© 00 N O o B~ W N

T e S T S
©® N o o0 W N - O

Supplementary Information

—
Q
-

(b)

 v=a Constant V;, PGM
<30} V=4.5V | e d
3 — V=5V gram
= _ Read
§ 20 \,‘_,-,W V5.5V | J_I.r_l_l.r_l_l.n._l I.n.
5) Two-stage PGM
g N &nhnear Nav,
10\ .- 1 zavy ..,
2] ay,
© T |
o N,
s O,]
0 10 20 30 40 50 Constant V,; Incremental V,
PGM Cycle (#)

() m—m————— (d) —
<30} Two-stage PGM @V, =5V | <30} Two-stage PGM
% AV~0 § V ~4.5V
o AV,=0.01V & a
£ 20¢ 1 £20} —— V,=5.0V 1
5 —AV=0.03V S
o (&} — V5.5V
8 10} 8 10}
> =]

7] 7]
g g
s 0 0 s 0f Y
0 10 20 30 40 50 0 10 20 30 40 50
PGM Cycle (#) PGM Cycle (#)

Fig. S1: The proposed two-stage programming scheme. (a) Programming curves
(program@ Ve=9 V and read@ Ve=6 V, V4=0.8 V). (b) The proposed two-stage
programming scheme. (c) Programming curves with different Vs incremental steps. (d)
Programming curves with excellent linearity by employing the two-stage programming
scheme.

In the scenario of working as CAM, Flash states are represented by the read
currents, rather than the threshold voltages as in memory mode. The applicable
programming scheme should be also different, which demands a linear current
modulation during programming. However, when programming under a fixed drain
voltage (Va), the read currents will decrease linearly at first, and then more and more
nonlinearly, as shown in Fig. S1(a). This is because as the Flash programming goes on,
the electrons trapped in the floating gate is accumulating to saturation, which reduces
the programming efficiency [1].

To address this and improve linearity, we propose a two-stage programming
scheme, which employs a constant V in the first No cycles, and then an increasing Va
with a 4V which is also incremental, as shown in Fig. S1(b). The principle is utilizing
the increasing Vs to compensate for the influence of electron saturation. The effects of
different Vs incremental steps with initial Vz=5 V are shown in Fig. S1(c). As the step
increases, we can see that the programming linearity is recovered gradually. Besides,
by selecting the step sizes carefully, we can obtain an excellent linearity for different
initial Va4, as shown in Fig. S1(d). Hence, we can obtain different programming speeds
and current steps by selecting the different initial Vs and corresponding AV

© 00 N O o B~ W N

T
g A W N L O

(@) (b)

—_
(3)
-~

(Fully erase) [Constant V,].. Vy 0 0 0 240 o Currents of parallel program
_:L_F_ o _=|__|=_ ES 0Startfmm er:lse R
PGM cells Vs ol el B ol el z30f 2 l; g 3 2 8
Tes 1,[k]-I-{K]>ER, === == B ¢ § 3 § 3 g
others wait, 0 I_I"L_I"I.I rr-l--r-l-' 320 $ g $ 3
PN++ 1| L 1| b 3 3 ‘
= | = = | = 19
o ... T =10 3
V,+= 7 ‘\ h\ § : End to target
. 0 eee 0 3 .
PN-N,)*AV., —— L2 Distance
()" AV, To PGM CAM Cell =0 N e
All 1, [K]: Device Number (#)

I[k]< ER

Next group

Fig. S2: The employed parallel programming scheme. (a) Flow chart of the parallel
scheme. (b) Array structure and parallel programming operation. (c) Programming
results in a parallel group of 8.

In addition to improving the programming linearity of single transistor, parallel
programming is another effective approach to speed up on-the-fly learning. The flow
chart of the employed parallel programming scheme is shown in Fig. S2(a), which is
combined with the aforementioned two-stage programming scheme. The parallelism is
along with different BLs, where the cells needed to be programmed are applied with Va,
and others connected to ground, as shown in Fig. S2(b). According to the erasing
mechanism, the Flash transistors in the same WL will be erased together. Therefore,
they should be erased first, and then programmed to the respective states for termination,
which guarantees no erasing operation during programming. Fig. S2(c) shows the
whole process of parallel programming in a group of 8. We can see that the Flash
currents start from the erased states and gradually decrease during the programming
operation. When one Flash transistor reaches its target, the corresponding programming

1s terminated.

© 00 N o o B~ W N B

[EEN
(@)

Distribution of PGM Cycles
Constant Vd PGM Total cycles: 18974 target

— i I>1oo

49
0 80

l

49

Two-stage PGM Total cycles: 8684

BL (#)

40

4|—'|.uﬂ
20
Cycle

16 cells in Parallel Total cycles: 970

5 10 20 25
WL

Fig. S3: The comparison of programming cycles in three programming schemes.
PGM cycles are dramatically reduced by parallel scheme. The target conductance is
set by the L2 distance in each column for fair comparison. (measured @400cells)

Fig. S3 shows the comparison of required programming cycles in three
programming schemes, constant Vs programming, two-stage programming alone,
parallel and two-stage programming together, respectively. Noted that the number of
cycles required in parallel scheme depends on the smallest target currents in the group,
therefore, for a fair comparison, the targets in each group are set to cover all the states
of 3-bit L2 distance. We set the parallelism as 16 (BL number), and the target currents
in each group are 0, 1,4, 9, 16, 25,36,49,0, 1,4, 9, 16, 25, 36, 49. By jointly employing
the parallel and two-stage programming schemes, we can get a 19.6-fold (average of
25 WLs) reduction in total programming cycles, which provides the basis for rapid and

precise on-device lifelong learning.

45 3-bit-storage CAM 0<0.6pA

30

15 L
, "
0 5 10 15 20 25 30
Measured Current (uA)

Percent (%)

Fig. S4: The overall current distribution of 3-bit-storage CAM. This degree of

current variation (0<0.6 pA) is proved to have almost no degradation to accuracy
(<0.15%) in Fig. 4(d) of main text.

(@) 10+ . . v r . (b)

Vd='0.8V) o v'g
g 60 F——p6v
10-5 i —_—TV
— 45}—8V
< —PGM g_ Symbol:Exp. 2
“;,’10-6 1 Erase Tn’ 30 _Line:Sim. y ’ o€
o Symbol: Exp. ©
Line: Sim.
107} 15¢
10-8 A M M M M M J or M M M M M M
1 2 3 4 5 6 7 8 0 03 06 09 12 15
Vg (V) vd (V)

Fig. S5: The fitted (a) 1;-V, and (b) 1;-Va curves of NOR Flash transistors based
on BSIM3v3 model calibrated with experimental data. The model shows a good
consistency with the experiments. The modified parameters include the thickness of
oxide layer, saturation velocity of electron, carrier mobility, and source-drain series
resistance.

200 ——64 dims 1
—128 dims
—— 256 dims]

ML Current (uA)
)
o

0100 200 300 400 500
Time (ps)
Fig. S6: Search latency with different word widths in the proposed CAM design.
The search latency will increase as the word width increases due to the increasing
parasitic resistance and capacitance in MLs. We can see that the search latency in 256-
dimension word is almost 500 ps, which increases by 3.3-times compared to 64-
dimension word. Therefore, multi-bit capability in CAM is also crucial to reduce the
word width (related to the circuit area and search energy) and search latency.

© 00 N O o B~ W N

N NN NN P P e R R B b e
2 W N RFP O © 0 N o o0 M W N L O

! 71200 Classes | 3x3 Convolution Search Vector: 64-dimension

for CNN training
Bengali Greek

WL, . WL,

iy
R

=
e
>
=]
3]

423 Classes for
few-shot task
Tibetan Mongolian

ENn

Stored Feature

Vread [-+ L sL
Omniglot Dataset CNN Feature Extractor Flash-based CAM Array

28x28x64
14x14x64

= ...
-
z

V VV

Sensing current to
obtain minimum

N:Class Number

Fig. S7: Experiments for few-shot learning. Pre-trained 4-layer CNN is used to
extract features. During few-shot learning, features of support set are written into the
Flash-based CAM. During inference, search vector of query is compared with all the
stored contents by calculating pair-wise L2 distance. Predicted label is given by
sensing the minimum current of MLs.

The schematic of our experiments is shown in Fig. S7. we choose the widely used
Omniglot dataset for demonstration. In this dataset, there are 1623 handwritten
characters (classes) from different alphabets, and each character contains 20 examples
from different people. We randomly choose 1200 classes for meta-training of feature
extractor and the rest of 423 classes for configuring few-shot learning tasks. We employ
a four-layer CNN as the feature extractor, which consists of 4 convolutional modules,
each including 64-channel 3x3 kernels, batch normalization, ReLU, and 2x2 max-
pooling. The output of final layer is flatted to a 64-dimension vector.

During meta-training, for one n-way k-shot task, we randomly sample » different
classes (each class with & + x examples) from 1200 classes to establish support set (k
examples) and query set (x examples). Here, both the support set and query set are
labeled examples. The CNN is then trained to minimize the error of predicting labels in
the query set by the back-propagation (BP) algorithm, which is called an “episode”. By
repeating this process (randomly sampling few-shot tasks and BP training), the CNN is
gradually meta-trained to be capable of employing a general scheme to map the input
data to their appropriate labels regardless of their specific contents, namely learning to
learn [2]. Note that the CNN weight parameters are fixed after meta-training and will
no longer change during the following phase. During few-shot learning, the 64-
dimension features of support set are first extracted by the CNN, quantized to 3-bit
according to the scheme of L2 distance, and then stored in the Flash-based CAM.
During inference, the extracted query features are coded and transformed into a series
of WL voltages for computing L2 distance with all the stored features in parallel. The

predicted label is given by sensing MLs for minimum current.

Conductance Distribution

-waﬁ/ 1-shot 38uS

FLALLELR BTk -py By B B Ao Reieie b B,

-wa 5-shot

e EE [4

20-wa 1-shot
5 =d &
10 .
15
20]

5
10
15
20

BL (#)

Fig. S8: Conductance distribution of the stored 64-dimension feature vectors in
different few-shot learning tasks. The features of 5-shot task are average results

across different shots.

A w N

(@ (b)

(c)
100 5-way 1-shot 100 97.6% 5-way 5-shot 100 20-way 5-shot
- 0
—_ —_ - _—_p—E—g—e—a | o
< 95| 935% o5 o = o5} 93.7%
= — = - g —_—fF——8
> A > =] > a—u8
g 90 ° g 90 8 90 a—"
~
3 |/ 3 3 |~
g 8510 2 85 &J 85 g
——L2 CAM (64 dims) ——L2 CAM (64 dims) ——L2 CAM (64 dims)
80 —0-TCAM 80 —0-TCAM 80 —0-TCAM
64 128 192 256 320 384 448 512 64 128 192 256 320 384 448 512 64 128 192 256 320 384 448 512
TCAM Dimensions TCAM Dimensions TCAM Dimensions

Fig. S9: To achieve the same accuracy with the proposed L2 CAM, the word
width of TCAM needs to be extended.

© 00 N O o B~ W N

=
(@)

[ER
[

12
13
14
15
16
17
18
19
20
21

(a) 100 . (b) 100

96.7%
951 B—8— ; 95}
_ g 91.2%
9 I | £ 90} B—
X 90 E/ X 90 g
> >
§ 85} 5-way 1-shot :;!? 85} v 20-way 1-shot |
=] =
- 3 sof E/
Software Software
75t —O— E?LSH+L2 CAM] 751 —O—E2LSH+L2 CAM 7
70 A A A A A A 70 A A A A A A
32 64 128 256 512 1024 32 64 128 256 512 1024
Hashing Dimensions Hashing Dimensions

Fig. S10: Increase L2 CAM dimensions by using p-stable locality sensitive hash
algorithm (E2LSH) for higher inference accuracy.

The LSH algorithm is to solve the problem of approximate nearest neighbor search.
The original LSH method embeds the original feature-vector space into the Hamming
space and converts the distance measure of original space to the Hamming distance,
which performs bitwise XOR operation in two equal-length binary sequences and
accumulates the results of “1” [3]. It has been applied in TCAM, but is difficult to
directly extend to the multi-bit CAM.

To address this and apply the LSH method to our proposed multi-bit-storage L2
CAM, we employ the p-stable LSH method, which can directly perform the locality-
sensitive hash operation in Euclidean space and is also called E>LSH [4]. The hashing

function hg,»(v) of p-stable LSH is defined in equation (1).
a-v+ bJ

ha,b v) :L (1)

The parameter a is a random vector that has the same dimension as the feature
vector v. Each element in a is randomly and independently generated from a p-stable
distribution (p=2 is Gaussian distribution). The parameter b is a random number in the
range of [0,], of which r is an empirical hyperparameter. Besides, the final result needs
a round-down operation. One hashing function acting on the original feature vector can
generate one value for the new mapping vector. Therefore, by establishing more
hashing functions, we can map the 64-dimension feature vector to a larger width and
increase the inference accuracy of MANN. as shown in Fig. S10.

100}
90} OO0~ 0r—o__

S o—o—o—koi g
; 80 ~ \ o
A Acc. loss 2%
® 9 -bi
£ 70l <0.3% @ 4-bit]
0
2 60
—0O—5-way
50} —0—20-way o |

Soft. 6 5 4 3 2 1
ADC Bit

Fig. S11: The impacts of ADC quantization precision on the inference accuracy. 4-

bit is enough for the quantization precision of ML sum current, with an accuracy loss

less than 0.3% for both of 5-way and 20-way tasks.

Supplementary References

1.

Xiang, Y. C., Huang, P., Yang, H. Z., Wang, K. L., Han, R. Z., Shen, W. S., Kang,
J. F., et al. (2019). Storage reliability of multi-bit flash oriented to deep neural
network. In 2019 IEEE International Electron Devices Meeting (IEDM) (pp. 38-2).
IEEE.

Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., and Lillicrap, T. (2016).
Meta-learning with memory-augmented neural networks. In International
conference on machine learning (pp. 1842-1850). PMLR.

Andoni, A., and Indyk, P. (2008). Near-optimal hashing algorithms for approximate
nearest neighbor in high dimensions. Communications of the ACM, 51(1), 117-122.
Datar, M., Immorlica, N., Indyk, P., and Mirrokni, V. S. (2004). Locality-sensitive
hashing scheme based on p-stable distributions. In Proceedings of the twentieth

annual symposium on Computational geometry (pp. 253-262).

