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Figure 1: Latent representation of microbiome can be used to predict metabolites in each dataset
separately better than all existing methods. A - E. Comparison between LOCATE and all state-
of-the-art metabolites prediction models as well as a Linear network and a Log network over
the different datasets FRANZOSA (A), ERAWIJANTARI(B), MARS (C), WANG (D) and
YACHIDA (E).F. Comparison between LOCATE and all state-of-the-art metabolites prediction
models as well as a Linear network and a Log network over the Kim dataset.
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Figure 2: Intersections between pairs of cohorts of 16S and WGS at the order taxonomic level
(A), and at the species level (B). The overlap between the pairs of the WGS datasets (red) is
much higher than the overlap in the 16S datasets (blue), especially at the species level. The
overlap between 16S and 16S is higher than the overlap between 16S and WGS, although the
number of taxa in WGS is much higher than 16S, and one could expect the 16S taxa to be
included in the WGS.
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Figure 3: Low intersection between the orders microbiome and metabolites of different cohorts.
A - D. Venn diagrams of the microbiome of triads 16S datasets. E - H. Venn diagrams of
the metabolites of triads 16S datasets. Each color represents a dataset, and the intermediate
colors represent the intersection. I. Histogram of average SCCs between each microbe and each
metabolite that appears at least at 2 cohorts (of the 16S cohorts). The histogram’s peak is at 0.0,
what emphasizes the inconsistent SCCs cross datasets. J. Histogram of percent of agreement with
the correlations reported in the literature and the correlations found in the cohorts. Most of the
correlations do not agree with the literature. K. Heatmap of NMF coefficients between microbes
and metabolites over different datasets (He, Kim and Jacob) vs the relations that are reported
in the literature. Blue/Red colors represent positive/negative correlations. The relations vary
between different datasets and do not preserve the known relations from the literature [1].
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Figure 4: Microbiome-metabolite relations are dataset specific. A - C. Swarm plots of LO-
CATE’s predicted metabolites SCCs in the cross-times test over the Direct Plus cohort. The
dark blue points represent the SCCs of the ”in-learning”, referred as ”Internal”, where only one
time point was used for the training and the testing, by 10 CV approach. The lightblue points
represent the SCCs of the ”ex-learning”, referred as ”External”, where LOCATE is trained on
one time point and is tested on another one. There is a decrease in the accuracy of the ex-
learning vs the in-learning. The stars follow all other figures. D - F. Swarm plots of all of
the cross-datasets learning between couples of datasets, Kim-Jacob (D), Direct Plus-Kim(E),
Direct Plus-Jacob (F). G. Swarm plots of all of the cross-datasets learning between couples of
datasets of the Log network model. The decline in performance between the ”in-learning” and
”ex-learning can be seen here too.
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Figure 5: Phenotype predictions based on targeted metabolites vs untargeted metabolites. In
each cohort with untargeted metabolites, the phenotype is predicted once based on models
which are trained only on classified metabolites (the dark bars), and once on all the metabolites
including unclassified ones. LOCATE based on untargeted metabolites (lightblue) outperforms
all the other methods. The performance is measured as the average AUC (for binary phenotypes)
and SCC for continuous phenotypes on a test set over 10 CVs. The black error bars represent
the standard errors within the 10 CVs.
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Figure 6: Average coefficients of each metabolite in the real dataset (dark bar) and in the shuffled
one (light bar). The black error bars are for the standard errors.
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1 Supp. Mat. Tables

Table 1: Summary of current state-of-the-art methods
Model Advantages Disadvantages Ref

PRMT

1. First framework.
2. Significant correlations between PRMT scores
and relative abundances of selected environmental
measurements.

1. Based on biological known networks.
2. Limited only to the KEGG database.
3. Performance is limited.
4. Not transferable (mixed datasets, between datasets).

[2]

MIMOSA

1. Gives information about the contribution of each taxon to the
metabolites.
2. Succeed to predict relations in real and simulated datasets.
3. Freely available web server.

1. Based on biological known networks.
2. Limited only to the KEGG database.
3. Requires the original sequences data.
4. Performance is limited (worse than MelonnPan).
5. Not transferable (mixed datasets, between datasets).

[3, 4]

Mangosteen 1. Success in specific metabolites.

1. Based on biological known networks.
2. Limited only to the KEGG database.
3. Performance is limited (worse than MelonnPan and MIMOSA).
4. Not transferable (mixed datasets, between datasets).

[5]

MelonnPan
1. Best performance among existing state-of-the-arts.
2. Quite a good definition for well-predicted metabolites.
3. Independent from previous biological knowledge.

1. Long running times (run for each metabolite separately).
2. Cannot cope with all metabolites.
3. Sometimes returns the same prediction to all samples for specific metabolites.
4. Not transferable (mixed datasets, between datasets).

[6]

MiMeNet

1. Learning multiple metabolites simultaneously enables us to find relations
between the metabolites.
2. They claim it is better than existing state-of-the-art methods (PRMT
, MelonnPan, and SparseNED).
3. Independent from previous biological knowledge.

1. Long-running time.
2. Performance is limited in the external test within a dataset.
3. Not transferable (mixed datasets, between datasets).

[7]

SparseNED

1. Learning multiple metabolites simultaneously enables us to find relations
between the metabolites.
2. Quite short running times.
3. Independent from previous biological knowledge.

1. Performance is limited within a dataset (worse than MelonnPan).
2. Not transferable (mixed datasets, between datasets).

[8]

Table 2: Datasets details
N (subjects) N (samples)

Dataset Cohort description 16S or WGS
Case Control Case Control

Targeted / untargeted Ref

Direct Plus

18-month randomized clinical trial, we assigned 294
participants with abdominal obesity/dyslipidemia
into healthy dietary guidelines (HDG), MED and
green-MED weight-loss diet groups, all accompanied
by physical activity.

16S NA 294 NA 784 Targeted [9]

Kim
Patients with advanced colorectal adenomas,
colorectal cancer, and controls.

16S 138 102 138 102 Untargeted [10]

He
Infants over several time points during the 1st
year of life, either breast-fed, formula-fed, or
experimental formula fed.

16S NA 80 NA 277 Targeted [11]

Jacob
Inflammatory bowel disease patients and
their first degree (healthy) relatives.

16S 36 54 36 54 Untargeted [12]

Poyet
Longitudinal samples from healthy donors to the
Broad Institute-OpenBiome Microbiome Library (BIO-ML).

16S NA 83 NA 164 Untargeted [13]

ERAWIJANTARI
Patients who underwent colonoscopy, half of
which with a history of gastrectomyfor gastric
cancer and no signs of gastric cancer recurrence.

WGS 42 54 42 54 Targeted [14]

FRANZOSA
Inflammatory bowel disease patients and controls
(PRISM cohort + A validation cohort).

WGS 164 56 164 56 Untargeted [15]

MARS
Longitudinal samples (over 6 months) from patients
with Irritable Bowel Syndrome and controls.

WGS 51 24 305 139 Targeted [16]

WANG Adults with end-stage renal disease (ESRD) and controls. WGS 220 67 220 67 Untargeted [17]

YACHIDA
Patients who underwent colonoscopy,
with findings from normal to stage 4 colorectal cancer.

WGS 220 127 220 127 Targeted [18]
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Table 3: LOCATE’s hyperparameters used
BGU He Jacob Kim Poyet

Activation function Tanh elU Tanh Tanh elU
Dropout 0.002 0.070 0.209 0.002 0.079

Weight decay 0.127 0.030 0.138 0.120 0.020
Learning rate 0.001 0.001 0.05 0.001 0.001

Number of neurons layer1 90 20 20 90 20
Number of neurons layer 2 80 10 30 80 10

Representation size 10 10 10 10 10
Optimizer Adam Adam Adam Adam Adam
Max epochs 1000 1000 1000 1000 1000

Table 4: Metadata of each cohort
Dataset Metadata used

Direct Plus Diet, sex, height
He Diet, age, sex

Jacob Sex, age,pedigree

Poyet
Travel abroad last year, seasonal Pollen allergy, weight, height, BMI

country birth, sex, relationship status, pet allergy, diet, age
Kim Age, sex, race, smoking history

ERAWIJANTARI
Smoking status, lung cancer, drinking status, breast cancer, glucose, liver cancer,

total cholesterol, diabetes med, analgesic, anticoagulant, gastric acid medication, high
blood pressure, uterine cancer, sex, alcohol consumption, age

FRANZOSA Age, antibiotic, immunosuppressant, mesalamine, steroids,
WANG Age, BMI, Creatinine , Urea, eGFR, sex
MARS Age, BMI, sex, antibiotics

YACHIDA Age, sex, BMI, alcohol
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Table 5: WGS 4 different clusters cross-datasets WGS

Pair Cluster num Color
s Pauljensenia turicensis-C5H11NO2 1 lightgrey
s Collinsella sp900551195-C6H13NO2 1 lightgrey
s Collinsella sp900551605-C6H13NO2 1 lightgrey
s Collinsella sp900759435-C4H4N2O2 1 lightgrey

s Eggerthella lenta-C6H13NO2 1 lightgrey
s Eggerthella sp014287365-C6H13NO2 1 lightgrey
s Prevotella sp000431975-C4H4N2O2 1 lightgrey
s Alistipes sp002428825-C4H4N2O2 1 lightgrey
s Alistipes sp900021155-C4H4N2O2 1 lightgrey
s Tidjanibacter inops A-C4H4N2O2 1 lightgrey

s Confluentibacter sp003258355-C5H4N4O 1 lightgrey
s Clostridium saudiense-C6H13NO2 1 lightgrey

s Clostridium sp900543325-C6H13NO2 1 lightgrey
s Acetatifactor sp002431915-C4H4N2O2 1 lightgrey
s Acetatifactor sp900771995-C4H4N2O2 1 lightgrey
s Acetatifactor sp900772845-C4H4N2O2 1 lightgrey
s Coprococcus sp900548315-C4H4N2O2 1 lightgrey
s Lachnospira sp900547255-C4H4N2O2 1 lightgrey
s UBA11774 sp003507655-C3H5O3- 1 lightgrey
s UBA7182 sp002491115-C4H4N2O2 1 lightgrey

s Acutalibacter sp009936035-C4H4N2O2 1 lightgrey
s Acutalibacter sp900543305-C4H4N2O2 1 lightgrey

s Ruminococcus E sp900315195-C6H14N2O2 1 lightgrey
s Ruminococcus E sp902797655-C6H14N2O2 1 lightgrey

s UBA737 sp900554525-C4H4N2O2 1 lightgrey
s CAG-170 sp000432135-C4H4N2O2 1 lightgrey

s Dysosmobacter sp900752075-C4H4N2O2 1 lightgrey
s UBA5446 sp900543085-C4H4N2O2 1 lightgrey

s Ruminococcus sp900540005-C4H4N2O2 1 lightgrey
s CAG-145 sp900545135-C4H4N2O2 1 lightgrey

s Emergencia sp900551775-C4H4N2O2 1 lightgrey
s NSJ-50 sp014385105-C4H4N2O2 1 lightgrey
s UBA2862 sp902790525-C3H7NO2 1 lightgrey

s Christensenella massiliensis-C26H43NO6 1 lightgrey
s UBA2897 sp002350105-C6H14N2O2 1 lightgrey

s Fusobacterium A sp900015295-C3H7NO2 1 lightgrey
s D16-34 sp009911635-C3H5O2- 2 darkgrey

s Alistipes sp002428825-C5H4N4O 2 darkgrey
s Alistipes sp900549305-C5H4N4O 2 darkgrey

s Parabacteroides sp011038785-C4H4N2O2 2 darkgrey
s RC9 sp900546445-C5H4N4O 2 darkgrey

s Streptococcus hyointestinalis-C6H13NO2 2 darkgrey
s Streptococcus parasanguinis A-C6H13NO2 2 darkgrey
s Streptococcus parasanguinis B-C6H13NO2 2 darkgrey
s Streptococcus parasanguinis C-C6H13NO2 2 darkgrey
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Table 5: WGS 4 different clusters cross-datasets WGS

Pair Cluster num Color
s Streptococcus parasanguinis D-C6H13NO2 2 darkgrey
s Streptococcus sp000314795-C6H13NO2 2 darkgrey
s Streptococcus sp000448565-C6H13NO2 2 darkgrey
s Streptococcus sp900543065-C6H13NO2 2 darkgrey
s Streptococcus sp900766505-C6H13NO2 2 darkgrey

s UBA9502 sp004554205-C5H4N4O 2 darkgrey
s NSJ-32 sp014384895-C5H4N4O 2 darkgrey
s CAG-110 sp003525905-C5H4N4O 2 darkgrey
s CAG-83 sp900545585-C5H4N4O 2 darkgrey

s Dysosmobacter sp001916835-C5H4N4O 2 darkgrey
s ER4 sp900552015-C5H4N4O 2 darkgrey

s Flavonifractor sp900549795-C5H4N4O 2 darkgrey
s HGM12998 sp900756495-C5H4N4O 2 darkgrey

s Intestinimonas butyriciproducens-C5H4N4O 2 darkgrey
s Intestinimonas massiliensis-C5H4N4O 2 darkgrey

s UBA3855 sp902783005-C3H5O2- 2 darkgrey
s UMGS1889 sp900556055-C5H4N4O 2 darkgrey

s Emergencia sp900551775-C26H43NO6 2 darkgrey
s Phil1 sp001940855-C5H4N4O 2 darkgrey

s UMGS692 sp900544545-C3H5O2- 2 darkgrey
s Firm-10 sp001603025-C3H5O2- 2 darkgrey

s HGM11575 sp002068815-C3H5O2- 2 darkgrey
s UBA2862 sp900315585-C3H5O2- 2 darkgrey
s UBA2862 sp900318045-C3H5O2- 2 darkgrey
s UBA2862 sp902798105-C3H5O2- 2 darkgrey

s QALW01 sp003150515-C26H43NO6 2 darkgrey
s Akkermansia sp004167605-C3H5O2- 2 darkgrey

s Porphyromonas sp900539155-C5H11NO2 3 dimgrey
s Alistipes putredinis-C5H11NO2 3 dimgrey
s Alistipes senegalensis-C5H11NO2 3 dimgrey

s Alistipes shahii-C5H11NO2 3 dimgrey
s Alistipes sp900021155-C5H11NO2 3 dimgrey
s Alistipes sp900541585-C5H11NO2 3 dimgrey
s Alistipes A indistinctus-C5H11NO2 3 dimgrey
s UBA940 sp900768115-C5H11NO2 3 dimgrey

s W3P20-009 sp004552385-C5H11NO2 3 dimgrey
s NSJ-32 sp014384895-C5H11NO2 3 dimgrey

s Acutalibacter timonensis-C5H11NO2 3 dimgrey
s NSJ-40 sp014384705-C5H11NO2 3 dimgrey

s UMGS856 sp900760305-C5H11NO2 3 dimgrey
s CAG-390 sp000437015-C5H11NO2 3 dimgrey
s CAG-390 sp900753295-C5H11NO2 3 dimgrey
s CAG-841 sp000437375-C5H11NO2 3 dimgrey
s HGM12650 sp900761725-C5H11NO2 3 dimgrey
s UMGS1002 sp900547565-C5H11NO2 3 dimgrey
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Table 5: WGS 4 different clusters cross-datasets WGS

Pair Cluster num Color
s UMGS1696 sp900763885-C5H11NO2 3 dimgrey
s SFLA01 sp004553575-C5H11NO2 3 dimgrey
s UCG-010 sp900754535-C5H11NO2 3 dimgrey
s CAG-103 sp900317855-C5H11NO2 3 dimgrey
s CAG-110 sp900546415-C5H11NO2 3 dimgrey
s CAG-110 sp900548795-C5H11NO2 3 dimgrey
s CAG-110 sp900551495-C5H11NO2 3 dimgrey
s CAG-110 sp900554625-C5H11NO2 3 dimgrey
s CAG-110 sp900769995-C5H11NO2 3 dimgrey
s CAG-170 sp000436735-C5H11NO2 3 dimgrey
s CAG-170 sp002437575-C5H11NO2 3 dimgrey
s CAG-170 sp900548625-C5H11NO2 3 dimgrey
s CAG-83 sp900548615-C5H11NO2 3 dimgrey

s Flavonifractor massiliensis A-C5H11NO2 3 dimgrey
s Marseille-P3106 sp900169975-C5H11NO2 3 dimgrey

s Pseudoflavonifractor sp900079765-C5H11NO2 3 dimgrey
s Anaerotruncus rubiinfantis-C5H11NO2 3 dimgrey
s Anaerotruncus sp014385085-C5H11NO2 3 dimgrey
s Massilimaliae massiliensis-C5H11NO2 3 dimgrey
s UBA1394 sp002305725-C5H11NO2 3 dimgrey
s BX12 sp009911365-C5H11NO2 3 dimgrey

s CAG-145 sp900545135-C5H11NO2 3 dimgrey
s CAG-238 sp002439735-C5H11NO2 3 dimgrey
s Phil1 sp001940855-C5H11NO2 3 dimgrey

s Firm-11 sp900548145-C5H11NO2 3 dimgrey
s SFFS01 sp004557805-C5H11NO2 3 dimgrey
s NSJ-63 sp014384805-C5H11NO2 3 dimgrey
s Alistipes onderdonkii-C6H13NO2 4 k
s Alistipes sp002358415-C6H13NO2 4 k
s Alistipes sp002362235-C6H13NO2 4 k
s Alistipes sp900290115-C6H13NO2 4 k
s Alistipes sp900541585-C6H13NO2 4 k
s Alistipes sp902388705-C6H13NO2 4 k

s UMGS2068 sp900769635-C6H13NO2 4 k
s Anaerofustis stercorihominis-C6H13NO2 4 k

s Blautia A luti-C3H5O3- 4 k
s Blautia A sp900540785-C4H4N2O2 4 k
s CAG-317 sp011960265-C4H4N2O2 4 k
s HGM11523 sp900756545-C6H13NO2 4 k

s Agathobaculum sp900291975-C6H13NO2 4 k
s Lawsonibacter sp900066825-C6H13NO2 4 k
s Lawsonibacter sp900764755-C6H13NO2 4 k
s Anaerotruncus colihominis-C6H13NO2 4 k
s UBA1409 sp002305045-C24H40O5 4 k
s BX12 sp009911365-C6H13NO2 4 k
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Table 5: WGS 4 different clusters cross-datasets WGS

Pair Cluster num Color
s CAG-145 sp900545135-C6H13NO2 4 k

s Emergencia sp009935805-C6H13NO2 4 k
s Mogibacterium timidum-C4H4N2O2 4 k
s RUG100 sp900315555-C6H13NO2 4 k

s Fusobacterium A varium-C4H4N2O2 4 k

Table 6: Acronym table
Acronym Meaning
LOCATE Latent Of miCrobiome And meTabolites rElations

ML Machine Learning
SCFA Short Chain Fatty Acids
T1D Type 1 Diabetes
IBD Inflammatory bowel disease
T2D Type 2 Diabetes
DNN Deep Neural Networks
CNN Convolutional neural networks
PRMT Predicted Relative Metabolomic Turnover

MIMOSA Model-based Integration of Metabolite Observations and Species Abundance
MLPNN multiple-layer perceptron neural network
WGS whole genome shotgun sequencing
HDG healthy dietary guidelines
MRS magnetic resonance spectroscopy
DSC deep subcutaneous
SSC superficial subcutaneous
VAT Visceral adipose tissue
CD Crohn’s disease
UC Ulcerative colitis

ESRD end-stage renal disease
NMF Non Negative Matrix Factorization
NNI Neural Network Intelligence
MSE Mean Square Error
SCC Spearman Correlation Coefficient
AUC Area Under the ROC Curve
CCA Canonical-Correlation Analysis
SVD Singular value decomposition
CRC Colorectal cancer
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