
Supplementary Information 1 

In the scenario of working as CAM, Flash states are represented by the read 2 

currents, rather than the threshold voltages as in memory mode. The applicable 3 

programming scheme should be also different, which demands a linear current 4 

modulation during programming. However, when programming under a fixed drain 5 

voltage (Vd), the read currents will decrease linearly at first, and then more and more 6 

nonlinearly, as shown in Fig. S1(a). This is because as the Flash programming goes on, 7 

the electrons trapped in the floating gate is accumulating to saturation, which reduces 8 

the programming efficiency [1].  9 

To address this and improve linearity, we propose a two-stage programming 10 

scheme, which employs a constant Vd in the first N0 cycles, and then an increasing Vd 11 

with a ΔV which is also incremental, as shown in Fig. S1(b). The principle is utilizing 12 

the increasing Vd to compensate for the influence of electron saturation. The effects of 13 

different Vd incremental steps with initial Vd=5 V are shown in Fig. S1(c). As the step 14 

increases, we can see that the programming linearity is recovered gradually. Besides, 15 

by selecting the step sizes carefully, we can obtain an excellent linearity for different 16 

initial Vd, as shown in Fig. S1(d). Hence, we can obtain different programming speeds 17 

and current steps by selecting the different initial Vd and corresponding ΔV.  18 

 

Fig. S1: The proposed two-stage programming scheme. (a) Programming curves 
(program@ Vg=9 V and read@ Vg=6 V, Vd=0.8 V). (b) The proposed two-stage 
programming scheme. (c) Programming curves with different Vd incremental steps. (d) 
Programming curves with excellent linearity by employing the two-stage programming 
scheme. 
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In addition to improving the programming linearity of single transistor, parallel 1 

programming is another effective approach to speed up on-the-fly learning. The flow 2 

chart of the employed parallel programming scheme is shown in Fig. S2(a), which is 3 

combined with the aforementioned two-stage programming scheme. The parallelism is 4 

along with different BLs, where the cells needed to be programmed are applied with Vd, 5 

and others connected to ground, as shown in Fig. S2(b). According to the erasing 6 

mechanism, the Flash transistors in the same WL will be erased together. Therefore, 7 

they should be erased first, and then programmed to the respective states for termination, 8 

which guarantees no erasing operation during programming. Fig. S2(c) shows the 9 

whole process of parallel programming in a group of 8. We can see that the Flash 10 

currents start from the erased states and gradually decrease during the programming 11 

operation. When one Flash transistor reaches its target, the corresponding programming 12 

is terminated. 13 

  14 

15 

 

Fig. S2: The employed parallel programming scheme. (a) Flow chart of the parallel 
scheme. (b) Array structure and parallel programming operation. (c) Programming 
results in a parallel group of 8. 
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Fig. S3 shows the comparison of required programming cycles in three 1 

programming schemes, constant Vd programming, two-stage programming alone, 2 

parallel and two-stage programming together, respectively. Noted that the number of 3 

cycles required in parallel scheme depends on the smallest target currents in the group, 4 

therefore, for a fair comparison, the targets in each group are set to cover all the states 5 

of 3-bit L2 distance. We set the parallelism as 16 (BL number), and the target currents 6 

in each group are 0, 1, 4, 9, 16, 25, 36, 49, 0, 1, 4, 9, 16, 25, 36, 49. By jointly employing 7 

the parallel and two-stage programming schemes, we can get a 19.6-fold (average of 8 

25 WLs) reduction in total programming cycles, which provides the basis for rapid and 9 

precise on-device lifelong learning.  10 

 
Fig. S3: The comparison of programming cycles in three programming schemes. 
PGM cycles are dramatically reduced by parallel scheme. The target conductance is 
set by the L2 distance in each column for fair comparison. (measured @400cells) 
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Fig. S4: The overall current distribution of 3-bit-storage CAM. This degree of 
current variation (σ<0.6 μA) is proved to have almost no degradation to accuracy 
(<0.15%) in Fig. 4(d) of main text. 
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Fig. S5: The fitted (a) Id-Vg and (b) Id-Vd curves of NOR Flash transistors based 
on BSIM3v3 model calibrated with experimental data. The model shows a good 
consistency with the experiments. The modified parameters include the thickness of 
oxide layer, saturation velocity of electron, carrier mobility, and source-drain series 
resistance. 
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Fig. S6: Search latency with different word widths in the proposed CAM design. 
The search latency will increase as the word width increases due to the increasing 
parasitic resistance and capacitance in MLs. We can see that the search latency in 256-
dimension word is almost 500 ps, which increases by 3.3-times compared to 64-
dimension word. Therefore, multi-bit capability in CAM is also crucial to reduce the 
word width (related to the circuit area and search energy) and search latency. 
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The schematic of our experiments is shown in Fig. S7. we choose the widely used 1 

Omniglot dataset for demonstration. In this dataset, there are 1623 handwritten 2 

characters (classes) from different alphabets, and each character contains 20 examples 3 

from different people. We randomly choose 1200 classes for meta-training of feature 4 

extractor and the rest of 423 classes for configuring few-shot learning tasks. We employ 5 

a four-layer CNN as the feature extractor, which consists of 4 convolutional modules, 6 

each including 64-channel 3×3 kernels, batch normalization, ReLU, and 2×2 max-7 

pooling. The output of final layer is flatted to a 64-dimension vector.  8 

During meta-training, for one n-way k-shot task, we randomly sample n different 9 

classes (each class with k + x examples) from 1200 classes to establish support set (k 10 

examples) and query set (x examples). Here, both the support set and query set are 11 

labeled examples. The CNN is then trained to minimize the error of predicting labels in 12 

the query set by the back-propagation (BP) algorithm, which is called an “episode”. By 13 

repeating this process (randomly sampling few-shot tasks and BP training), the CNN is 14 

gradually meta-trained to be capable of employing a general scheme to map the input 15 

data to their appropriate labels regardless of their specific contents, namely learning to 16 

learn [2]. Note that the CNN weight parameters are fixed after meta-training and will 17 

no longer change during the following phase. During few-shot learning, the 64-18 

dimension features of support set are first extracted by the CNN, quantized to 3-bit 19 

according to the scheme of L2 distance, and then stored in the Flash-based CAM. 20 

During inference, the extracted query features are coded and transformed into a series 21 

of WL voltages for computing L2 distance with all the stored features in parallel. The 22 

predicted label is given by sensing MLs for minimum current. 23 

  24 

 
Fig. S7: Experiments for few-shot learning. Pre-trained 4-layer CNN is used to 
extract features. During few-shot learning, features of support set are written into the 
Flash-based CAM. During inference, search vector of query is compared with all the 
stored contents by calculating pair-wise L2 distance. Predicted label is given by 
sensing the minimum current of MLs. 



  1 

 

Fig. S8: Conductance distribution of the stored 64-dimension feature vectors in 
different few-shot learning tasks. The features of 5-shot task are average results 
across different shots. 
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Fig. S9: To achieve the same accuracy with the proposed L2 CAM, the word 
width of TCAM needs to be extended. 
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The LSH algorithm is to solve the problem of approximate nearest neighbor search. 1 

The original LSH method embeds the original feature-vector space into the Hamming 2 

space and converts the distance measure of original space to the Hamming distance, 3 

which performs bitwise XOR operation in two equal-length binary sequences and 4 

accumulates the results of “1” [3]. It has been applied in TCAM, but is difficult to 5 

directly extend to the multi-bit CAM.  6 

To address this and apply the LSH method to our proposed multi-bit-storage L2 7 

CAM, we employ the p-stable LSH method, which can directly perform the locality-8 

sensitive hash operation in Euclidean space and is also called E2LSH [4]. The hashing 9 

function ha,b(v) of p-stable LSH is defined in equation (1). 10 

,h ( )a b

a v b
v

r

     
                             (1) 11 

The parameter a is a random vector that has the same dimension as the feature 12 

vector v. Each element in a is randomly and independently generated from a p-stable 13 

distribution (p=2 is Gaussian distribution). The parameter b is a random number in the 14 

range of [0, r], of which r is an empirical hyperparameter. Besides, the final result needs 15 

a round-down operation. One hashing function acting on the original feature vector can 16 

generate one value for the new mapping vector. Therefore, by establishing more 17 

hashing functions, we can map the 64-dimension feature vector to a larger width and 18 

increase the inference accuracy of MANN. as shown in Fig. S10. 19 

 20 
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Fig. S10: Increase L2 CAM dimensions by using p-stable locality sensitive hash 
algorithm (E2LSH) for higher inference accuracy. 

32 64 128 256 512 1024
70

75

80

85

90

95

100

E2LSH+L2 CAM
 Software
 

A
c

c
u

ra
c

y
 (

%
)

Hashing Dimensions
32 64 128 256 512 1024

70

75

80

85

90

95

100

E2LSH+L2 CAM
 Software
 

A
c

c
u

ra
c

y
 (

%
)

Hashing Dimensions

20-way 1-shot5-way 1-shot

91.2%

96.7%
(a) (b)



 1 

 2 

  3 

 

Fig. S11: The impacts of ADC quantization precision on the inference accuracy. 4-
bit is enough for the quantization precision of ML sum current, with an accuracy loss 
less than 0.3% for both of 5-way and 20-way tasks.  
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