
Supplementary Information 1

In the scenario of working as CAM, Flash states are represented by the read 2

currents, rather than the threshold voltages as in memory mode. The applicable 3

programming scheme should be also different, which demands a linear current 4

modulation during programming. However, when programming under a fixed drain 5

voltage (Vd), the read currents will decrease linearly at first, and then more and more 6

nonlinearly, as shown in Fig. S1(a). This is because as the Flash programming goes on, 7

the electrons trapped in the floating gate is accumulating to saturation, which reduces 8

the programming efficiency [1]. 9

To address this and improve linearity, we propose a two-stage programming 10

scheme, which employs a constant Vd in the first N0 cycles, and then an increasing Vd 11

with a ΔV which is also incremental, as shown in Fig. S1(b). The principle is utilizing 12

the increasing Vd to compensate for the influence of electron saturation. The effects of 13

different Vd incremental steps with initial Vd=5 V are shown in Fig. S1(c). As the step 14

increases, we can see that the programming linearity is recovered gradually. Besides, 15

by selecting the step sizes carefully, we can obtain an excellent linearity for different 16

initial Vd, as shown in Fig. S1(d). Hence, we can obtain different programming speeds 17

and current steps by selecting the different initial Vd and corresponding ΔV. 18

Fig. S1: The proposed two-stage programming scheme. (a) Programming curves
(program@ Vg=9 V and read@ Vg=6 V, Vd=0.8 V). (b) The proposed two-stage
programming scheme. (c) Programming curves with different Vd incremental steps. (d)
Programming curves with excellent linearity by employing the two-stage programming
scheme.

0 10 20 30 40 50
0

10

20

30
 Vd=4.5V

 Vd=5V

 Vd=5.5V

M
e

as
u

re
d

 C
u

rr
e

n
t(

μ
A

)

PGM Cycle (#)

Linear

Nonlinear

0 10 20 30 40 50
0

10

20

30
 ΔVd=0

 ΔVd=0.01V

 ΔVd=0.03V

M
e

as
u

re
d

 C
u

rr
e

n
t(

μ
A

)

PGM Cycle (#)

Two-stage PGM @Vd=5V

0 10 20 30 40 50
0

10

20

30

 Vd=4.5V

 Vd=5.0V

 Vd=5.5V

M
e

as
u

re
d

 C
u

rr
en

t(
μ

A
)

PGM Cycle (#)

Two-stage PGM

(a) (b)

(c) (d)

Two-stage PGM

Constant Vd PGM
Program

Read
…

ΔVd

2*ΔVd

……

N*ΔVd

Constant Vd Incremental Vd

N0

In addition to improving the programming linearity of single transistor, parallel 1

programming is another effective approach to speed up on-the-fly learning. The flow 2

chart of the employed parallel programming scheme is shown in Fig. S2(a), which is 3

combined with the aforementioned two-stage programming scheme. The parallelism is 4

along with different BLs, where the cells needed to be programmed are applied with Vd, 5

and others connected to ground, as shown in Fig. S2(b). According to the erasing 6

mechanism, the Flash transistors in the same WL will be erased together. Therefore, 7

they should be erased first, and then programmed to the respective states for termination, 8

which guarantees no erasing operation during programming. Fig. S2(c) shows the 9

whole process of parallel programming in a group of 8. We can see that the Flash 10

currents start from the erased states and gradually decrease during the programming 11

operation. When one Flash transistor reaches its target, the corresponding programming 12

is terminated. 13

 14

15

Fig. S2: The employed parallel programming scheme. (a) Flow chart of the parallel
scheme. (b) Array structure and parallel programming operation. (c) Programming
results in a parallel group of 8.

1 2 3 4 5 6 7 8
0

10

20

30

40 Currents of parallel program

M
e

as
u

re
d

 C
u

rr
en

t
(μ

A
)

Device Number (#)

 L2 Distance

Start from erase

End to target

(a) (b) (c)

Fully erase

Read Id in
a group

PN > Nmax

Yes

No

Next group

No

Yes

PN > N0

Yes

Vd +=
(PN-N0)*ΔVd

PGM cells
Id[k]-IT[k]>ER,
others wait,

PN++

All Id[k]-
IT[k]< ER

Constant Vd

No

BL

…

…

…
Vd

Vd

0

Vg 0 0 0

0
To PGM

CAM Cell
0…

Fig. S3 shows the comparison of required programming cycles in three 1

programming schemes, constant Vd programming, two-stage programming alone, 2

parallel and two-stage programming together, respectively. Noted that the number of 3

cycles required in parallel scheme depends on the smallest target currents in the group, 4

therefore, for a fair comparison, the targets in each group are set to cover all the states 5

of 3-bit L2 distance. We set the parallelism as 16 (BL number), and the target currents 6

in each group are 0, 1, 4, 9, 16, 25, 36, 49, 0, 1, 4, 9, 16, 25, 36, 49. By jointly employing 7

the parallel and two-stage programming schemes, we can get a 19.6-fold (average of 8

25 WLs) reduction in total programming cycles, which provides the basis for rapid and 9

precise on-device lifelong learning. 10

Fig. S3: The comparison of programming cycles in three programming schemes.
PGM cycles are dramatically reduced by parallel scheme. The target conductance is
set by the L2 distance in each column for fair comparison. (measured @400cells)

Constant Vd PGM

Two-stage PGM

16 cells in Parallel

Distribution of PGM Cycles

WL (#)

B
L

 (
#

)

4

8

12

16

4

8

12

16

1-16
Total cycles: 970

Total cycles: 8684

Total cycles: 18974 target
0

49

Cycle
0

>100

40

20

60

800

49

5 10 15 20 25

 1

 2

Fig. S4: The overall current distribution of 3-bit-storage CAM. This degree of
current variation (σ<0.6 μA) is proved to have almost no degradation to accuracy
(<0.15%) in Fig. 4(d) of main text.

0 5 10 15 20 25 30
0

15

30

45

P
e

rc
en

t
(%

)
Measured Current (μA)

3-bit-storage CAM σ<0.6μA

 1

 2

Fig. S5: The fitted (a) Id-Vg and (b) Id-Vd curves of NOR Flash transistors based
on BSIM3v3 model calibrated with experimental data. The model shows a good
consistency with the experiments. The modified parameters include the thickness of
oxide layer, saturation velocity of electron, carrier mobility, and source-drain series
resistance.

1 2 3 4 5 6 7 8
10-8

10-7

10-6

10-5

10-4

 PGM
 Erase

Symbol: Exp.
Line: Sim.

Id
s

 (
A

)

Vg (V)
0 0.3 0.6 0.9 1.2 1.5

0

15

30

45

60
Vg

 6V
 7V
 8V

Symbol:Exp.
Line:Sim.

Id
s

(μ
A

)

Vd (V)

Vd=0.8V

(a) (b)

 1

 2

Fig. S6: Search latency with different word widths in the proposed CAM design.
The search latency will increase as the word width increases due to the increasing
parasitic resistance and capacitance in MLs. We can see that the search latency in 256-
dimension word is almost 500 ps, which increases by 3.3-times compared to 64-
dimension word. Therefore, multi-bit capability in CAM is also crucial to reduce the
word width (related to the circuit area and search energy) and search latency.

0 100 200 300 400 500

0

50

100

150

200 64 dims
 128 dims
 256 dims

M
L

 C
u

rr
e

n
t

(μ
A

)

Time (ps)

The schematic of our experiments is shown in Fig. S7. we choose the widely used 1

Omniglot dataset for demonstration. In this dataset, there are 1623 handwritten 2

characters (classes) from different alphabets, and each character contains 20 examples 3

from different people. We randomly choose 1200 classes for meta-training of feature 4

extractor and the rest of 423 classes for configuring few-shot learning tasks. We employ 5

a four-layer CNN as the feature extractor, which consists of 4 convolutional modules, 6

each including 64-channel 3×3 kernels, batch normalization, ReLU, and 2×2 max-7

pooling. The output of final layer is flatted to a 64-dimension vector. 8

During meta-training, for one n-way k-shot task, we randomly sample n different 9

classes (each class with k + x examples) from 1200 classes to establish support set (k 10

examples) and query set (x examples). Here, both the support set and query set are 11

labeled examples. The CNN is then trained to minimize the error of predicting labels in 12

the query set by the back-propagation (BP) algorithm, which is called an “episode”. By 13

repeating this process (randomly sampling few-shot tasks and BP training), the CNN is 14

gradually meta-trained to be capable of employing a general scheme to map the input 15

data to their appropriate labels regardless of their specific contents, namely learning to 16

learn [2]. Note that the CNN weight parameters are fixed after meta-training and will 17

no longer change during the following phase. During few-shot learning, the 64-18

dimension features of support set are first extracted by the CNN, quantized to 3-bit 19

according to the scheme of L2 distance, and then stored in the Flash-based CAM. 20

During inference, the extracted query features are coded and transformed into a series 21

of WL voltages for computing L2 distance with all the stored features in parallel. The 22

predicted label is given by sensing MLs for minimum current. 23

 24

Fig. S7: Experiments for few-shot learning. Pre-trained 4-layer CNN is used to
extract features. During few-shot learning, features of support set are written into the
Flash-based CAM. During inference, search vector of query is compared with all the
stored contents by calculating pair-wise L2 distance. Predicted label is given by
sensing the minimum current of MLs.

 1

Fig. S8: Conductance distribution of the stored 64-dimension feature vectors in
different few-shot learning tasks. The features of 5-shot task are average results
across different shots.

Conductance Distribution

5-way 1-shot

5-way 5-shot

20-way 1-shot

20-way 5-shot

WL (#)

B
L

 (
#)

32 64 96 128

5

5

5
10
15
20

5
10
15
20

0

38μS

 1

 2

 3

 4

Fig. S9: To achieve the same accuracy with the proposed L2 CAM, the word
width of TCAM needs to be extended.

64 128 192 256 320 384 448 512

80

85

90

95

100

 L2 CAM (64 dims)
 TCAM

A
c

cu
ra

c
y

(%
)

TCAM Dimensions

20-way 5-shot

93.7%

64 128 192 256 320 384 448 512

80

85

90

95

100

 L2 CAM (64 dims)
 TCAM

A
c

cu
ra

cy
 (

%
)

TCAM Dimensions

5-way 1-shot

93.5%

64 128 192 256 320 384 448 512

80

85

90

95

100

 L2 CAM (64 dims)
 TCAM

A
c

c
u

ra
c

y
 (

%
)

TCAM Dimensions

5-way 5-shot
97.6%

(a) (b) (c)

The LSH algorithm is to solve the problem of approximate nearest neighbor search. 1

The original LSH method embeds the original feature-vector space into the Hamming 2

space and converts the distance measure of original space to the Hamming distance, 3

which performs bitwise XOR operation in two equal-length binary sequences and 4

accumulates the results of “1” [3]. It has been applied in TCAM, but is difficult to 5

directly extend to the multi-bit CAM. 6

To address this and apply the LSH method to our proposed multi-bit-storage L2 7

CAM, we employ the p-stable LSH method, which can directly perform the locality-8

sensitive hash operation in Euclidean space and is also called E2LSH [4]. The hashing 9

function ha,b(v) of p-stable LSH is defined in equation (1). 10

,h ()a b

a v b
v

r

     
 (1) 11

The parameter a is a random vector that has the same dimension as the feature 12

vector v. Each element in a is randomly and independently generated from a p-stable 13

distribution (p=2 is Gaussian distribution). The parameter b is a random number in the 14

range of [0, r], of which r is an empirical hyperparameter. Besides, the final result needs 15

a round-down operation. One hashing function acting on the original feature vector can 16

generate one value for the new mapping vector. Therefore, by establishing more 17

hashing functions, we can map the 64-dimension feature vector to a larger width and 18

increase the inference accuracy of MANN. as shown in Fig. S10. 19

 20

 21

Fig. S10: Increase L2 CAM dimensions by using p-stable locality sensitive hash
algorithm (E2LSH) for higher inference accuracy.

32 64 128 256 512 1024
70

75

80

85

90

95

100

E2LSH+L2 CAM
 Software

A
c

c
u

ra
c

y
 (

%
)

Hashing Dimensions
32 64 128 256 512 1024

70

75

80

85

90

95

100

E2LSH+L2 CAM
 Software

A
c

c
u

ra
c

y
 (

%
)

Hashing Dimensions

20-way 1-shot5-way 1-shot

91.2%

96.7%
(a) (b)

 1

 2

 3

Fig. S11: The impacts of ADC quantization precision on the inference accuracy. 4-
bit is enough for the quantization precision of ML sum current, with an accuracy loss
less than 0.3% for both of 5-way and 20-way tasks.

Soft. 6 5 4 3 2 1

50

60

70

80

90

100

 5-way
 20-way

A
cc

u
ra

cy
 (

%
)

ADC Bit

Acc. loss
<0.3% @ 4-bit

Supplementary References 1

1. Xiang, Y. C., Huang, P., Yang, H. Z., Wang, K. L., Han, R. Z., Shen, W. S., Kang, 2

J. F., et al. (2019). Storage reliability of multi-bit flash oriented to deep neural 3

network. In 2019 IEEE International Electron Devices Meeting (IEDM) (pp. 38-2). 4

IEEE. 5

2. Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., and Lillicrap, T. (2016). 6

Meta-learning with memory-augmented neural networks. In International 7

conference on machine learning (pp. 1842-1850). PMLR. 8

3. Andoni, A., and Indyk, P. (2008). Near-optimal hashing algorithms for approximate 9

nearest neighbor in high dimensions. Communications of the ACM, 51(1), 117-122. 10

4. Datar, M., Immorlica, N., Indyk, P., and Mirrokni, V. S. (2004). Locality-sensitive 11

hashing scheme based on p-stable distributions. In Proceedings of the twentieth 12

annual symposium on Computational geometry (pp. 253-262). 13

