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Figure 1: Latent representation of microbiome can be used to predict metabolites in each dataset
separately better than all existing methods. A - E. Comparison between LOCATE and all state-
of-the-art metabolites prediction models as well as a Linear network and a Log network over
the different datasets FRANZOSA (A), ERAWIJANTARI(B), MARS (C), WANG (D) and
YACHIDA (E).F. Comparison between LOCATE and all state-of-the-art metabolites prediction
models as well as a Linear network and a Log network over the Kim dataset.
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Figure 2: Intersections between pairs of cohorts of 16S and WGS at the order taxonomic level
(A), and at the species level (B). The overlap between the pairs of the WGS datasets (red) is
much higher than the overlap in the 16S datasets (blue), especially at the species level. The
overlap between 16S and 16S is higher than the overlap between 16S and WGS, although the
number of taxa in WGS is much higher than 16S, and one could expect the 16S taxa to be
included in the WGS.
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Figure 3: Low intersection between the orders microbiome and metabolites of different cohorts.
A - D. Venn diagrams of the microbiome of triads 16S datasets. E - H. Venn diagrams of
the metabolites of triads 16S datasets. Each color represents a dataset, and the intermediate
colors represent the intersection. I. Histogram of average SCCs between each microbe and each
metabolite that appears at least at 2 cohorts (of the 16S cohorts). The histogram’s peak is at 0.0,
what emphasizes the inconsistent SCCs cross datasets. J. Histogram of percent of agreement with
the correlations reported in the literature and the correlations found in the cohorts. Most of the
correlations do not agree with the literature. K. Heatmap of NMF coefficients between microbes
and metabolites over different datasets (He, Kim and Jacob) vs the relations that are reported
in the literature. Blue/Red colors represent positive/negative correlations. The relations vary
between different datasets and do not preserve the known relations from the literature [1].
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Figure 4: Microbiome-metabolite relations are dataset specific. A - C. Swarm plots of LO-
CATE’s predicted metabolites SCCs in the cross-times test over the Direct Plus cohort. The
dark blue points represent the SCCs of the ”in-learning”, referred as ”Internal”, where only one
time point was used for the training and the testing, by 10 CV approach. The lightblue points
represent the SCCs of the ”ex-learning”, referred as ”External”, where LOCATE is trained on
one time point and is tested on another one. There is a decrease in the accuracy of the ex-
learning vs the in-learning. The stars follow all other figures. D - F. Swarm plots of all of
the cross-datasets learning between couples of datasets, Kim-Jacob (D), Direct Plus-Kim(E),
Direct Plus-Jacob (F). G. Swarm plots of all of the cross-datasets learning between couples of
datasets of the Log network model. The decline in performance between the ”in-learning” and
”ex-learning can be seen here too.
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Figure 5: Phenotype predictions based on targeted metabolites vs untargeted metabolites. In
each cohort with untargeted metabolites, the phenotype is predicted once based on models
which are trained only on classified metabolites (the dark bars), and once on all the metabolites
including unclassified ones. LOCATE based on untargeted metabolites (lightblue) outperforms
all the other methods. The performance is measured as the average AUC (for binary phenotypes)
and SCC for continuous phenotypes on a test set over 10 CVs. The black error bars represent
the standard errors within the 10 CVs.



Metabolites

b-Pseudouridine
N-Carbamoyl-b-alanine
Lacto-N-fucopentaose III
Lacto-N-fucopentaose I
Ethyl-b-D-glucuronide
CH5N
CH40
CH4N20
CH202
C9H18NO4
C9H13N305
C9H12N206
C9HI12N205
C9HIINO3
C9HIINO2
C9H1004
C9H1003
C8HINO2
C8HSO3
C8H802
C8HI15NOG6
C8H1INO
C7H8O
CTH603
C7TH16NO3
C6oHIN302
C6H8O7
C6HB8006
C6H60
C6H6N202
C6H5NO2
COoH14N402
C6H14N202
C6HI3NO2
C6H13N303
C6H1206
C6H1205
C5HINO4
C5HINO2
C5H805
C5H804
C5H7NO3
C5Ho05
CSH6N202
C5H4N40
C5H14NO
C5H14N2
C5HI2N202
C5HI1INO3S
C5H1INO2S
C5HIINO2
C5H1005
C5H1003
C5H1002
C5H10N203
C4HIONO3
C4HINO2
C4HIN302
C4HSO03
C4H802
C4H8N203
C4HTNO4
C4H7N3O
C4H605
C4H604
C4HON403

C4HON202 | ™ Real g
C4HISN3O | Shuflled

C4H404
C4H4N202
C4H12N2
C3HON
C3HS03
C3HS02
C3H8O
C3H7NO3
C3H7NO2
C3H603
C3H602
C3H403
C2H7NO3S
C2ZH7TNO
C2H7N
C2H60
C2H5NO2
C2H402
C24H42019
C23H39NO19
CI2H22011
C1IHI9NOY
C11H12N202
CI1IHIINO3
C10HINO2
CL0H14N205
C10H13N505
C10H12N405
C10H12N404
6' sialyllactose
3' fucosyl lactose
2' fucosyl lactose
0.4

0.6 08
Average coefficent

1.0



Figure 6: Average coefficients of each metabolite in the real dataset (dark bar) and in the shuffled
one (light bar). The black error bars are for the standard errors.



1 Supp. Mat. Tables

Table 1: Summary of current state-of-the-art methods

Model Advantages Disadvantages Ref
1. First framework. 1. Based on biological known networks.
PRMT 2. Significant correlations between PRMT scores 2. Limited only to the KEGG database. B
and relative abundances of selected environmental 3. Performance is limited.
measurements. 4. Not transferable (mixed datasets, between datasets).
‘ ;cgigz; "i;}s[.ormation about the contribution of each taxon to the ; E;;T?eglt):l];lﬁsl:}i l;é‘gg?;:;:;:g::e
MIMOSA | Succeed to predict relations in real and simulated datasets. 3. Requires the original sequences data. N B4
3 P o s 4. Performance is limited (worse than MelonnPan).
N 5. Not transferable (mixed datasets, between datasets).
1. Based on biological known network:
Mangosteen | 1. Success in specific metabolites. 2 Limited only to the KEGG database. 15l
3. Performan limited (worse than MelonnPan and MIMOSA).
4. Not transferable (mixed datasets, between datasets).
1. Best performance among existing state-of-the-arts. 1. Long running times (run for each metabolite separately).
MelonnPan | 2. Quite a good definition for well-predicted metabolites. i S‘“‘"“_‘ cope with all metabolites. R ) 6]
3. Independent from previous biological knowledge. 3. S mncmnc? returns (,.hc same prediction to all samples for specific metabolites.
4. Not transferable (mixed datasets, between datasets).
1. Learning multiple metabolites simultancously enables us to find relations
between the metabolites. 1. Long-running time.
2. They claim it is better than existing state-of-the-art methods (PRMT 2. Performance is limited in the external test within a dataset. 7
, MelonnPan, and SparseNED). 3. Not transferable (mixed datasets, between datasets).
3. Independent from previous biological knowledge.
1. Learning multiple metabolites simultaneously enables us to find relations
SparseNED between the metabolites. 1. Performance is limited within a dataset (worse than MelonnPan). ]
2. Quite short running times. 2. Not transferable (mixed datasets, between datasets).
3. Independent from previous biological knowledge.
Table 2: Datasets details
L. N (subjects N (samples
Dataset Cohort description 16S or WGS Caa(e Contrgl Ca.sg Contrgl Targeted / untargeted | Ref
18-month randomized clinical trial, we assigned 294
participants with abdominal obesity /dyslipidemia
Direct Plus into healthy dietary guidelines (HDG), MED and 16S NA 294 NA 784 Targeted [9]
green-MED weight-loss diet groups, all accompanied
by physical activity.
Kim Patients with advanced colorectal adenomas, 163 138 102 138 102 Untargeted [10]
colorectal cancer, and controls.
Infants over several time points during the 1st
He year of life, either breast-fed, formula-fed, or 168 NA 80 NA 277 Targeted [11]
experimental formula fed.
Inflammatory bowel disease patients and )
Jacob their first degree (healthy) relatives. 165 36 o4 36 o4 Untargeted (12
Longitudinal samples from healthy donors to the . 7 4 .
Poyet Broad Institute-OpenBiome Microbiome Library (BIO-ML). 165 NA 83 NA 164 Untargeted (3]
Patients who underwent colonoscopy, half of
ERAWIJANTARI | which with a history of gastrectomyfor gastric WGS 42 54 42 54 Targeted [14]
cancer and no signs of gastric cancer recurrence.
. Inflammatory bowel disease patients and controls — . . y . - B
FRANZOSA (PRISM cohort + A validation cohort). WGS 164 56 164 56 Untargeted [15]
MARS L«I)ngituflinal samples (over 6 months) from patients Was 51 2 305 139 Targeted [16]
with Irritable Bowel Syndrome and controls.
WANG Adults with end-stage renal disease (ESRD) and controls. WGS 220 67 220 67 Untargeted [17]
Patients who underwent colonoscopy, i . T
YACHIDA with findings from normal to stage 4 colorectal cancer. WGS 220 127 220 127 Targeted (18]




Table 3: LOCATE’s hyperparameters used

BGU He Jacob | Kim | Poyet
Activation function Tanh elU Tanh | Tanh elU
Dropout 0.002 | 0.070 | 0.209 | 0.002 | 0.079
Weight decay 0.127 | 0.030 | 0.138 | 0.120 | 0.020
Learning rate 0.001 | 0.001 0.05 0.001 0.001
Number of neurons layerl 90 20 20 90 20
Number of neurons layer 2 80 10 30 80 10
Representation size 10 10 10 10 10
Optimizer Adam | Adam | Adam | Adam | Adam
Max epochs 1000 1000 1000 1000 1000

Table 4: Metadata of each cohort

Dataset Metadata used
Direct Plus Diet, sex, height
He Diet, age, sex
Jacob Sex, age,pedigree
Poyet Travel abroad last year, seasonal Pollen allergy, weight, height, BMI
: country birth, sex, relationship status, pet allergy, diet, age
Kim Age, sex, race, smoking history
Smoking status, lung cancer, drinking status, breast cancer, glucose, liver cancer,
ERAWIJANTARI | total cholesterol, diabetes med, analgesic, anticoagulant, gastric acid medication, high
blood pressure, uterine cancer, sex, alcohol consumption, age
FRANZOSA Age, antibiotic, immunosuppressant, mesalamine, steroids,
WANG Age, BMI, Creatinine , Urea, eGFR, sex
MARS Age, BMI, sex, antibiotics
YACHIDA Age, sex, BMI, alcohol




Table 5: WGS 4 different clusters cross-datasets WGS

Pair Cluster num Color
s__Pauljensenia turicensis-C5H11NO2 1 lightgrey
s__Collinsella sp900551195-C6H13NO2 1 lightgrey
s__Collinsella sp900551605-C6H13NO2 1 lightgrey
s__Collinsella sp900759435-C4H4N202 1 lightgrey

s__Eggerthella lenta-C6H13NO2 1 lightgrey
s__FEggerthella sp014287365-C6H13NO2 1 lightgrey
s__Prevotella sp000431975-C4H4N202 1 lightgrey
s__Alistipes sp002428825-C4H4N202 1 lightgrey
s__Alistipes sp900021155-C4H4N202 1 lightgrey
s__Tidjanibacter inops_A-C4H4N202 1 lightgrey
s__Confluentibacter sp003258355-C5H4N40 1 lightgrey
s__Clostridium saudiense-C6H13NO2 1 lightgrey
s__Clostridium sp900543325-C6H13NO2 1 lightgrey
s__Acetatifactor sp002431915-C4H4N202 1 lightgrey
s__Acetatifactor sp900771995-C4H4N202 1 lightgrey
s__Acetatifactor sp900772845-C4H4N202 1 lightgrey
s__Coprococcus sp900548315-C4H4N202 1 lightgrey
s__Lachnospira sp900547255-C4H4N202 1 lightgrey
s__UBA11774 sp003507655-C3H503- 1 lightgrey
s__UBA7182 sp002491115-C4H4N202 1 lightgrey
s__Acutalibacter sp009936035-C4H4N202 1 lightgrey
s__Acutalibacter sp900543305-C4H4N202 1 lightgrey
s__Ruminococcus_E sp900315195-C6H14N202 1 lightgrey
s__Ruminococcus_E sp902797655-C6H14N202 1 lightgrey
s__UBA737 sp900554525-C4H4N202 1 lightgrey
s__CAG-170 sp000432135-C4H4N202 1 lightgrey
s__Dysosmobacter sp900752075-C4H4N202 1 lightgrey
s__UBA5446 sp900543085-C4H4N202 1 lightgrey
s__Ruminococcus sp900540005-C4H4N202 1 lightgrey
s__CAG-145 sp900545135-C4H4N202 1 lightgrey
s__Emergencia sp900551775-C4H4N202 1 lightgrey
s__NSJ-50 sp014385105-C4H4N202 1 lightgrey
s_-UBA2862 sp902790525-C3H7TNO2 1 lightgrey
s__Christensenella massiliensis-C26H43NO6 1 lightgrey
s_-UBA2897 sp002350105-C6H14N202 1 lightgrey
s__Fusobacterium_A sp900015295-C3H7NO2 1 lightgrey
s--D16-34 sp009911635-C3H502- 2 darkgrey
s__Alistipes sp002428825-C5H4N40 2 darkgrey
s__Alistipes sp900549305-C5H4N40 2 darkgrey
s__Parabacteroides sp011038785-C4H4N202 2 darkgrey
s_-RC9 sp900546445-C5H4N40 2 darkgrey
s__Streptococcus hyointestinalis-C6H13NO2 2 darkgrey
s__Streptococcus parasanguinis_ A-C6H13NO2 2 darkgrey
s__Streptococcus parasanguinis_ B-C6H13NO2 2 darkgrey
s__Streptococcus parasanguinis_C-C6H13NO2 2 darkgrey
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Table 5: WGS 4 different clusters cross-datasets WGS

Pair Cluster num Color
s__Streptococcus parasanguinis_D-C6H13NO2 2 darkgrey
s__Streptococcus sp000314795-C6H13NO2 2 darkgrey
s__Streptococcus sp000448565-C6H13NO2 2 darkgrey
s__Streptococcus sp900543065-C6H13NO2 2 darkgrey
s__Streptococcus sp900766505-C6H13NO2 2 darkgrey
s__UBA9502 sp004554205-C5H4N40 2 darkgrey
s__NSJ-32 sp014384895-C5H4N40 2 darkgrey
s__CAG-110 sp003525905-C5H4N40 2 darkgrey
s__CAG-83 sp900545585-C5H4N40 2 darkgrey
s__Dysosmobacter sp001916835-C5H4N40 2 darkgrey
s__ER4 sp900552015-C5H4N40 2 darkgrey
s__Flavonifractor sp900549795-C5H4N40 2 darkgrey
s__ HGM12998 sp900756495-C5H4N40 2 darkgrey
s__Intestinimonas butyriciproducens-C5H4N40 2 darkgrey
s__Intestinimonas massiliensis-C5H4N40 2 darkgrey
s--UBA3855 sp902783005-C3H502- 2 darkgrey
s__UMGS1889 sp900556055-C5H4N40 2 darkgrey
s__Emergencia sp900551775-C26H43NO6 2 darkgrey
s__Phill sp001940855-C5H4N40 2 darkgrey
s__-UMGS692 sp900544545-C3H502- 2 darkgrey
s__Firm-10 sp001603025-C3H502- 2 darkgrey
s__-HGM11575 sp002068815-C3H502- 2 darkgrey
s__UBA2862 sp900315585-C3H502- 2 darkgrey
s__UBA2862 sp900318045-C3H502- 2 darkgrey
s__UBA2862 sp902798105-C3H502- 2 darkgrey
s__QALWO1 sp003150515-C26H43NO6 2 darkgrey
s__Akkermansia sp004167605-C3H502- 2 darkgrey
s__Porphyromonas sp900539155-C5H11NO2 3 dimgrey
s__Alistipes putredinis-C5H11NO2 3 dimgrey
s__Alistipes senegalensis-C5H11NO2 3 dimgrey
s__Alistipes shahii-C5H11NO2 3 dimgrey
s__Alistipes sp900021155-C5H11NO2 3 dimgrey
s__Alistipes sp900541585-C5H11NO2 3 dimgrey
s__Alistipes_A indistinctus-C5H11NO2 3 dimgrey
s_-UBA940 sp900768115-C5H11NO2 3 dimgrey
s__W3P20-009 sp004552385-C5H11NO2 3 dimgrey
s__NSJ-32 sp014384895-C5H11NO2 3 dimgrey
s__Acutalibacter timonensis-C5H11NO2 3 dimgrey
s__NSJ-40 sp014384705-C5H11NO2 3 dimgrey
s__UMGS856 sp900760305-C5H11NO2 3 dimgrey
s--CAG-390 sp000437015-C5H11NO2 3 dimgrey
s__CAG-390 sp900753295-C5H11NO2 3 dimgrey
s__CAG-841 sp000437375-C5H11NO2 3 dimgrey
s._ HGM12650 sp900761725-C5H11NO2 3 dimgrey
s__UMGS1002 sp900547565-C5H11NO2 3 dimgrey




Table 5: WGS 4 different clusters cross-datasets WGS

Pair Cluster num Color
s_-UMGS1696 sp900763885-C5H11NO2 3 dimgrey
s__SFLAO1 sp004553575-C5H11NO2 3 dimgrey
s_-UCG-010 sp900754535-C5H11NO2 3 dimgrey
s__CAG-103 sp900317855-C5H11NO2 3 dimgrey
s__CAG-110 sp900546415-C5H11NO2 3 dimgrey
s__CAG-110 sp900548795-C5H11NO2 3 dimgrey
s__CAG-110 sp900551495-C5H11NO2 3 dimgrey
s__CAG-110 sp900554625-C5H11NO2 3 dimgrey
s__CAG-110 sp900769995-C5H11NO2 3 dimgrey
s__CAG-170 sp000436735-C5H11NO2 3 dimgrey
s__CAG-170 sp002437575-C5H11NO2 3 dimgrey
s__CAG-170 sp900548625-C5H11NO2 3 dimgrey
s__CAG-83 sp900548615-C5H11NO2 3 dimgrey
s__Flavonifractor massiliensis_A-C5H11NO2 3 dimgrey
s__Marseille-P3106 sp900169975-C5H11NO2 3 dimgrey
s__Pseudoflavonifractor sp900079765-C5H11NO2 3 dimgrey
s__Anaerotruncus rubiinfantis-C5H11NO2 3 dimgrey
s__Anaerotruncus sp014385085-C5H11NO2 3 dimgrey
s__Massilimaliae massiliensis-C5H11NO2 3 dimgrey
s__-UBA1394 sp002305725-C5H11NO2 3 dimgrey
s__BX12 sp009911365-C5H11NO2 3 dimgrey
s__CAG-145 sp900545135-C5H11NO2 3 dimgrey
s__CAG-238 sp002439735-C5H11NO2 3 dimgrey
s__Phill sp001940855-C5H11NO2 3 dimgrey
s__Firm-11 sp900548145-C5H11NO2 3 dimgrey
s__SFFS01 sp004557805-C5H11NO2 3 dimgrey
s__NSJ-63 sp014384805-C5H11NO2 3 dimgrey
s__Alistipes onderdonkii-C6H13NO2 4 k
s__Alistipes sp002358415-C6H13NO2 4 k
s__Alistipes sp002362235-C6H13NO2 4 k
s__Alistipes sp900290115-C6H13NO2 4 k
s__Alistipes sp900541585-C6H13NO2 4 k
s__Alistipes sp902388705-C6H13NO2 4 k
s__UMGS2068 sp900769635-C6H13NO2 4 k
s__Anaerofustis stercorihominis-C6H13NO2 4 k
s__Blautia_A luti-C3H503- 4 k
s__Blautia_A sp900540785-C4H4N202 4 k
s__CAG-317 sp011960265-C4H4AN202 4 k
s HGM11523 sp900756545-C6H13NO2 4 k
s__Agathobaculum sp900291975-C6H13NO2 4 k
s__Lawsonibacter sp900066825-C6H13NO2 4 k
s__Lawsonibacter sp900764755-C6H13NO2 4 k
s__Anaerotruncus colihominis-C6H13NO2 4 k
s__UBA1409 sp002305045-C24H4005 4 k
s__BX12 sp009911365-C6H13NO2 4 k




Table 5: WGS 4 different clusters cross-datasets WGS

Pair Cluster num Color

s_-CAG-145 sp900545135-C6H13NO2 4 k

s__Emergencia sp009935805-C6H13NO2

s__Mogibacterium timidum-C4H4N202

s_-RUG100 sp900315555-C6H13NO2

R
~| R R

s__Fusobacterium_A varium-C4H4N202

Table 6: Acronym table

Acronym Meaning
LOCATE Latent Of miCrobiome And meTabolites rElations
ML Machine Learning
SCFA Short Chain Fatty Acids
T1D Type 1 Diabetes
1IBD Inflammatory bowel disease
T2D Type 2 Diabetes
DNN Deep Neural Networks
CNN Convolutional neural networks
PRMT Predicted Relative Metabolomic Turnover
MIMOSA | Model-based Integration of Metabolite Observations and Species Abundance
MLPNN multiple-layer perceptron neural network
WGS whole genome shotgun sequencing
HDG healthy dietary guidelines
MRS magnetic resonance spectroscopy
DSC deep subcutaneous
SSC superficial subcutaneous
VAT Visceral adipose tissue
CD Crohn’s disease
UC Ulcerative colitis
ESRD end-stage renal disease
NMF Non Negative Matrix Factorization
NNI Neural Network Intelligence
MSE Mean Square Error
SCC Spearman Correlation Coefficient
AUC Area Under the ROC Curve
CCA Canonical-Correlation Analysis
SVD Singular value decomposition
CRC Colorectal cancer
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