



**Fig. S1** SEM-EDS of NiCoFeMoMn alloy. Scale bars: 5 $\mu$ m.

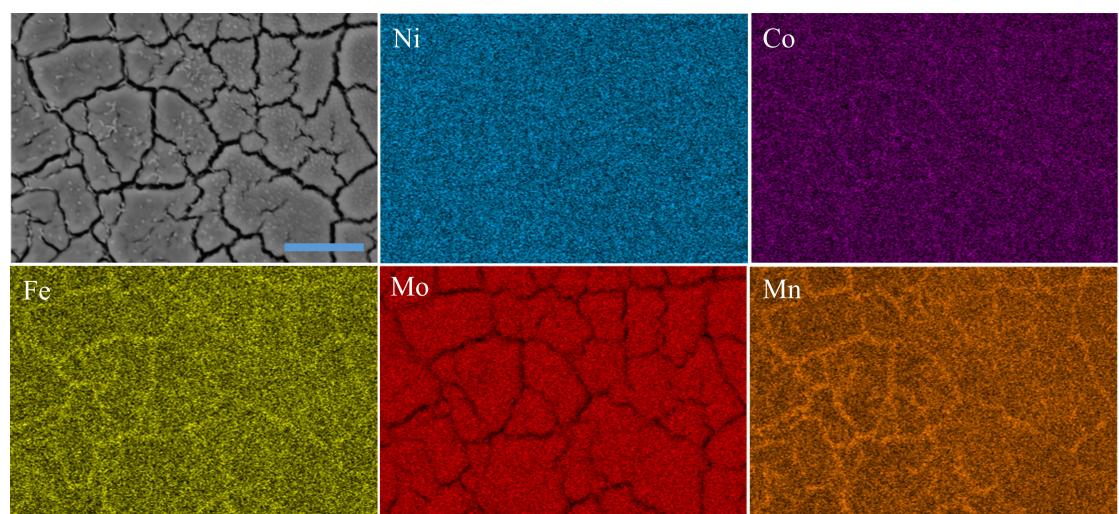



**Fig. S2** BET analysis of the nanoporous NiCoFeMoMn electrode was prepared by dealloying in 1M  $(\text{NH}_4)_2\text{SO}_4$ .

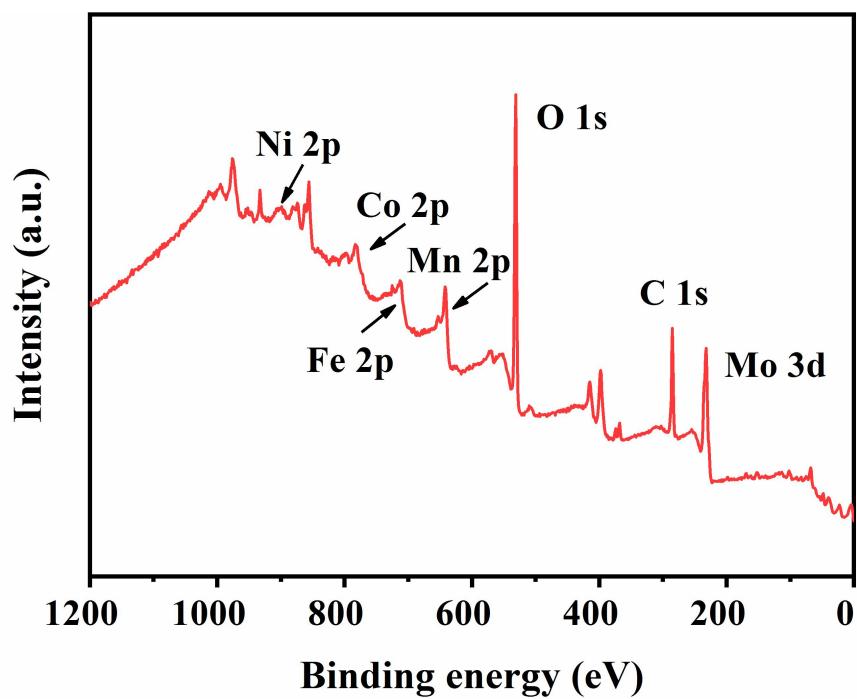



**Fig. S3** HADDF-STEM image of NiCoFeMoMn alloy. Scale bars: 50nm.

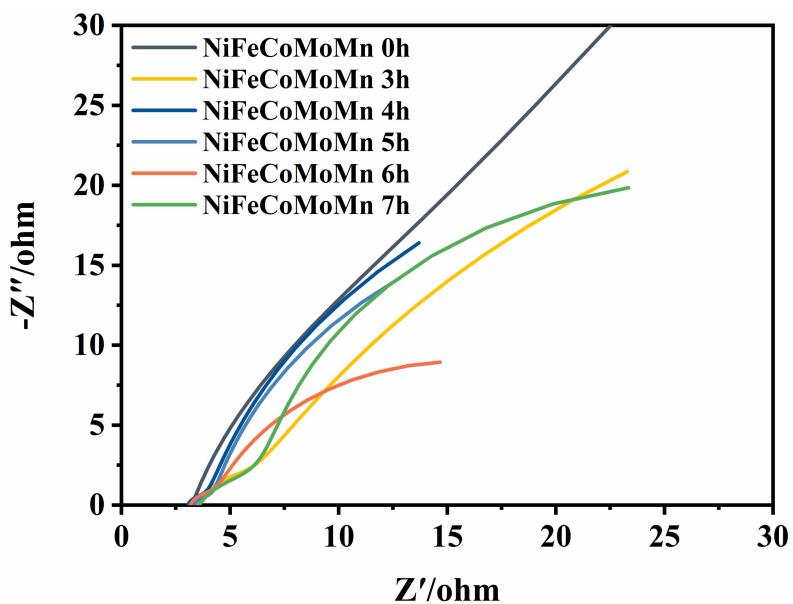



**Fig. S4** XRD analysis of the master NiCoFeMoMn alloy and np- NiCoFeMoMn alloy of (200) plane.

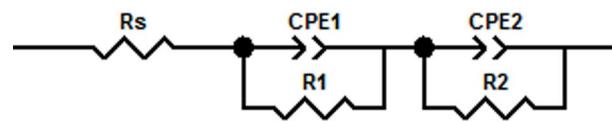



**Fig. S5** HR-TEM of NiCoFeMoMn alloy. bar: 2nm

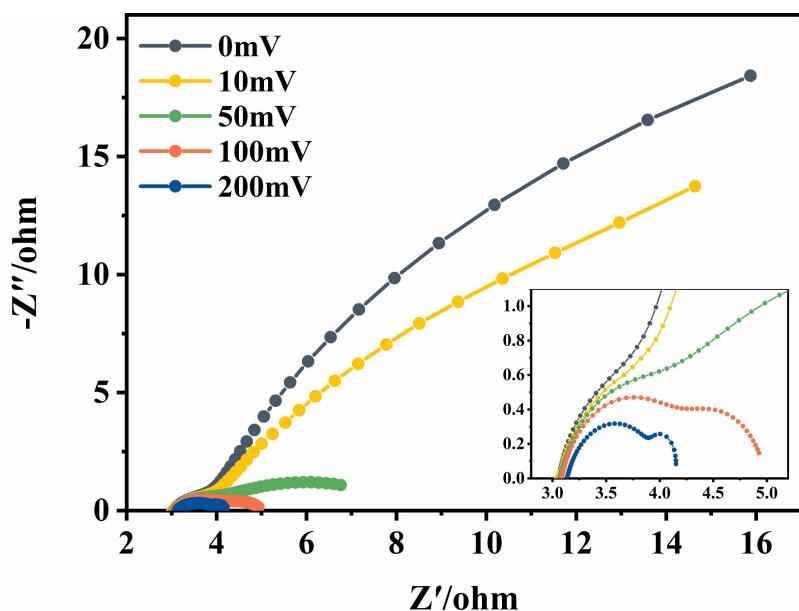



**Fig. S6.** HADDF-STEM images of np-NiCoFeMoMn with different dealloying time. (a)- (e) 3-7h. ( The green box and red box represents the SA and un-SA, respectively. (f) chemical composition of total content, un-SA and SA with different dealloying time. bar: 500nm.

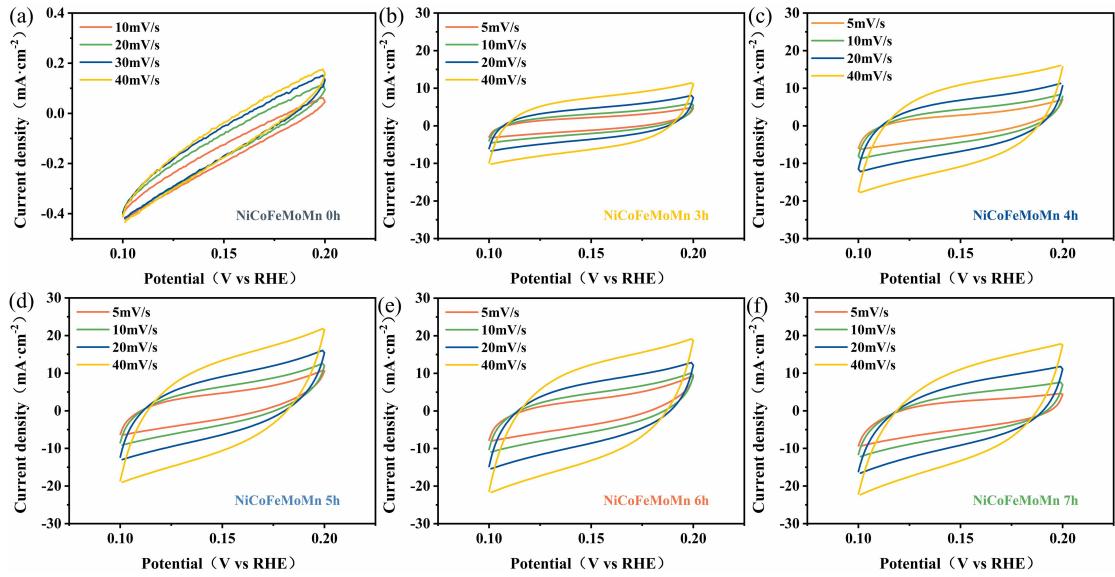



**Fig. S7** SEM and EDS of np-NiCoFeMoMn 6h. Scale bars: 10 $\mu$ m.

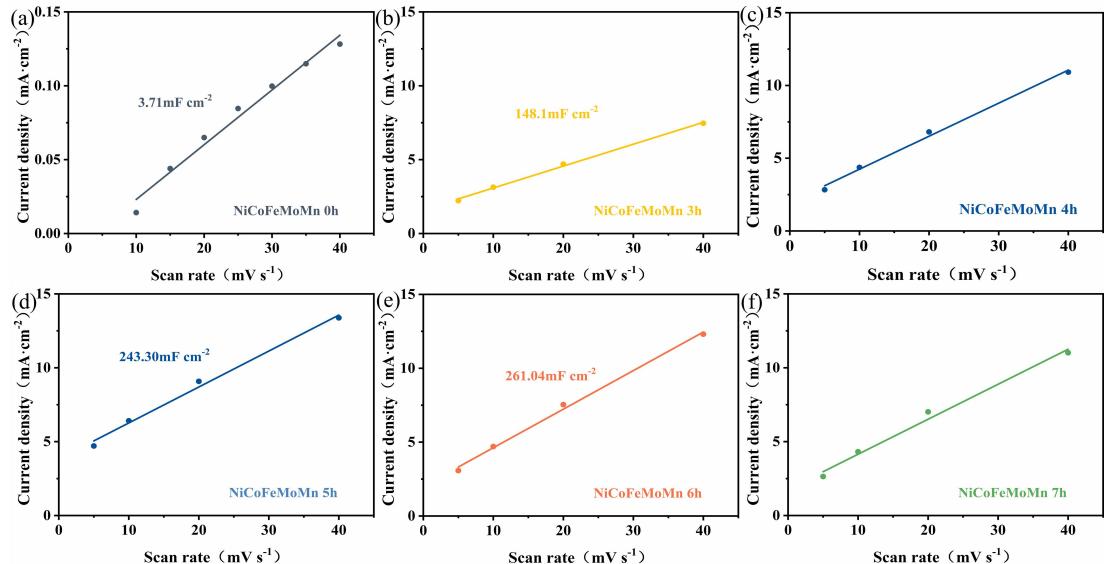



**Fig. S8** XPS spectra of np-NiMnFeMo 6h.

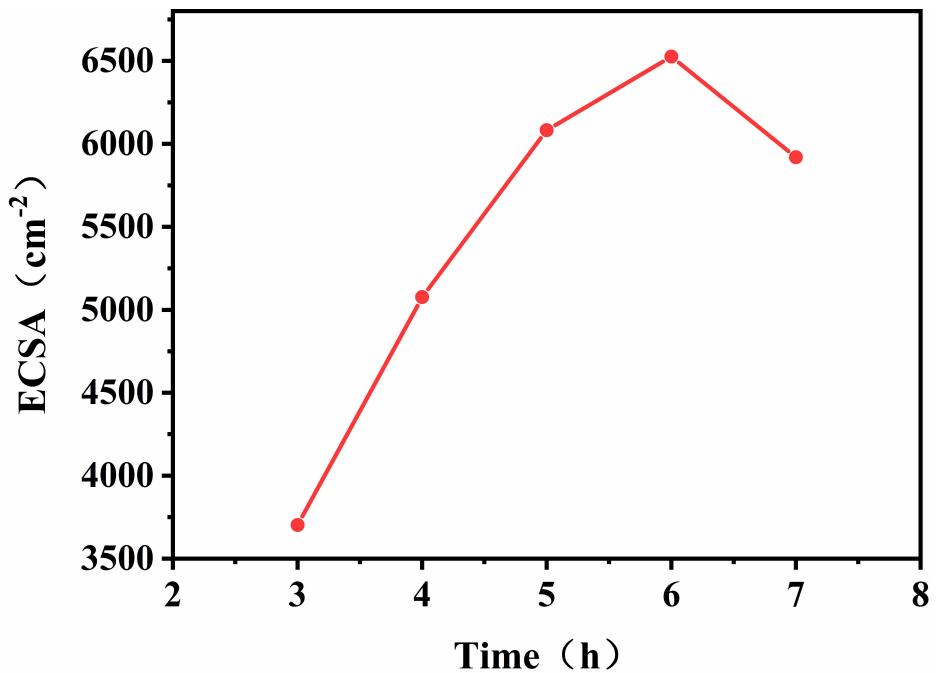



**Fig. S9.** Electrochemical impedance spectra of np-NiCoFeMoMn under different dealloying time.

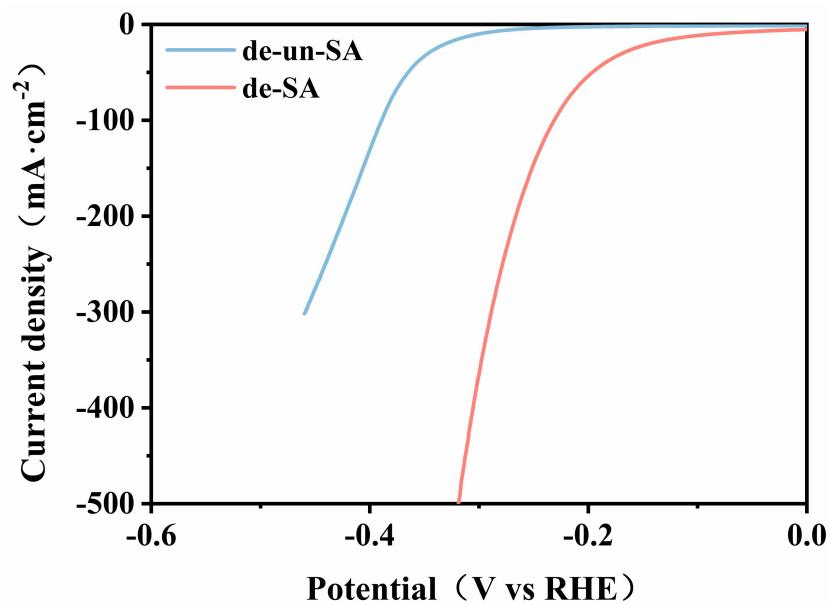



**Fig. S10** The np-NiCoFeMoMn 6h's EIS equivalent circuit diagram in 1M KOH.

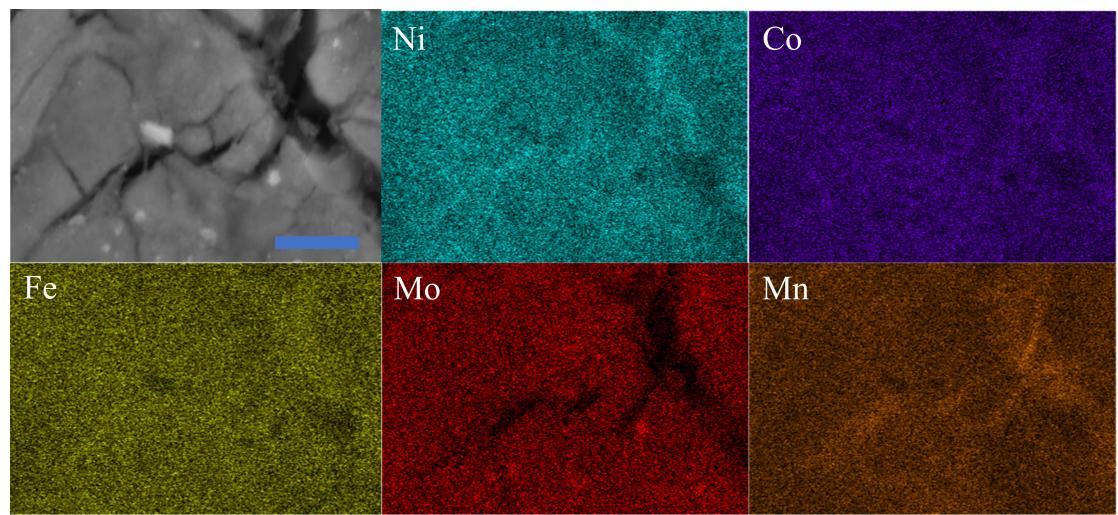



**Fig. S11** Electrochemical impedance spectra of np-NiCoFeMoMn 6h under different overpotentials.

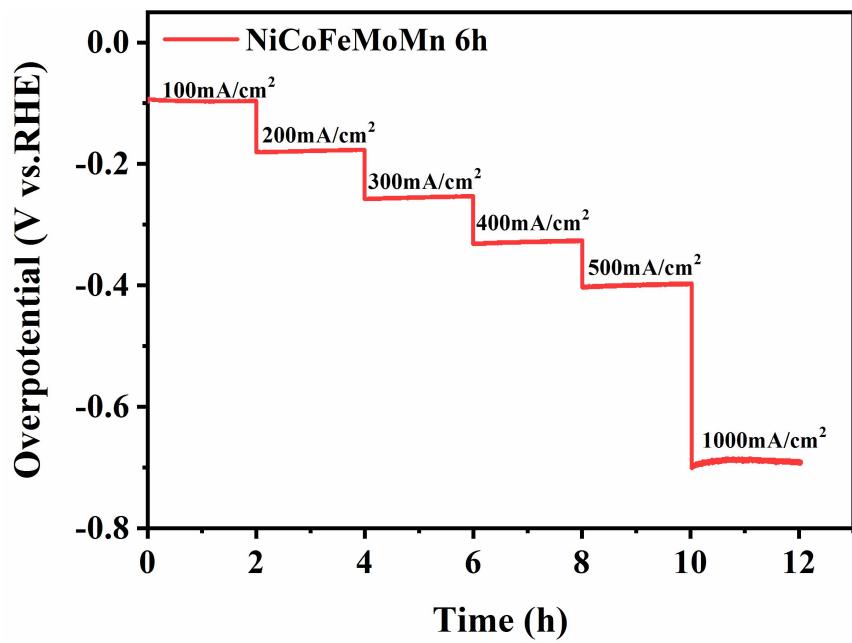



**Fig. S12** The double-layer capacitance curve of the nano porous high entropy electrode with different dealloying time.

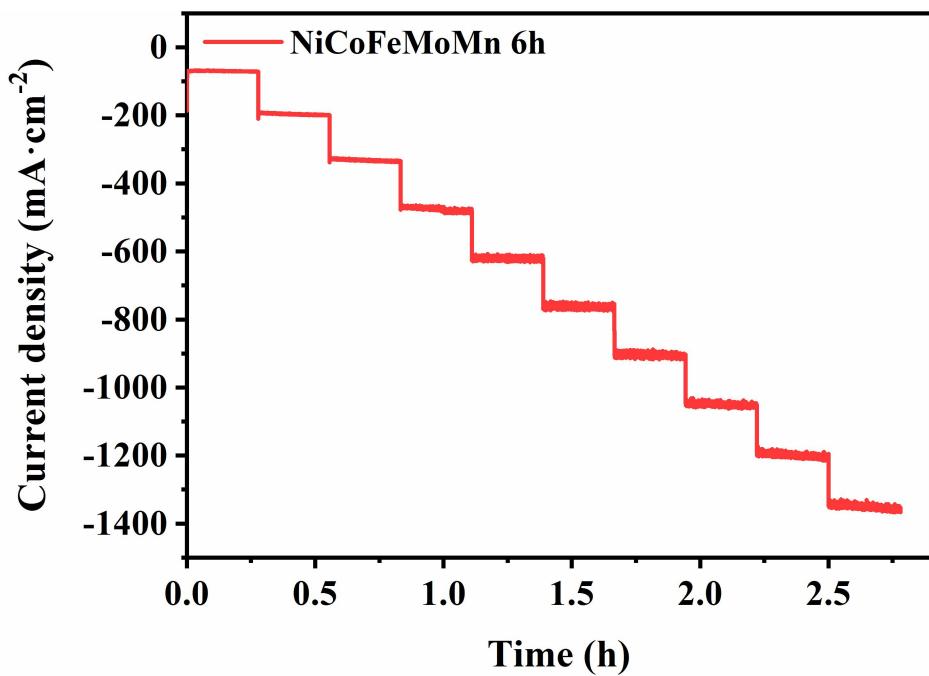



**Fig. S13** The capacitive currents plotted against the scan rate at 0.15 V versus RHE for the NiCoFeMoMn alloy and np-NiCoFeMoMn alloy, indicating the benefit of the enlarged surface area of the np-NiCoFeMoMn 6h for the potential electrochemical applications.

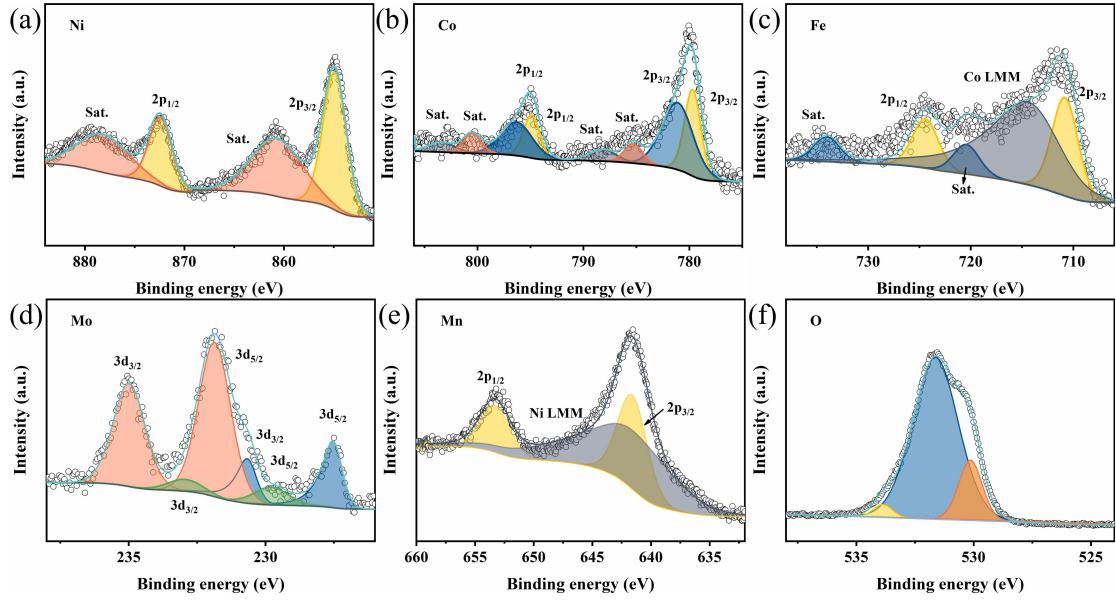



**Fig. S14.** The dependence of ECSA on the NiCoFeMoMn at different dealloying time intervals, showing the improved active sites during the dealloying process.



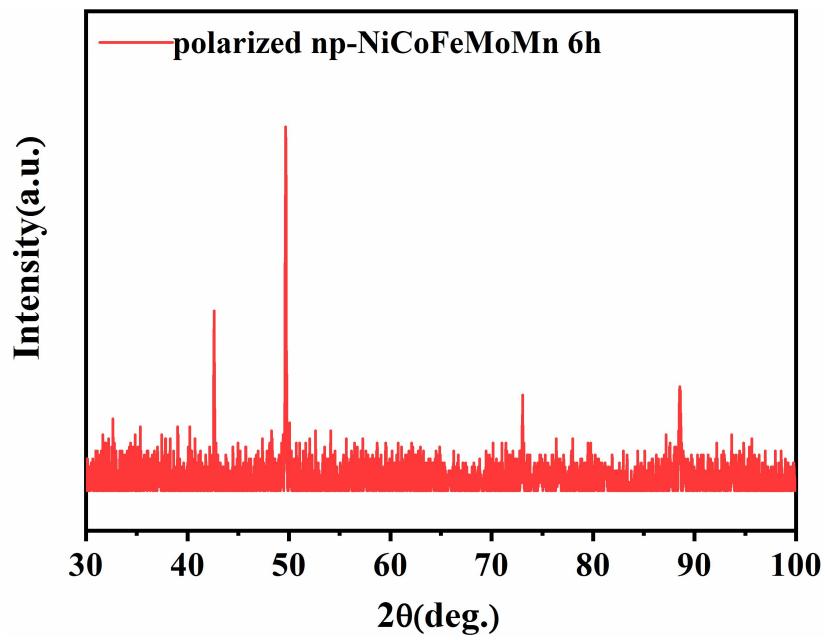

**Fig. S15** HER polarization curves for NiCoFeMoMn de-SA and de-un-SA in 1 M KOH solution. Scan rate: 5 mV s<sup>-1</sup>.



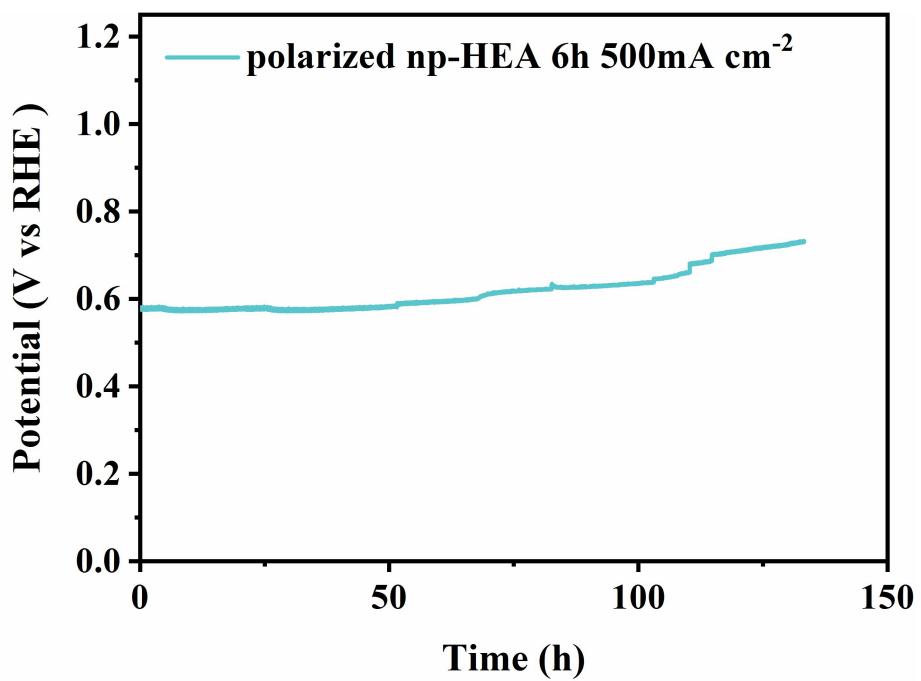

**Fig. S16** SEM and EDS of np-NiCoFeMoMn 6h after HER durability test. Scale bars: 2.5 $\mu$ m.



**Fig. S17.** Multi-step chronoamperometric curve obtained with np-NiCoFeMoMn 6h in 1M KOH, measured at different overpotentials, strating at 0 mV and ending at 690 mV with an increment of 80 or 300 mV every 2 h. (Without iR compensation).



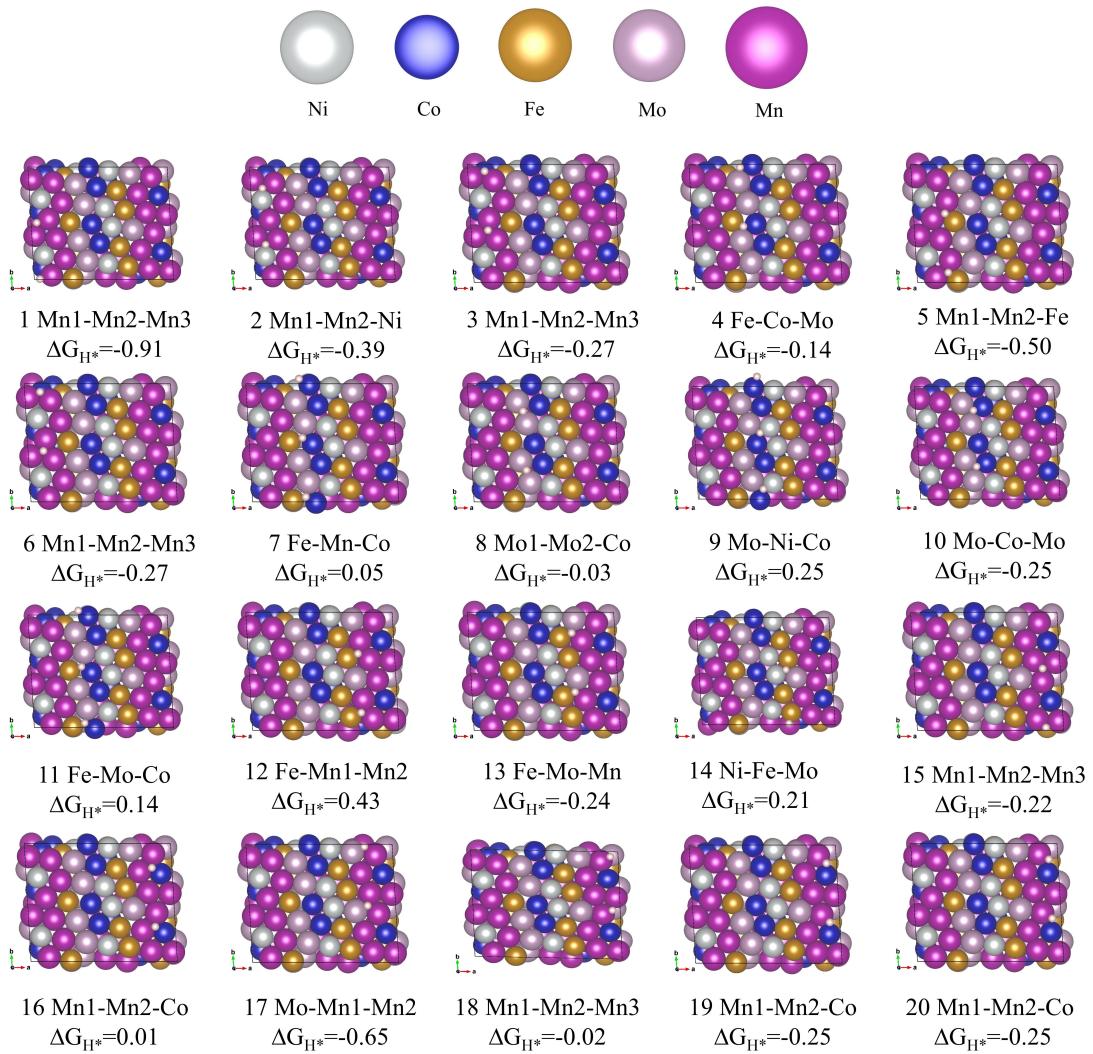

**Fig. S18** Multi-step voltage curve obtained with np-NiCoFeMoMn 6h in 1M KOH, measured at different current. (Without iR compensation).



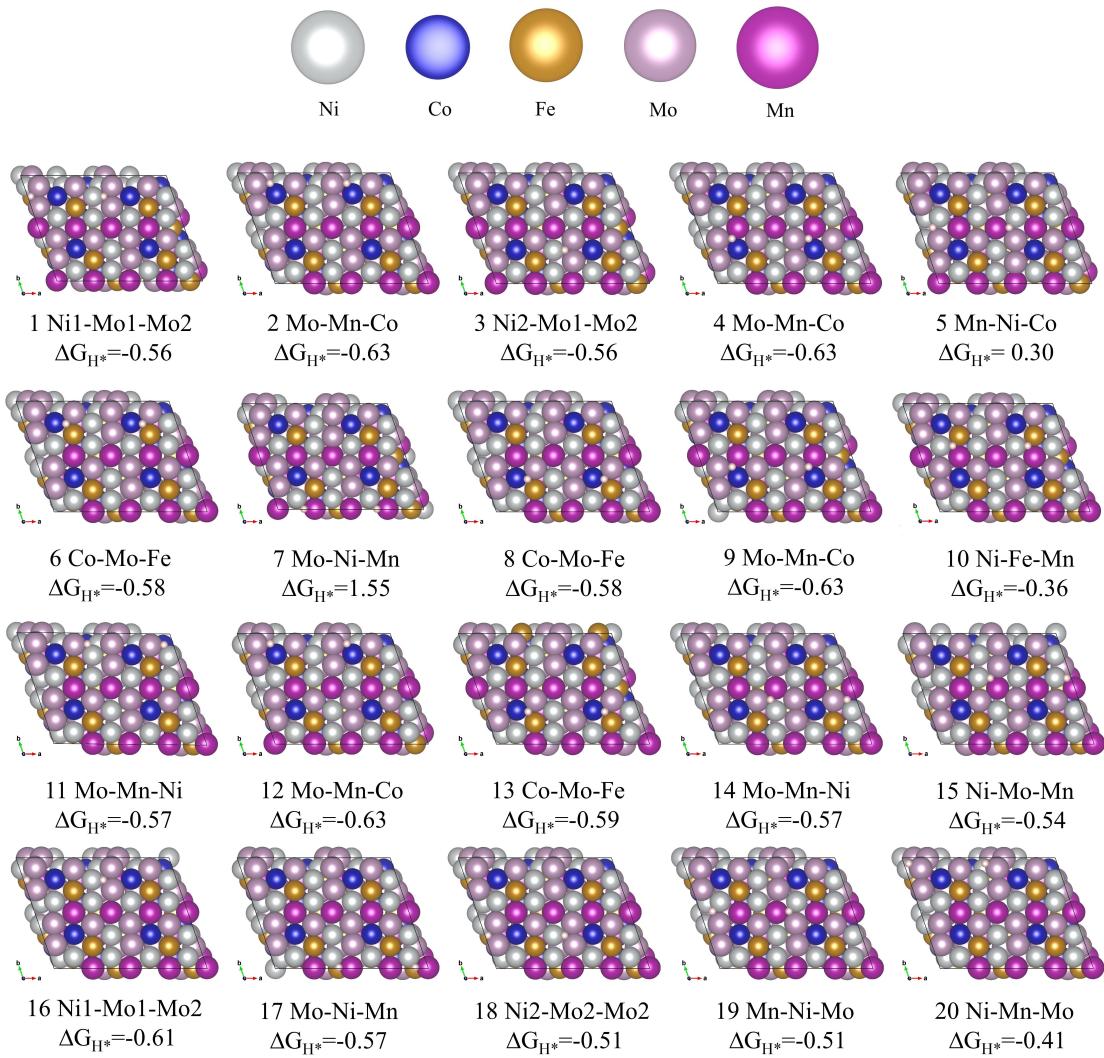

**Fig. S19** XPS of polarized np-HEA 6h.

As shown in Fig. S20a shows deconvolution of the Ni 2p core level spectra, which exhibits a pair peak of binding energies of 854.89 and 872.38 eV assigned to metallic Ni( III ). The indicates that the valence of metal increases after electrochemical oxidation, which is also obvious in other metal elements. In Co 2p region(Fig. S20b), Co( II ) is the main valence state, and its peak at 781.10 eV (2p3/2) and 796.30 eV (2p1/2); the peaks of Co(III) at 779.68 (2p3/2) and 794.88 eV (2p1/2); The Fe 2p spectrum in Fig. S20c shows a pair peak at 710.82 and 724.42 eV, which can be ascribed to Fe 2p 3/2 and Fe 2p 1/2 of Fe( II ), respectively. The peak-fitting analysis Mo 3d spectrum (Fig. S20d) shows that all metallic Mo, Mo(IV) and Mo(VI). From the Mn 2p spectrum (Fig. S20e), that the peak of 641.59 and 653.29 eV can be assigned to Mn 2p 3/2 and Mn 2p 1/2 of Mn(III); The O 1s XPS spectrum in Fig. S20f can be simulated by the combination of three features at 530.14, 531.63 and 533.87eV, corresponding to the M-O, M-OH and H<sub>2</sub>O on surface of polarized np-HEA 6h. The M-OH content of the polarized np-HEA is much higher than that of the np-HEA.

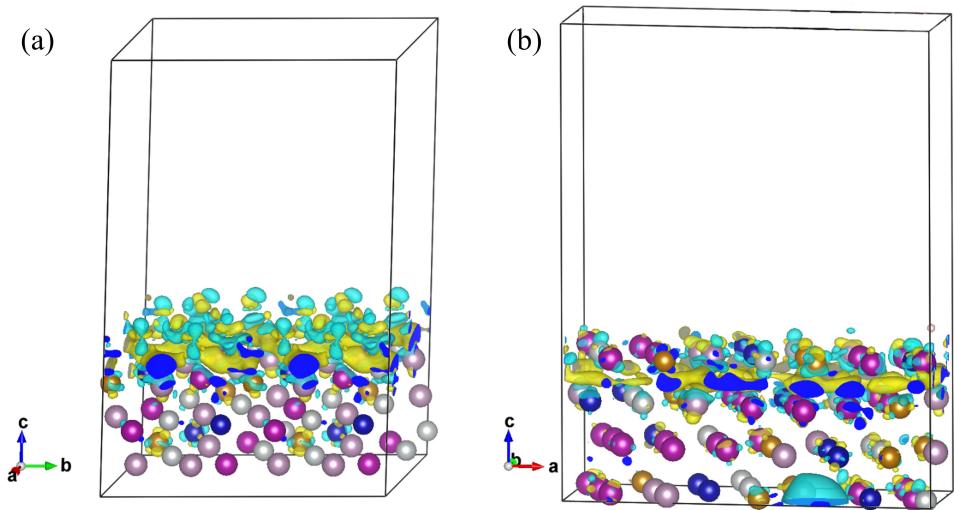



**Fig. S20** XRD analysis of the polarized np-HEA 6h.

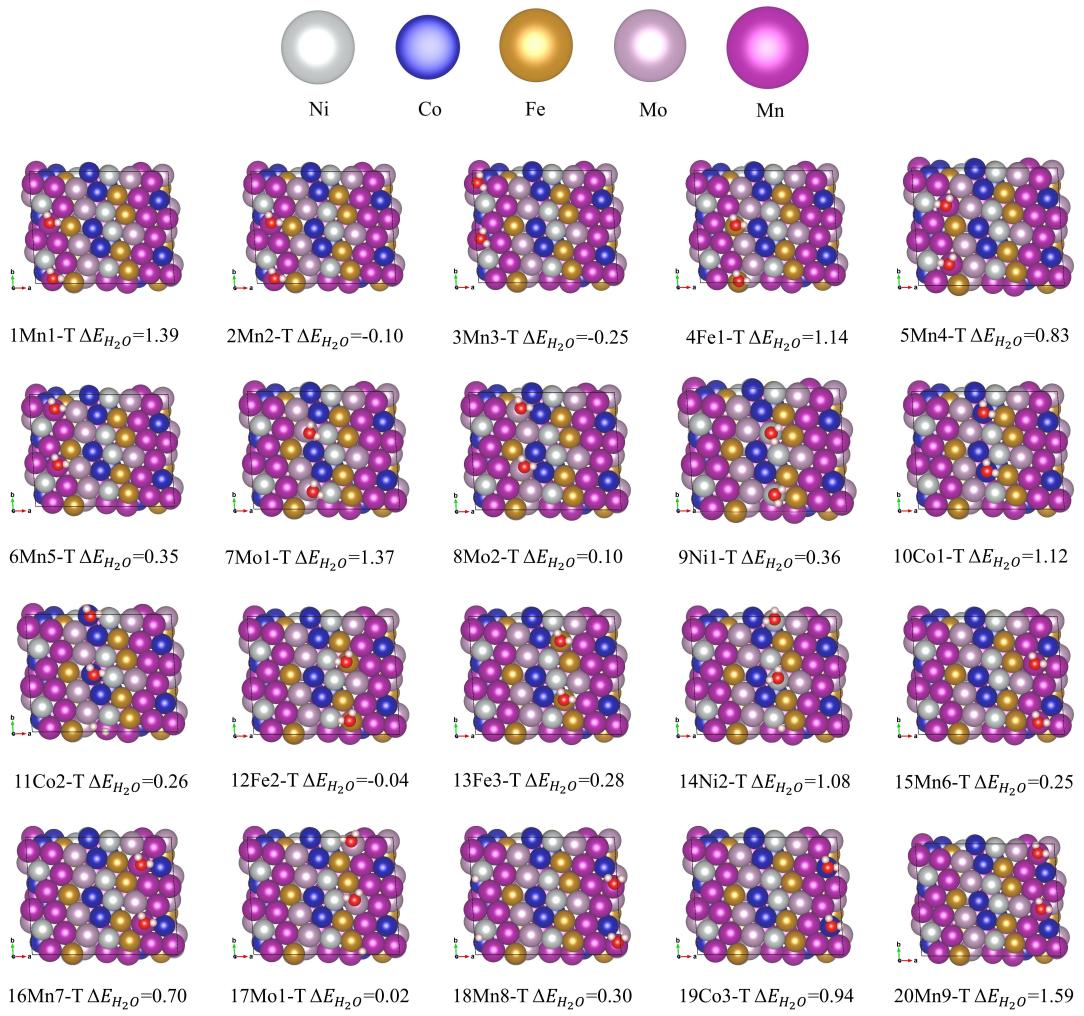



**Fig. S21** The time-current curves of the polarized np-HEA 6h at a current density of 500 mA cm<sup>-2</sup> without iR.

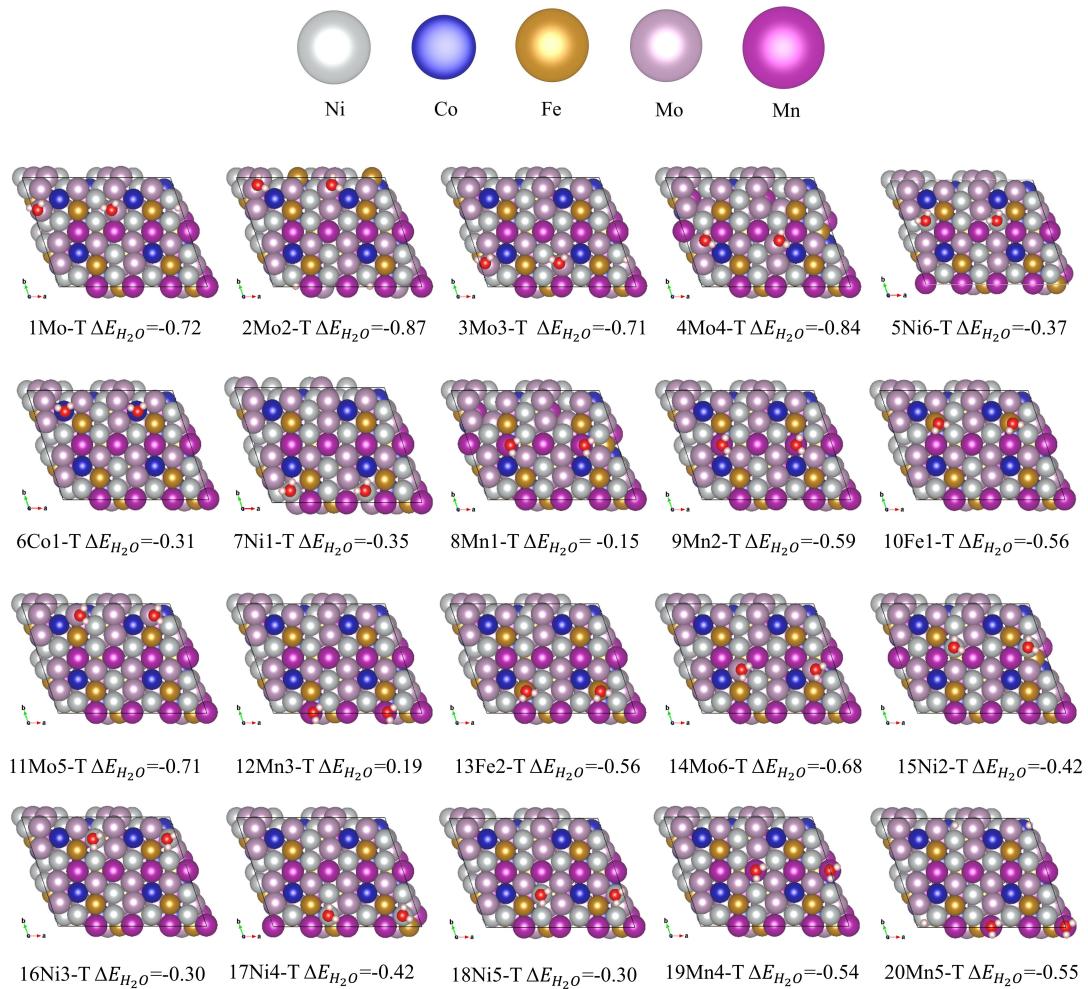



**Fig. S22** SEM and EDS of polarized np-HEA 6h after OER durability test. Scale bars: 5 $\mu$ m.




**Fig. S23** Local chemical environment of  $H_{ad}$  adsorption sites at HEA-(111) (SA) surfaces with various  $\Delta G_{H^*}$ .




**Fig. S24** Local chemical environment of  $H_{ad}$  adsorption sites at HEA-(111) (un-SA) surfaces with various  $\Delta G_{H^*}$ .



**Fig. S25** three-dimensional charge density difference of surface with isosurface value of  $0.07\text{e}/\text{Bohr}^3$ . (a) un-SA. (b) SA.



**Fig. S26** Local chemical environment of  $H_2O$  adsorption sites at HEA-(111) (SA) surfaces with various  $\Delta G$ .



**Fig. S27** Local chemical environment of  $H_2O$  adsorption sites at HEA-(111) (un-SA) surfaces with various  $\Delta G$ .

**Table S1** Chemical compositions (at. %) of the NiCoFeMoMn alloy and np-NiCoFeMoMn 6h electrode as determined by SEM-EDS and XPS analysis

| element | NiCoFeMoMn | np-NiCoFeMoMn 6h |        |
|---------|------------|------------------|--------|
|         |            | SEM-EDS          | XPS    |
| Ni      | 14.10      | 23.62            | 24.787 |
| Co      | 14.38      | 11.82            | 14.361 |
| Fe      | 14.30      | 8.86             | 13.685 |
| Mo      | 6.02       | 30.73            | 24.216 |
| Mn      | 51.19      | 24.98            | 22.951 |

**Table S2** Chemical compositions (at. %) of the NiCoFeMoMn alloy and np-NiCoFeMoMn 6h electrode as determined by HADDF-STEM-EDS analysis

| element | Total content | de-Total content | un-SA | de-un-SA | SA    | de-SA |
|---------|---------------|------------------|-------|----------|-------|-------|
| Ni      | 14.21         | 21.03            | 13.29 | 28.53    | 11.26 | 12.47 |
| Co      | 14.3          | 14.39            | 15.22 | 12.61    | 16.60 | 17.28 |
| Fe      | 14.33         | 12.53            | 15.09 | 9.60     | 13.59 | 13.71 |
| Mo      | 5.82          | 24.52            | 4.94  | 30.71    | 11.29 | 16.95 |
| Mn      | 51.45         | 27.53            | 51.46 | 18.55    | 47.25 | 39.59 |

**Table S3** XPS analysis of the np-NiCoFeMoMn 6h electrode.

| element | Valence state | Orbit  | Peak value | Peak area ratio (%) | Valence state ratio (%) |
|---------|---------------|--------|------------|---------------------|-------------------------|
| Ni      | 0             | 2p 3/2 | 852.62     | 4.355               | 12.7                    |
|         |               | 2p 1/2 | 869.89     | 2.170               |                         |
|         | +2            | 2p 3/2 | 855.90     | 32.580              | 87.3                    |
|         |               | 2p 1/2 | 873.39     | 16.232              |                         |
|         | Sat.          |        | 861.49     | 29.427              |                         |
|         |               |        | 879.23     | 15.236              |                         |
| Co      | 0             | 2p 3/2 | 778.06     | 3.870               | 10.7                    |
|         |               | 2p 1/2 | 793.03     | 1.930               |                         |
|         | 2+            | 2p 3/2 | 781.64     | 32.426              | 89.3                    |
|         |               | 2p 1/2 | 796.84     | 16.167              |                         |
|         | Sat.          |        | 785.54     | 24.777              |                         |
|         |               |        | 802.77     | 20.829              |                         |
| Fe      | 0             | 2p 3/2 | 707.10     | 8.671               | 14.7                    |
|         |               | 2p 1/2 | 720.20     | 4.337               |                         |
|         | 2+            | 2p 3/2 | 710.70     | 25.438              | 85.3                    |
|         |               | 2p 1/2 | 724.30     | 12.725              |                         |
|         | Sat.          |        | 713.23     | 7.632               |                         |
|         |               |        | 726.83     | 3.818               |                         |
|         | Co LMM        |        | 715.10     | 37.379              |                         |

|           |                  |        |        |        |      |
|-----------|------------------|--------|--------|--------|------|
| <b>Mo</b> | 0                | 3d 5/2 | 227.48 | 6.014  | 10.0 |
|           |                  | 3d 3/2 | 230.61 | 4.010  |      |
|           | 2+               | 3d 5/2 | 228.51 | 4.724  | 7.9  |
|           |                  | 3d 3/2 | 231.64 | 3.150  |      |
|           | 4+               | 3d 5/2 | 230.60 | 18.562 | 20.9 |
|           |                  | 3d 3/2 | 233.73 | 12.377 |      |
|           | 6+               | 3d 5/2 | 232.32 | 30.695 | 51.2 |
|           |                  | 3d 3/2 | 235.45 | 20.470 |      |
| <b>Mn</b> | 0                | 2p 3/2 | 638.43 | 1.935  | 8.5  |
|           |                  | 2p 1/2 | 649.48 | 0.977  |      |
|           | 2+               | 2p 3/2 | 641.37 | 21.007 | 91.5 |
|           |                  | 2p 1/2 | 653.07 | 10.508 |      |
|           | Sat.             |        | 646.99 | 3.760  |      |
|           | Ni LMM           |        | 641.19 | 61.795 |      |
|           |                  |        |        |        |      |
| <b>O</b>  | 2-               |        | 530.37 | 36.244 |      |
|           | M-OH             |        | 531.51 | 59.750 |      |
|           | H <sub>2</sub> O |        | 533.26 | 4.006  |      |

**Table S4** Comparisons of the HER catalytic activity of np-NiCoFeMoMn 6h electrode in 1 M KOH electrolyte

| Electrocatalysts                                                        | Current density (mA cm <sup>-2</sup> ) | Overpotential(mV) | Tafel slope (mV dec <sup>-1</sup> ) | Refs.         |
|-------------------------------------------------------------------------|----------------------------------------|-------------------|-------------------------------------|---------------|
| np-NiCoFeMoMn 6h                                                        | 10                                     | 14                | 29                                  | This work     |
|                                                                         | 100                                    | 49                |                                     |               |
|                                                                         | 1000                                   | 150               |                                     |               |
| CoNPs@C                                                                 | 100                                    | 260               | 106                                 | <sup>12</sup> |
| NiO/Al <sub>3</sub> Ni <sub>2</sub>                                     | 100                                    | 140               | 42                                  | <sup>13</sup> |
| Al-CoS <sub>2</sub> NWs                                                 | 100                                    | 191               | 62.5                                | <sup>14</sup> |
| np-Co <sub>9</sub> S <sub>4</sub> P <sub>4</sub>                        | 100                                    | 174               | 51                                  | <sup>15</sup> |
| FeCoNi-ATNs                                                             | 100                                    | 200               | 40.2                                | <sup>16</sup> |
| Ni-Fe-P/NFx                                                             | 100                                    | 150               | 74.5                                | <sup>17</sup> |
| Ni@NiFe                                                                 | 100                                    | 233               | 72.3                                | <sup>18</sup> |
| Co <sub>3</sub> Mo/Cu                                                   | 100                                    | 65                | 40                                  | <sup>19</sup> |
| CoP S                                                                   | 100                                    | 200               | 67                                  | <sup>20</sup> |
| MoNi HM                                                                 | 100                                    | 380               | 36.6                                | <sup>21</sup> |
| NC/Ni <sub>3</sub> Mo <sub>3</sub> N/NF                                 | 100                                    | 136               | 41.5                                | <sup>22</sup> |
| Ni <sub>40</sub> Zr <sub>40</sub> Ti <sub>20-x</sub> Pt <sub>x</sub> MG | 100                                    | 70                | 30                                  | <sup>23</sup> |
| (Ni-Fe)S <sub>x</sub> /NiFe (OH) <sub>y</sub>                           | 100                                    | 124               | 68                                  | <sup>24</sup> |
| Ni/Mo <sub>2</sub> C <sub>(1:2)</sub> -NCNFs                            | 100                                    | 195               | 57.8                                | <sup>25</sup> |
| V-CoP@a-CeO <sub>2</sub>                                                | 100                                    | 140               | 48.1                                | <sup>26</sup> |
| NiFeMoCoCr                                                              | 100                                    | 281               | 41                                  | <sup>27</sup> |
| Ni <sub>5</sub> P <sub>4</sub> -Ru                                      | 100                                    | 120               | 60                                  | <sup>28</sup> |
| NiFeOx@NiCu                                                             | 100                                    | 210               | 68                                  | <sup>29</sup> |
| NiZn-CoO                                                                | 100                                    | 160               | 47                                  | <sup>30</sup> |
| NiFeO <sub>x</sub> /CFP                                                 | 100                                    | 220               | 31.5                                | <sup>31</sup> |
| NiPt <sub>3</sub> @NiS/NF                                               | 100                                    | 73                | 24                                  | <sup>32</sup> |
| NiFe-LDH/MXene/NF                                                       | 100                                    | 200               | 70                                  | <sup>33</sup> |
| NC/Vo-WON                                                               | 100                                    | 76                | 33                                  | <sup>34</sup> |
| NFP/C-3                                                                 | 100                                    | 125               | 54                                  | <sup>35</sup> |
| RuSA-N-S-Ti <sub>3</sub> C <sub>2</sub> T                               | 100                                    | 237               | 90                                  | <sup>36</sup> |
| CoFeP TPAs/Ni                                                           | 100                                    | 113               | 65.3                                | <sup>37</sup> |
| Ni <sub>3</sub> S <sub>2</sub> @MoS <sub>2</sub> /FeOOH                 | 100                                    | 177               | 85                                  | <sup>38</sup> |
| Ni NWA                                                                  | 100                                    | 250               | 97                                  | <sup>39</sup> |
| Co-Ni-S                                                                 | 100                                    | 190               | 43                                  | <sup>40</sup> |
| Mo SAs                                                                  | 100                                    | 260               | 35.1                                | <sup>41</sup> |
| Ni <sub>1.5</sub> Co <sub>0.5</sub> @N-C NT/NF                          | 100                                    | 270               | 117                                 | <sup>42</sup> |
| CoP@NiFe-OH                                                             | 100                                    | 180               | 71.7                                | <sup>43</sup> |
| CoMnP/Ni <sub>2</sub> P/NiFe                                            | 100                                    | 250               | 58                                  | <sup>44</sup> |
| NiWO <sub>4</sub> /TM                                                   | 100                                    | 140               | 51                                  | <sup>45</sup> |

|                                                  |     |     |      |    |
|--------------------------------------------------|-----|-----|------|----|
| Ni <sub>5</sub> Co <sub>3</sub> Mo-OH            | 100 | 260 | 59   | 46 |
| Co <sub>3</sub> Mo                               | 100 | 180 | 61.3 | 47 |
| TiO <sub>2</sub> @Ni <sub>3</sub> S <sub>2</sub> | 100 | 177 | 69   | 48 |
| SANi-I                                           | 100 | 60  | 34.6 | 49 |
| NiO/Ru@PNS                                       | 100 | 160 | 75   | 50 |
| Ni(Cu)VO <sub>x</sub>                            | 100 | 130 | 28   | 51 |
| Ni <sub>1.8</sub> Cu <sub>0.2</sub> -P           | 100 | 245 | 70   | 52 |

**Table S5** Comparisons of the OER catalytic activity of np-NiCoFeMoMn 6h electrode in 1 M KOH electrolyte.

| Electrocatalysts                                                          | Current density (mA cm <sup>-2</sup> ) | Overpotential(mV) | Tafel slope (mV dec <sup>-1</sup> ) | Refs.     |
|---------------------------------------------------------------------------|----------------------------------------|-------------------|-------------------------------------|-----------|
| np-NiCoFeMoMn 6h                                                          | 10                                     | 243               | 37                                  | This work |
|                                                                           | 100                                    | 284               |                                     |           |
|                                                                           | 1000                                   | 350               |                                     |           |
| FeCoNiAlTi                                                                | 10                                     | 299               | 38                                  | 53        |
| NiMoO <sub>4</sub> ·xH <sub>2</sub> O/NF                                  | 150                                    | 403               | 46.7                                | 22        |
| AlNiCoIrMo                                                                | 10                                     | 233               | 55.2                                | 54        |
| Co <sub>3</sub> Mo/Cu                                                     | 164                                    | 367               | 82                                  | 19        |
| SSW Rs-18 h                                                               | 500                                    | 285               | 39                                  | 55        |
| Ni/Mo <sub>2</sub> C-NCNFs                                                | 10                                     | 288               | 78.4                                | 25        |
| Fe-doped Co <sub>3</sub> O <sub>4</sub>                                   | 10                                     | 262               | 43                                  | 56        |
| np-NiMnFeMo                                                               | 10                                     | 265               | 65                                  | 57        |
| CoS <sub>x</sub> @Cu <sub>2</sub> MoS <sub>4</sub> -MoS <sub>2</sub> /NSG | 10                                     | 351               | 61.5                                | 58        |
| NiCo-HS@G                                                                 | 10                                     | 259               | 49.6                                | 59        |

**Table S6** Comparisons of the overall splitting water performance of np-NiCoFeMoMn 6h in alkaline electrolyte.

| Electrocatalysts                                                          | Current density (mA cm <sup>-2</sup> ) | Cell voltage (V) | Time (h) | Refs.         |
|---------------------------------------------------------------------------|----------------------------------------|------------------|----------|---------------|
| np-NiCoFeMoMn 6h                                                          | 10                                     | 1.47             | 380      | This work     |
| NC/Ni3Mo3N/NF  NiMoO <sub>4</sub> ·xH <sub>2</sub> O/NF                   | 10                                     | 1.58             | 50       | <sup>22</sup> |
| AlNiCoIrMo                                                                | 10                                     | 1.48             | 45       | <sup>54</sup> |
| Co <sub>3</sub> Mo/Cu                                                     | 145                                    | 1.65             | 30       | <sup>19</sup> |
| SSW Rs-18 h                                                               | 100                                    | 1.87             | 24       | <sup>55</sup> |
| Ni/Mo <sub>2</sub> C-NCNFs                                                | 10                                     | 1.64             | 100      | <sup>25</sup> |
| np-NiMnFeMo                                                               | 10                                     | 1.57             | 20       | <sup>57</sup> |
| CoS <sub>x</sub> @Cu <sub>2</sub> MoS <sub>4</sub> -MoS <sub>2</sub> /NSG | 10                                     | 1.60             | 70       | <sup>58</sup> |
| NiCo-HS@G                                                                 | 10                                     | 1.51             | 20       | <sup>59</sup> |
| NiFeP                                                                     | 10                                     | 1.54             | 40       | <sup>60</sup> |
| NiFeOx                                                                    | 10                                     | 1.63             |          | <sup>61</sup> |

## References

1. van de Walle, A.; Asta, M.; Ceder, G., The alloy theoretic automated toolkit: A user guide. *Calphad* **2002**, *26* (4), 539-553.
2. van de Walle, A., Multicomponent multisublattice alloys, nonconfigurational entropy and other additions to the Alloy Theoretic Automated Toolkit. *Calphad* **2009**, *33* (2), 266-278.
3. Zhao, S.; Stocks, G. M.; Zhang, Y., Stacking fault energies of face-centered cubic concentrated solid solution alloys. *Acta Materialia* **2017**, *134*, 334-345.
4. Shang, S.-L.; Wang, Y.; Kim, D.; Liu, Z.-K., First-principles thermodynamics from phonon and Debye model: Application to Ni and Ni<sub>3</sub>Al. *Computational Materials Science* **2010**, *47* (4), 1040-1048.
5. Blochl, P. E., Projector augmented-wave method. *Phys Rev B Condens Matter* **1994**, *50* (24), 17953-17979.
6. Kresse, G.; Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method. *Physical Review B* **1999**, *59* (3), 1758-1775.
7. John P. Perdew, K. B., \* Matthias Ernzerhof, Generalized gradient approximation made simple. *PHYSICAL REVIEW LETTERS* **1996**, *77*, 3865.
8. Kresse, G.; Hafner, J., Ab initiomolecular dynamics for liquid metals. *Physical Review B* **1993**, *47* (1), 558-561.
9. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. *The Journal of Chemical Physics* **2010**, *132* (15).
10. Monkhorst, H. J.; Pack, J. D., Special points for Brillouin-zone integrations. *Physical Review B* **1976**, *13* (12), 5188-5192.
11. Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U., Trends in the Exchange Current for Hydrogen Evolution. *Journal of The Electrochemical Society* **2005**, *152* (3).
12. Jin, Q.; Ren, B.; Li, D.; Cui, H.; Wang, C., Plasma-Assisted Synthesis of Self-Supporting Porous CoNPs@C Nanosheet as Efficient and Stable Bifunctional Electrocatalysts for Overall Water Splitting. *ACS Appl Mater Interfaces* **2017**, *9* (37), 31913-31921.
13. Zhou, Y.; Liu, H.; Zhu, S.; Liang, Y.; Wu, S.; Li, Z.; Cui, Z.; Chang, C.; Yang, X.; Inoue, A., Highly Efficient and Self-Standing Nanoporous NiO/Al<sub>3</sub>Ni<sub>2</sub> Electrocatalyst for Hydrogen Evolution Reaction. *ACS Applied Energy Materials* **2019**, *2* (11), 7913-7922.
14. Wang, M.; Zhang, W.; Zhang, F.; Zhang, Z.; Tang, B.; Li, J.; Wang, X., Theoretical Expectation and Experimental Implementation of In Situ Al-Doped CoS<sub>2</sub> Nanowires on Dealloying-Derived Nanoporous Intermetallic Substrate as an Efficient Electrocatalyst for Boosting Hydrogen Production. *ACS Catalysis* **2019**, *9* (2), 1489-1502.
15. Tan, Y.; Luo, M.; Liu, P.; Cheng, C.; Han, J.; Watanabe, K.; Chen, M., Three-Dimensional Nanoporous Co<sub>9</sub>S<sub>4</sub>P<sub>4</sub> Pentlandite as a Bifunctional Electrocatalyst for Overall Neutral Water Splitting. *ACS Appl Mater Interfaces* **2019**, *11* (4), 3880-3888.

16. Zhang, Q.; Bedford, N. M.; Pan, J.; Lu, X.; Amal, R., A Fully Reversible Water Electrolyzer Cell Made Up from FeCoNi (Oxy)hydroxide Atomic Layers. *Advanced Energy Materials* **2019**, *9* (29).

17. Wang, K.; Sun, K.; Yu, T.; Liu, X.; Wang, G.; Jiang, L.; Xie, G., Facile synthesis of nanoporous Ni–Fe–P bifunctional catalysts with high performance for overall water splitting. *Journal of Materials Chemistry A* **2019**, *7* (6), 2518-2523.

18. Cai, Z.; Bu, X.; Wang, P.; Su, W.; Wei, R.; Ho, J. C.; Yang, J.; Wang, X., Simple and cost effective fabrication of 3D porous core–shell Ni nanochains@NiFe layered double hydroxide nanosheet bifunctional electrocatalysts for overall water splitting. *Journal of Materials Chemistry A* **2019**, *7* (38), 21722-21729.

19. Shi, H.; Zhou, Y. T.; Yao, R. Q.; Wan, W. B.; Ge, X.; Zhang, W.; Wen, Z.; Lang, X. Y.; Zheng, W. T.; Jiang, Q., Spontaneously separated intermetallic Co<sub>3</sub>Mo from nanoporous copper as versatile electrocatalysts for highly efficient water splitting. *Nat Commun* **2020**, *11* (1), 2940.

20. Hong, W.; Jian, C.; Wang, G.; He, X.; Li, J.; Cai, Q.; Wen, Z.; Liu, W., Self-supported nanoporous cobalt phosphosulfate electrodes for efficient hydrogen evolution reaction. *Applied Catalysis B: Environmental* **2019**, *251*, 213-219.

21. Yang, L.; Zeng, L.; Liu, H.; Deng, Y.; Zhou, Z.; Yu, J.; Liu, H.; Zhou, W., Hierarchical microsphere of MoNi porous nanosheets as electrocatalyst and cocatalyst for hydrogen evolution reaction. *Applied Catalysis B: Environmental* **2019**, *249*, 98-105.

22. Chen, Y.; Yu, J.; Jia, J.; Liu, F.; Zhang, Y.; Xiong, G.; Zhang, R.; Yang, R.; Sun, D.; Liu, H.; Zhou, W., Metallic Ni<sub>3</sub>Mo<sub>3</sub>N Porous Microrods with Abundant Catalytic Sites as Efficient Electrocatalyst for Large Current Density and Superstability of Hydrogen Evolution Reaction and Water Splitting. *Applied Catalysis B: Environmental* **2020**, *272*.

23. Li, R.; Liu, X.; Wu, R.; Wang, J.; Li, Z.; Chan, K. C.; Wang, H.; Wu, Y.; Lu, Z., Flexible Honeycombed Nanoporous/Glassy Hybrid for Efficient Electrocatalytic Hydrogen Generation. *Adv Mater* **2019**, *31* (49), e1904989.

24. Che, Q.; Li, Q.; Tan, Y.; Chen, X.; Xu, X.; Chen, Y., One-step controllable synthesis of amorphous (Ni-Fe)S /NiFe(OH) hollow microtube/sphere films as superior bifunctional electrocatalysts for quasi-industrial water splitting at large-current-density. *Applied Catalysis B: Environmental* **2019**, *246*, 337-348.

25. Li, M.; Zhu, Y.; Wang, H.; Wang, C.; Pinna, N.; Lu, X., Ni Strongly Coupled with Mo<sub>2</sub>C Encapsulated in Nitrogen-Doped Carbon Nanofibers as Robust Bifunctional Catalyst for Overall Water Splitting. *Advanced Energy Materials* **2019**, *9* (10).

26. Yang, L.; Liu, R.; Jiao, L., Electronic Redistribution: Construction and Modulation of Interface Engineering on CoP for Enhancing Overall Water Splitting. *Advanced Functional Materials* **2020**, *30* (14).

27. Zhang, G.; Ming, K.; Kang, J.; Huang, Q.; Zhang, Z.; Zheng, X.; Bi, X., High entropy alloy as a highly active and stable electrocatalyst for hydrogen evolution reaction. *Electrochimica Acta* **2018**, *279*, 19-23.

28. He, Q.; Tian, D.; Jiang, H.; Cao, D.; Wei, S.; Liu, D.; Song, P.; Lin, Y.; Song, L., Achieving Efficient Alkaline Hydrogen Evolution Reaction over a Ni5P4 Catalyst Incorporating Single-Atomic Ru Sites. *Adv Mater* **2020**, *32* (11), e1906972.

29. Zhou, Y.; Wang, Z.; Pan, Z.; Liu, L.; Xi, J.; Luo, X.; Shen, Y., Exceptional Performance of Hierarchical Ni-Fe (hydr)oxide@NiCu Electrocatalysts for Water Splitting. *Adv Mater* **2019**, *31* (8), e1806769.

30. Ling, T.; Zhang, T.; Ge, B.; Han, L.; Zheng, L.; Lin, F.; Xu, Z.; Hu, W. B.; Du, X. W.; Davey, K.; Qiao, S. Z., Well-Dispersed Nickel- and Zinc-Tailored Electronic Structure of a Transition Metal Oxide for Highly Active Alkaline Hydrogen Evolution Reaction. *Adv Mater* **2019**, *31* (16), e1807771.

31. Teng, X.; Wang, J.; Ji, L.; Lv, Y.; Chen, Z., Ni nanotube array-based electrodes by electrochemical alloying and de-alloying for efficient water splitting. *Nanoscale* **2018**, *10* (19), 9276-9285.

32. Panda, C.; Menezes, P. W.; Yao, S.; Schmidt, J.; Walter, C.; Hausmann, J. N.; Driess, M., Boosting Electrocatalytic Hydrogen Evolution Activity with a NiPt3@NiS Heteronanostructure Evolved from a Molecular Nickel-Platinum Precursor. *J Am Chem Soc* **2019**, *141* (34), 13306-13310.

33. Yu, M.; Wang, Z.; Liu, J.; Sun, F.; Yang, P.; Qiu, J., A hierarchically porous and hydrophilic 3D nickel–iron/MXene electrode for accelerating oxygen and hydrogen evolution at high current densities. *Nano Energy* **2019**, *63*.

34. Zhang, B.; Hou, J.; Wu, Y.; Cao, S.; Li, Z.; Nie, X.; Gao, Z.; Sun, L., Tailoring Active Sites in Mesoporous Defect - Rich NC/Vo - WON Heterostructure Array for Superior Electrocatalytic Hydrogen Evolution. *Advanced Energy Materials* **2019**, *9* (12).

35. Lu, X. F.; Yu, L.; Lou, X. W., Highly crystalline Ni-doped FeP/carbon hollow nanorods as all-pH efficient and durable hydrogen evolving electrocatalysts. *Sci Adv* **2019**, *5* (2).

36. Ramalingam, V.; Varadhan, P.; Fu, H. C.; Kim, H.; Zhang, D.; Chen, S.; Song, L.; Ma, D.; Wang, Y.; Alshareef, H. N.; He, J. H., Heteroatom-Mediated Interactions between Ruthenium Single Atoms and an MXene Support for Efficient Hydrogen Evolution. *Adv Mater* **2019**, *31* (48), e1903841.

37. Zhang, L.; Wang, X.; Li, A.; Zheng, X.; Peng, L.; Huang, J.; Deng, Z.; Chen, H.; Wei, Z., Rational construction of macroporous CoFeP triangular plate arrays from bimetal–organic frameworks as high-performance overall water-splitting catalysts. *Journal of Materials Chemistry A* **2019**, *7* (29), 17529-17535.

38. Zheng, M.; Guo, K.; Jiang, W.-J.; Tang, T.; Wang, X.; Zhou, P.; Du, J.; Zhao, Y.; Xu, C.; Hu, J.-S., When MoS2 meets FeOOH: A “one-stone-two-birds” heterostructure as a bifunctional electrocatalyst for efficient alkaline water splitting. *Applied Catalysis B: Environmental* **2019**, *244*, 1004-1012.

39. Hsieh, C. T.; Chuah, X. F.; Huang, C. L.; Lin, H. W.; Chen, Y. A.; Lu, S. Y., NiFe/(Ni,Fe)3S2 Core/Shell Nanowire Arrays as Outstanding Catalysts for Electrolytic Water Splitting at High Current Densities. *Small Methods* **2019**, *3* (10).

40. Yin, J.; Jin, J.; Zhang, H.; Lu, M.; Peng, Y.; Huang, B.; Xi, P.; Yan, C.

H., Atomic Arrangement in Metal-Doped NiS<sub>2</sub> Boosts the Hydrogen Evolution Reaction in Alkaline Media. *Angew Chem Int Ed Engl* **2019**, *58* (51), 18676-18682.

41. Luo, Y.; Zhang, S.; Pan, H.; Xiao, S.; Guo, Z.; Tang, L.; Khan, U.; Ding, B. F.; Li, M.; Cai, Z.; Zhao, Y.; Lv, W.; Feng, Q.; Zou, X.; Lin, J.; Cheng, H. M.; Liu, B., Unsaturated Single Atoms on Monolayer Transition Metal Dichalcogenides for Ultrafast Hydrogen Evolution. *ACS Nano* **2020**, *14* (1), 767-776.

42. Li, T.; Li, S.; Liu, Q.; Yin, J.; Sun, D.; Zhang, M.; Xu, L.; Tang, Y.; Zhang, Y., Immobilization of Ni<sub>3</sub>Co Nanoparticles into N-Doped Carbon Nanotube/Nanofiber Integrated Hierarchically Branched Architectures toward Efficient Overall Water Splitting. *Adv Sci (Weinh)* **2020**, *7* (1), 1902371.

43. Li, Y.; Guo, S.; Jin, T.; Wang, Y.; Cheng, F.; Jiao, L., Promoted synergy in core-branch CoP@NiFe-OH nanohybrids for efficient electrochemical-/photovoltage-driven overall water splitting. *Nano Energy* **2019**, *63*.

44. Bu, X.; Wei, R.; Gao, W.; Lan, C.; Ho, J. C., A unique sandwich structure of a CoMnP/Ni<sub>2</sub>P/NiFe electrocatalyst for highly efficient overall water splitting. *Journal of Materials Chemistry A* **2019**, *7* (19), 12325-12332.

45. Ji, Y.; Yang, L.; Ren, X.; Cui, G.; Xiong, X.; Sun, X., Full Water Splitting Electrocatalyzed by NiWO<sub>4</sub> Nanowire Array. *ACS Sustainable Chemistry & Engineering* **2018**, *6* (8), 9555-9559.

46. Hao, S.; Chen, L.; Yu, C.; Yang, B.; Li, Z.; Hou, Y.; Lei, L.; Zhang, X., NiCoMo Hydroxide Nanosheet Arrays Synthesized via Chloride Corrosion for Overall Water Splitting. *ACS Energy Letters* **2019**, *4* (4), 952-959.

47. Chen, J.; Ge, Y.; Feng, Q.; Zhuang, P.; Chu, H.; Cao, Y.; Smith, W. R.; Dong, P.; Ye, M.; Shen, J., Nesting Co<sub>3</sub>Mo Binary Alloy Nanoparticles onto Molybdenum Oxide Nanosheet Arrays for Superior Hydrogen Evolution Reaction. *ACS Appl Mater Interfaces* **2019**, *11* (9), 9002-9010.

48. Deng, S.; Zhang, K.; Xie, D.; Zhang, Y.; Zhang, Y.; Wang, Y.; Wu, J.; Wang, X.; Fan, H. J.; Xia, X.; Tu, J., High-Index-Faceted Ni<sub>3</sub>S<sub>2</sub> Branch Arrays as Bifunctional Electrocatalysts for Efficient Water Splitting. *Nano-Micro Letters* **2019**, *11* (1).

49. Zhao, Y.; Ling, T.; Chen, S.; Jin, B.; Vasileff, A.; Jiao, Y.; Song, L.; Luo, J.; Qiao, S. Z., Non-metal Single-Iodine-Atom Electrocatalysts for the Hydrogen Evolution Reaction. *Angew Chem Int Ed Engl* **2019**, *58* (35), 12252-12257.

50. Zhong, C.; Zhou, Q.; Li, S.; Cao, L.; Li, J.; Shen, Z.; Ma, H.; Liu, J.; Lu, M.; Zhang, H., Enhanced synergistic catalysis by a novel triple-phase interface design of NiO/Ru@Ni for the hydrogen evolution reaction. *Journal of Materials Chemistry A* **2019**, *7* (5), 2344-2350.

51. Li, Y.; Tan, X.; Hocking, R. K.; Bo, X.; Ren, H.; Johannessen, B.; Smith, S. C.; Zhao, C., Implanting Ni-O-V<sub>2</sub>O<sub>5</sub> sites into Cu-doped Ni for low-overpotential alkaline hydrogen evolution. *Nat Commun* **2020**, *11* (1), 2720.

52. Chu, S.; Chen, W.; Chen, G.; Huang, J.; Zhang, R.; Song, C.; Wang, X.; Li, C.; Ostrikov, K., Holey Ni-Cu phosphide nanosheets as a highly efficient and stable electrocatalyst for hydrogen evolution. *Applied Catalysis B: Environmental* **2019**, *243*, 537-545.

53. Jia, Z.; Yang, T.; Sun, L.; Zhao, Y.; Li, W.; Luan, J.; Lyu, F.; Zhang, L. C.; Kružić, J. J.; Kai, J. J.; Huang, J. C.; Lu, J.; Liu, C. T., A Novel Multinary Intermetallic as an Active Electrocatalyst for Hydrogen Evolution. *Adv Mater* **2020**, *32* (21), e2000385.

54. Jin, Z.; Lv, J.; Jia, H.; Liu, W.; Li, H.; Chen, Z.; Lin, X.; Xie, G.; Liu, X.; Sun, S.; Qiu, H. J., Nanoporous Al-Ni-Co-Ir-Mo High-Entropy Alloy for Record-High Water Splitting Activity in Acidic Environments. *Small* **2019**, *15* (47), e1904180.

55. Jothi, V. R.; Karuppasamy, K.; Maiyalagan, T.; Rajan, H.; Jung, C. Y.; Yi, S. C., Corrosion and Alloy Engineering in Rational Design of High Current Density Electrodes for Efficient Water Splitting. *Advanced Energy Materials* **2020**, *10* (24).

56. Zhang, S. L.; Guan, B. Y.; Lu, X. F.; Xi, S.; Du, Y.; Lou, X. W. D., Metal Atom-Doped Co<sub>3</sub>O<sub>4</sub> Hierarchical Nanoplates for Electrocatalytic Oxygen Evolution. *Adv Mater* **2020**, *32* (31), e2002235.

57. Liu, H.; Xi, C.; Xin, J.; Zhang, G.; Zhang, S.; Zhang, Z.; Huang, Q.; Li, J.; Liu, H.; Kang, J., Free-standing nanoporous NiMnFeMo alloy: An efficient non-precious metal electrocatalyst for water splitting. *Chemical Engineering Journal* **2021**, *404*.

58. Nguyen, D. C.; Tran, D. T.; Doan, T. L. L.; Kim, D. H.; Kim, N. H.; Lee, J. H., Rational Design of Core@shell Structured CoSx@Cu<sub>2</sub>MoS<sub>4</sub> Hybridized MoS<sub>2</sub>/N,S - Codoped Graphene as Advanced Electrocatalyst for Water Splitting and Zn - Air Battery. *Advanced Energy Materials* **2020**, *10* (8).

59. Tang, T.; Jiang, W.-J.; Niu, S.; Liu, N.; Luo, H.; Zhang, Q.; Wen, W.; Chen, Y.-Y.; Huang, L.-B.; Gao, F.; Hu, J.-S., Kinetically Controlled Coprecipitation for General Fast Synthesis of Sandwiched Metal Hydroxide Nanosheets/Graphene Composites toward Efficient Water Splitting. *Advanced Functional Materials* **2018**, *28* (3).

60. Li, R.-Q.; Wang, B.-L.; Gao, T.; Zhang, R.; Xu, C.; Jiang, X.; Zeng, J.; Bando, Y.; Hu, P.; Li, Y.; Wang, X.-B., Monolithic electrode integrated of ultrathin NiFeP on 3D struttured graphene for bifunctionally efficient overall water splitting. *Nano Energy* **2019**, *58*, 870-876.

61. Yu, X.; Yu, Z.-Y.; Zhang, X.-L.; Li, P.; Sun, B.; Gao, X.; Yan, K.; Liu, H.; Duan, Y.; Gao, M.-R.; Wang, G.; Yu, S.-H., Highly disordered cobalt oxide nanostructure induced by sulfur incorporation for efficient overall water splitting. *Nano Energy* **2020**, *71*.