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1.1 Synthesis of the precursor high entropy NiCoFeMoMn ribbons.

The high entropy alloy with theoretical atomic ratio of Ni4Coi4FeisMosMnsz was
prepared by mixing the metal particles of nickel (Ni), cobalt (Co), iron (Fe),
molybdenum (Mo) and manganese (Mn) with purity higher than 99.9%. The
precursor high entropy NiCoFeMoMn alloy ribbons was prepared by arc melting and
single-roller melt spinning. In order to ensure that the components of the prepared
high entropy alloy are more uniform, Firstly, NiCoFeMo was prepared into alloy ingot
by arc melting under a Ti-gettered argon atmosphere in a water-cooled copper
crucible. After that, the prepared NiCoFeMo alloy ingot and metal Mn are prepared to
form the precursor high entropy NiCoFeMoMn ribbons by single-roller melt spinning.
When the material passes through the cold surface of the copper roller, it will be
rapidly quenching to room temperature to form a face centered cubic (FCC) high
entropy alloy ribbons with the size of 25um thick and ~2mm wide. The precursor high
entropy NiCoFeMoMn ribbons are cut into a thin sheet metal with the size of lcm
length and 0.2cm wide for preparation of nanoporous-NiCoFeMoMn high entropy
alloy catalyst.

2.2 Synthesis of the nanoporous-NiCoFeMoMn catalyst.

The np-NiCoFeMoMn catalyst was fabricated by a facile one step electrochemistry
dealloying process in the 1.0 M (NH4)2SO4 (Shanghai Macklin Biochemical Co., Ltd)
solution using an electrochemical workstation (CHI 760) in a standard three electrode
system with a graphite rod as the counter electrode and Ag/AgCl electrode as
reference electrode. Under the voltage of - 0.5V (vs Ag/AgCl), different surface
morphology and atomic proportion can be obtained by controlling different corrosion
time intervals of 2, 3, 4, 5 and 6h to remove metal components. The dealloyed high
entropy alloys were rinsed at least three times with deionized water to eliminate
residual chemical reagent before storing in anhydrous ethanol until electrochemical
testing is performed.

2.3 Materials characterization

A Bruker D8 Advance Davinci X-ray diffraction (XRD) instrument was employed by

Cu-K o radiation with a monochromator to identify the FCC-phase structure of the
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HEA and the structural evolution during the dealloying process. The diffraction
patterns were recorded by continued scanning in the 20 range of 20°-100°. Zeiss
Auriga is used to show the surface morphology and element composition with
energy-dispersive X-ray spectroscopy (EDS). Transmission electron microscopy
(TEM) images were taken on an FEI TF20 field-emission transmission electron
microscope operating at 200 kV, selected area electron diffraction (SAED),
high-resolution transmission electron microscopy (HR-TEM) images, scanning
transmission electron microscopy (STEM) images and energy-dispersive X-ray
spectroscopy images are also obtained by this device. The TEM specimens was
prepared on using a Zeiss focused ion beam/scanning electron microscope (FIB/SEM).
The surface characteristics of the samples were investigated using Kratos Axis Ultra
DLD X-ray photoelectron spectrometer (XPS). The specific surface area and pore size
distribution were determined by nitrogen adsorption-desorption tests using the BET.
The contact angles of droplets on the sample surfaces were recorded by Dataphysics
OCA20.

2.4 Electrochemical measurements.

The catalyst of electrochemical measurements throughout in this work was tested in
1.0 M KOH (Shanghai Wokai Biochemical Co., Ltd) solutions using an
electrochemical workstation (CHI 760) in a standard three electrode system with a
graphite rod or Pt sheet as the counter electrode and Ag/AgCl electrode as reference
electrode, respectively. The Ag/AgCl electrode was rinsed with deionized water
before use. All the potential in this work are calibrated by reversible hydrogen
electrode (E vs. RHE) on the basis of the Nernst equation with iR compensation. The
dealloyed np- NiCoFeMoMn high entropy alloy and a Pt sheet are directly used as the
working electrodes. The current density was Calculated by the geometric area of the
specimens. Linear sweep voltammetry (LSV) was tested with a scan rate of 1 mV s!.
Electrochemical impedance spectroscopy (EIS) was carried out from 0.01 to 10° Hz. A
series of cyclic voltammetries (CVs) were carried out at sweep rates of 5 - 100 mV s’!
at non-faradaic overpotentials to demonstrate the current charging and discharging

capacitance for estimating the double-layer capacitance (Cu). The electrochemical
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surface area (ECSA) value was obtained according to the equation of ECSA = Cu/Cs,
where Cg is the measured double-layer capacitance and C; is the specific capacitance.
In this work, we assumed the Cy value at 40 pF cm™ due to the flat surface of the
HEAs. The stability measurement was carried out at a static current density of 100
and 500 mA cm? by a chronoamperometry method without iR compensation. For the
electrochemical test, the catalysts inks (5 mg mL' for Pt/C) were prepared by
dispersing the catalyst in a mixture of water and isopropyl alcohol at volume ratio of
5:5 with 0.05wt% Nafion as a binder by sonicating for 30 min to get a uniform
suspension. An aliquot of 8 puL of Pt/C was deposited on the polished 5 mm glassy
carbon electrode.

2.5 Calculation of price activity

In order to compare price activities of Pt/C and np-NiCoFeMoMn 6h, their mass
activity was calculated first. The overpotential of -100 mV was selected to evaluate

the mass activity and price activity. The details are as follows:

e JonC(mA/em®)  31.47(mA/ cm®)

PC _ ——=157354/g

massp, 0.2(mg /cm”)

-np—HEA 2
oot o Jwe _A38TmATemT) g 1h 40

mass,, ., 6.81(mg/cm”)

pyjc _ MASS —activity, _ 157.35(4/g) =4.6(A/dollar)
price price,, 974 /28.3495(dollar | g)
o _ mass — activity, ., _ 68.12(A4/ g) — 3642.8(A4/ dollar)
prce price, e, 0.0187(dollar / ) '

2.6 Model Confirmation

The special quasi-random structure method using a Monte Carlo algorithm
implemented in ATAT software is employed to model the segregation area
(Mn0.4Fe0.15C00.15Ni0.15Mo00.15) and uniform area
(Mn0.2Fe0.1C00.1Ni0.3M00.3) alloy supercells'=, as well as keep the same chemical
atomic ratio both in bulk and on surface. Pair correlation functions up to the third

nearest neighbors were optimized where the maximum mismatch between the special
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quasi-random structure and the ideal target alloy was below 0.04. The longest distance
when calculating the correlation functions is set as 1.2. After MCSQS optimization,
the software generated 16 and 19 geometric structures for segregation area
(Mn0.4Fe0.15C00.15Ni0.15M00.15) and uniform area
(Mn0.2Fe0.1C00.1Ni0.3Mo00.3) respectively. We chose the structure with best lower
objective function as our supercell model. The slab models are built with vacuum
added in the 111 direction.
2.7 Parameter Determination

At least six volumes are used to to the 4-parameter Birch-Murnaghan equation of
states (EOS) fitting to obtain equilibrium properties*. The optimized lattice parameters
for bulk segregation area and and uniform area unit cell parameters were 3.625 and
3.695 A, respectively, in agreement with experimental XRD values of A.
2.8 DFT Caculation
All spin poloried DFT calculations were performed using the projected augmented
wave pseudopotentials® ¢ and Perdew-Burke-Ernzerh of generalized gradient
exchange approximation correlational functional as implemented in computational
package VASP 7 8. The kinetic energy cutoff was set to 600 eV for the plane-wave
basis set and the DFT dispersion correction (DFT-D3) method was used to treat the
van der Waals interactions’. Brillouin zone integration was sampled with the gamma
centred 2 x 4 x 1 and 3 x 3 x 1 MonkhorstPack mesh k-point for segregation and
uniform surface calculations'?. The force and energy convergence criteria were set to
0.02 eV A" and 10 eV, respectively. The water adsorption energies (Enzo) at HEA
surfaces were calculated by the equation of EH20=Esurf+H20—-Esurf—EH20,
where the Esurf and the Esurf+H20 are the total energies of the surface before
and after water adsorption, and EH2Ois the energy of a free water molecule
In order to understand the catalytic performance for HER, the H adsorption free

energy under standard conditions (pH = 0, p(H2) = 1 bar) was computed. The

AG,

hydrogen  adsorption Gibbs free energy is  defined as

AG, =ALE, + ALy, —TAS, . where ALy is the differential hydrogen adsorption
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energy, AL py is the difference between the zero-point energy of the hydrogen

adsorbed state and the gas phase H2. Since the vibrational entropy contribution of the

O
H,

hydrogen adsorbed state is very small, where is the entropy of H2 in the gas

phase at the standard conditions. Therefore, the overall contribution can be rewritten

1
— AS, = __S22
as A0y =AE, +0.24 2 at room temperature'!.

2.9 Formation mechanism of morphology after dealloyed

We think that the change may be due to the different composition between SA
and un-SA, which leads to different open circuit voltage. In order to verify this
hypothesis, we prepared two ribbons according to the composition of SA and
un-SA, respectively. The open circuit voltages of the two ribbons were
measured by CHI760E electrochemical workstation, the value of un-SA and SA
are -0.58 and -0.49V (vs Ag/AgCl). Therefore, when electrochemical dealloying
is performed at - 0.5V (vs Ag/AgCl), SA will not be dealloyed. At the same time,
it forms larger pores due to the corrosion of un-SA area near SA area is more

serious.



Fig. S1 SEM-EDS of NiCoFeMoMn alloy. Scale bars: Sum.
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Fig. S2 BET analysis of the nanoporous NiCoFeMoMn electrode was prepared by



Fig. S3 HADDF-STEM image of NiCoFeMoMn alloy. Scale bars: 50nm.
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Fig. S5 HR-TEM of NiCoFeMoMn alloy. bar: 2nm
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Fig. S6. HADDF-STEM images of np-NiCoFeMoMn with different dealloying
time. (a)- (e) 3-7h.( The green box and red box represents the SA and un-SA,
respectively. (f) chemical composition of total content, un-SA and SA with

different dealloying time. bar: 500nm.



Fig. S7 SEM and EDS of np-NiCoFeMoMn 6h. Scale bars: 10pm.
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Fig. S8 XPS spectra of np-NiMnFeMo 6h.
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Fig. S12 The double-layer capacitance curve of the nano porous high entropy

electrode with different dealloying time.
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applications.
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Fig. S16 SEM and EDS of np-NiCoFeMoMn 6h after HER durability test. Scale bars:

2.5um.
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Fig. S17. Multi-step chronoamperometric curve obtained with np-NiCoFeMoMn 6h
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mV with an increment of 80 or 300 mV every 2 h. (Without iR compensation).
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Fig. S19 XPS of polarized np-HEA 6h.

As shown in Fig. S20a shows deconvolution of the Ni 2p core level spectra,
which exhibits a pair peak of binding energies of 854.89 and 872.38 eV assigned to
metallic Ni( III ). The indicates that the valence of metal increases after
electrochemical oxidation, which is also obvious in other metal elements. In Co 2p
region(Fig. S20b), Co( 1) is the main valence state, and its peak at 781.10 eV (2p3/2)
and 796.30 eV (2p1/2); the peaks of Co(Ill) at 779.68 (2p3/2) and 794.88 eV (2p1/2);
The Fe 2p spectrum in Fig. S20c shows a pair peak at 710.82 and 724.42 eV, which
can be ascribed to Fe 2p 3/2 and Fe 2p 1/2 of Fe( Il ), respectively. The peak-fitting
analysis Mo 3d spectrum (Fig. S20d) shows that all metallic Mo, Mo(IV) and Mo(VI).
From the Mn 2p spectrum (Fig. S20e), that the peak of 641.59 and 653.29 eV can be
assigned to Mn 2p 3/2 and Mn 2p 1/2 of Mn(III); The O 1s XPS spectrum in Fig. S20f
can be simulated by the combination of three features at 530.14, 531.63 and 533.87¢V,
corresponding to the M-O, M-OH and H>O on surface of polarized np-HEA 6h. The
M-OH content of the polarized np-HEA is much higher than that of the np-HEA.
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Fig. S20 XRD analysis of the polarized np-HEA 6h.
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Fig. S22 SEM and EDS of polarized np-HEA 6h after OER durability test. Scale bars:

Spum.
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Fig. S23 Local chemical environment of Had adsorption sites at HEA-(111) (SA)

surfaces with various 4Gu*.
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Fig. S24 Local chemical environment of Had adsorption sites at HEA-(111) (un-SA)

surfaces with various 4Gu*.
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Fig. S25 three-dimensional charge density difference of surface with isosurface value

of 0.07¢/Bohr?. (a) un-SA. (b) SA.
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surfaces with various 4G.
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Table S1 Chemical compositions (at. %) of the NiCoFeMoMn alloy and
np-NiCoFeMoMn 6h electrode as determined by SEM-EDS and XPSanalysis

np-NiCoFeMoMn 6h

element NiCoFeMoMn

SEM-EDS XPS
Ni 14.10 23.62 24.787
Co 14.38 11.82 14.361
Fe 14.30 8.86 13.685
Mo 6.02 30.73 24.216

Mn 51.19 24.98 22.951




Table S2 Chemical compositions (at. %) of the NiCoFeMoMn alloy and
np-NiCoFeMoMn 6h electrode as determined by HADDF-STEM-EDS analysis

Total de-Total
element un-SA  de-un-SA SA de-SA
content content

Ni 14.21 21.03 13.29 28.53 11.26 12.47
Co 14.3 14.39 15.22 12.61 16.60 17.28
Fe 14.33 12.53 15.09 9.60 13.59 13.71
Mo 5.82 24.52 4.94 30.71 11.29 16.95

Mn 51.45 27.53 51.46 18.55 47.25 39.59




Table S3 XPS analysis of the np-NiCoFeMoMn 6h electrode.

Valence Peak area Valence state
element Orbit Peak value
state ratio (%) ratio (%)
2p 372 852.62 4.355
0 12.7
2p 172 869.89 2.170
2p 3/2 855.90 32.580
Ni +2 87.3
2p 172 873.39 16.232
861.49 29.427
Sat.
879.23 15.236
2p 3/2 778.06 3.870
0 10.7
2p 1/2 793.03 1.930
2p 3/2 781.64 32.426
Co 2+ &9.3
2p 1/2 796.84 16.167
785.54 24.777
Sat.
802.77 20.829
2p 3/2 707.10 8.671
0 14.7
2p 172 720.20 4.337
2p 3/2 710.70 25.438
2+ 85.3
Fe 2p 172 724.30 12.725
713.23 7.632
Sat.
726.83 3.818
Co LMM 715.10 37.379




3d 5/2 227.48 6.014
0 10.0
3d 3/2 230.61 4.010
3d 5/2 228.51 4.724
2+ 7.9
3d 3/2 231.64 3.150
Mo
3d 5/2 230.60 18.562
4+ 20.9
3d 3/2 233.73 12.377
3d5/2 232.32 30.695
6+ 51.2
3d 3/2 235.45 20.470
2p 372 638.43 1.935
0 8.5
2p 172 649.48 0.977
2p 372 641.37 21.007
Mn 2+ 91.5
2p 172 653.07 10.508
Sat. 646.99 3.760
Ni LMM 641.19 61.795
2- 530.37 36.244
O M-OH 531.51 59.750
H>O 533.26 4.006




Table S4 Comparisons of the HER catalytic activity of np-NiCoFeMoMn 6h
electrode in 1 M KOH electrolyte

Current Tafel slope
Electrocatalysts density (mA | Overpotential(mV) g Refs.
em?) (mV dec™)
10 14
np-NiCoFeMoMn 6h 100 49 29 This work
1000 150
CoNPs@C 100 260 106 12
NiO/Al3Ni; 100 140 42 13
Al-CoS> NWs 100 191 62.5 14
np-Co9S4P4 100 174 51 15
FeCoNi-ATNs 100 200 40.2 16
Ni-Fe-P/NFx 100 150 74.5 17
Ni@NiFe 100 233 72.3 18
CosMo/Cu 100 65 40 19
CoP|S 100 200 67 20
MoNi HM 100 380 36.6 2
NC/NizMos;N/NF 100 136 41.5 2
NigoZrsoTizo-xPtx MG 100 70 30 2
(Ni-Fe)Sy/NiFe (OH)y 100 124 68 2
Ni/MOzC(m)—NCNFS 100 195 57.8 25
V-CoP@a-CeO: 100 140 48.1 26
NiFeMoCoCr 100 281 41 2
NisP4-Ru 100 120 60 3
NiFeOx@NiCu 100 210 68 2
NiZn-CoO 100 160 47 30
NiFeO,/CFP 100 220 31.5 31
NiPt;@NiS/NF 100 73 24 32
NiFe-LDH/MXene/NF 100 200 70 33
NC/Vo-WON 100 76 33 34
NFP/C-3 100 125 54 33
RuSA-N-S-Ti;CoT 100 237 90 36
CoFeP TPAs/Ni 100 113 65.3 37
NizS2@MoS2/FeOOH 100 177 85 38
Ni NWA 100 250 97 39
Co-Ni-S 100 190 43 40
Mo SAs 100 260 35.1 41
Nii5Co005@N-C

NT/NF 100 270 117 42
CoP@NiFe-OH 100 180 71.7 43
CoMnP/Ni,P/NiFe 100 250 58 a4
NiWO4/TM 100 140 51 45




NisCosMo-OH 100 260 59 46
CosMo 100 180 61.3 47
TiO,@NisS: 100 177 69 48
SANi-I 100 60 34.6 49
NiO/Ru@PNS 100 160 75 50
Ni(Cu)VO, 100 130 28 51
Ni sCup,-P 100 245 70 52




Table S5 Comparisons of the OER catalytic activity of np-NiCoFeMoMn 6h
electrode in 1 M KOH electrolyte.

Tafel
Current slone
Electrocatalysts density | Overpotential(mV) P Refs.
(mA cm) (mV
dec™)
10 243 .
. This
np-NiCoFeMoMn 6h 100 284 37
work
1000 350
FeCoNiAlTi 10 299 38 33
NiMoO4-xH20/NF 150 403 46.7 2
AINiColrMo 10 233 55.2 54
Co3Mo/Cu 164 367 82 19
SSW Rs-18 h 500 285 39 53
Ni/Mo2C-NCNFs 10 288 78.4 25
Fe-doped Co304 10 262 43 36
np-NiMnFeMo 10 265 65 37
CoSx@Cu2MoS4-MoS2/NSG 10 351 61.5 58
NiCo-HS@G 10 259 49.6 59




Table S6 Comparisons of the overall splitting water performance of
np-NiCoFeMoMn 6h in alkaline electrolyte.

Current
density | Cell voltage | Time
Electrocatalysts (mA V) (h) Refs.
cm?)
np-NiCoFeMoMn 6h 10 1.47 3g0 | S
work
NC/Ni3Mo3N/NF||NiMoO4-xH2O/NF 10 1.58 50 2
AINiColrMo 10 1.48 45 4
Co3Mo/Cu 145 1.65 30 19
SSW Rs-18 h 100 1.87 24 33
Ni/M02C-NCNFs 10 1.64 100 25
np-NiMnFeMo 10 1.57 20 37
CoSx@Cu2MoS4-MoS2/NSG 10 1.60 70 38
NiCo-HS@G 10 1.51 20 39
NiFeP 10 1.54 40 60
NiFeOx 10 1.63 61
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