SUPPLEMENTARY FILE

Supplementary Text. Detailed analytical methods and references.

Supplementary Figure 1. Selected SEM-cathodoluminescence (CL) images of plutonic zircons dated in this study. SEM-cathodoluminescence images of igneous and metamorphic zircons from tonalite and granodiorites in the eastern San Gabriel Mountains. Uncertainties on dates are 1SD from SHRIMP-RG. Tera-Wasserburg and weighted average age plots are shown in Supplementary Figure 2A-I.

Supplementary Figure 2. Weighted average plots and Tera-Wasserburg diagrams for plutonic samples dated in this study. Dates used in calculations are shown by colored error ellipses, and rejected samples shown in grey. Error ellipses show 2σ total uncertainty for individual spot analyses, and arrows indicate possible lead loss. Data in Supplementary Figure 2A-H are LA-SF-ICPMS data collected at California State University Northridge, whereas data shown in Supplementary Figure 2I are from the Stanford-USGS SUMAC (SHRIMP-RG) laboratory. U-Pb isotope data were plotted using IsoplotR (Vermeesch, 2018). MSWD = Mean square of weighted deviates.

Supplementary Figure 3. Tera-Wasserburg diagrams for metamorphic titanite-bearing samples dated in this study. Dates used in calculations are shown by green error ellipses, and rejected samples shown in grey. Error ellipses show 2σ total uncertainty for individual spot analyses, isochrons are indicated by black line with grey error field. Lower intercepts of isochrons give the timing of titanite formation/recrystallization. MSWD = Mean square of weighted deviates.

Supplementary Figure 4. Selected chondrite-normalized REE element plots for selected zircons shown in Supplementary Figure 1. Zircons from lower crustal garnet granulite in the Cucamonga terrane (Supplementary Fig. 4C) show depletions in heavy rare earth elements indicating growth with garnet at ca. 86-83 Ma.

Supplementary Figure 5. Long term behavior of secondary standard Temora-2 measured by LA-SF-ICPMS at California State University Northridge.

Supplementary Table 1. Summary of new LA-SF-ICP-MS and SHRIMP-RG zircon and titanite geochronology in the SCB.

Supplementary Table 2. U-Pb zircon isotope data (SHRIMP-RG).

Supplementary Table 3. U-Pb zircon isotope and geochemical data (LA-SF-ICPMS).

Supplementary Table 4. Zircon trace-element data (SHRIMP-RG).

Supplementary Table 5. Zircon trace-element data (LA-SF-ICPMS).

Supplementary Table 6. Titanite isotope and trace-element data (LA-SF-ICPMS).

Supplementary Table 7. Quartz-garnet oxygen isotope thermometry. 

Supplementary Table 8. Compilation of U-Pb dates for plutonic rocks in the SCB.



Supplementary Text.
Sample Preparation
        	All samples were processed at California State University, Northridge, where they were crushed and pulverized by a jaw crusher and disk mill, respectively, and then run over a Wilfley water table to achieve density separation. The densest outputs of the water table were dried in a 60°C oven and then sieved to remove grains larger than 250 microns. For magmatic samples, grains less than 250 microns were subjected to a hand-held magnet to remove iron filings and then run through a Frantz isodynamic separator at 0.1, 0.5, 1.0, and 1.5 amps (side tilt = 5°, front tilt = 20°) to remove magnetic minerals. The remaining material was poured into methylene iodide to separate the dense zircon grains from other minerals. Approximately 50-150 zircon grains per sample were placed onto double sided tape and mounted in epoxy, ground, and polished. The epoxy mounts were imaged at California State University, Northridge using a plane light microscope, as well as a Gatan MiniCL detector within a FEI Quanta 600 SEM, to identify imperfections and spots to target with the laser. Examples of cathodoluminescence (CL) images of zircons and selected spots are reported in Supplementary Figure S1.

SHRIMP-RG U-Pb zircon geochronology
	Data were collected at the USGS-Stanford Ion Microprobe Laboratory at Stanford University, California. Two epoxy mounts that contained zircons from the 2012 and 2013 field seasons in the Cucamonga block were analyzed during one analytical session in September 7th – 8th, 2012. Zircon geochronology standard R33 (419 Ma quartz diorite zircon1) was added to all mounts and MADDER, a Stanford University in-house compositional standard was added to one mount (12CSUN4).  The zircons were aligned in 1 x 6 mm rows on double-sided tape that was placed on glass slides and then cast in a 25 mm diameter by 4mm thick epoxy disc. Mounts were ground and polished to a 1 µm finish, washed with a 1 N HCl solution and thoroughly rinsed in distilled water, and dried in a vacuum oven. Mounts were coated with ~100Å Au layer and were inspected to ensure uniformity and conductivity before loading into the pre-load instrument chamber. The mounts were stored at high pressure (10-7 torr) for several hours before being moved into the source chamber of the SHRIMP-RG to minimize degassing of the epoxy and isobaric hydride interferences and masses 204-208.
Analyses were performed on the SHRIMP-RG ion microprobe at the USGS-Stanford laboratory utilizing an O2- primary ion beam, varying in intensity from 4.3 to 6.4 nA, which produces secondary ions from the target that were accelerated at 10 kV. The analytical spot diameter was between ~15-20 microns and a depth of ~1-2 microns for each analysis performed in this study. Prior to every analysis, the sample surface was cleaned by rastering the primary beam for 60-120 seconds, and the primary and secondary beams were auto-tuned to maximize transmission. The duration of this procedure typically required 2.5 minutes prior to data collection. The acquisition routine included 89Y+, 9-REE (139La+, 140Ce+, 146Nd+, 147Sm+, 153Eu+, 155Gd+, 163Dy16O+, 166Er16O+, 172Yb16O+), a high mass normalizing species (90Zr216O+), followed by 180Hf16O+, 204Pb+, a background measured at 0.045 mass units above the 204Pb+ peak, 206Pb+,  207Pb+, 208Pb+, 232Th+, 238U+, 232Th16O+, and 238U16O+. Measurements were made at mass resolutions of M/ΔM = 8100-8400 (10% peak height), which eliminated interfering molecular species, particularly for the REE. Analyses consisted of 5 peak-hopping cycles stepped sequentially through the run table. The duration of each measurement ranged between 15-25 minutes on average. Count times for most elements was between 1-8 seconds, with increased count times ranging from 15-30 seconds for 204Pb, 206Pb, 207Pb, and 208Pb to improve counting statistics and age precision. R33 was analyzed after every 3-5 unknown zircons. Average count rates of each element were ratioed to the appropriate high mass normalizing species to account for any primary current drift, and the derived ratios for the unknowns were compared to an average of those for the standards to determine concentrations. Spot-to-spot precisions (as measured on the standards) varied according to elemental ionization efficiency and concentration. 
Data reduction for geochronologic results followed the methods described by Williams2, and Ireland & Williams3, and used the MS Excel add-in programs Squid 2.51 and Isoplot 3.76 of Ken Ludwig4,5. The data were reduced using the Squid 2.51 reduction parameters. The measured 206Pb/238U was corrected for common Pb using 207Pb, whereas 207Pb/206Pb was corrected using 204Pb following methods by Tera and Wasserburg6 and Stacey and Kramers7. The common Pb correction was based on a model Pb composition from Stacey and Kramers7. No addition error was propagated for the uncertainty in the common Pb composition. All reported 206Pb/238U and 207Pb/206Pb model ages and uncertainties (2σ) include error summed in quadrature from the external reproducibility (1σ SD) of the standard R33 during an individual analytical session (16-24 hours). The 1σ standard error of the mean for the reproducibility of the standard was also propagated into the final calculated 206Pb/238U weighted mean age. 
Weighted average and Tera-Wasserburg Concordia intercept ages were calculated using SQUID2 processed data in Isoplot 3 add-on for Microsoft Excel6. The Concordia and weighted average plots that express the crystallization ages for the samples used MSWD to distinguish overdispersion within a sample. MSWD is defined as:

	MSWD = ƒ-1 Ʃ(Δyi2 / σi2)

Where ƒ = (n-2) degrees of freedom, and n represents the total number of data points, Δyi = yi – axi – b, is the deviation of the ith point and σi2 = σ2 (Δy) = a2σxi2 + σyi2, is the square of the error. An MSWD close to or equal to 1 occurs if the assigned error is the only cause of the scatter. A value greatly exceeding an MSWD of 1 is due to either: 1) non-analytical errors, such as a geologic phenomenon that creates the deviation from the mean, or 2) an underestimation of the assigned error. MSWD values that are less than one are a product of possible overestimation of the analytical error or an unrecognized error correlation. 

SHRIMP-RG Trace-Element Methods
MAD-green (4196 ppm U8) was used as trace element standards and precision generally ranged from about ±3% for Hf, ±5-10% for the Y and HREE, ±10-15%, and up to ±40% for La which was present most often at the ppb level (all values at 2σ).Trace elements (Y, Hf, REE) were measured briefly (typically 1 to 3 sec/mass) immediately before the geochronology peaks in mass order. All peaks were measured on a single EPT® discrete-dynode electron multiplier operated in pulse counting mode. Analyses were performed using 5 scans (peak-hopping cycles from mass 46 through 254), and counting times on each peak were varied according to the sample age as well as the U and Th concentrations in order to improve counting statistics and age precision. 

LA-SF-ICPMS U-Pb zircon and titanite geochronology (CSUN)
Uranium-lead ratios were collected using a ThermoScientific Element2 SF-ICPMS at California State University Northridge coupled with a Teledyne Cetec Analyte G2 Excimer Laser (operating at a wavelength of 193 nm). Prior to analysis the Element2 was tuned using the NIST 612 glass standard to optimize signal intensity and stability. Laser beam diameter was ~25 microns for zircon and ~40 microns for titanite at 10 Hz and 75-100% power. Ablation was performed in a HelEx II Active 2-Volume Cell and sample aerosol was transported with He carrier gas through Teflon-lined tubing, where it was mixed with Ar gas before introduction to the plasma torch. Flow rates for Ar and He gases were as follows: Ar cooling gas (16.0 NL/min), Ar auxiliary gas (1.0 NL/min), He carrier gas (~0.3-0.5 NL/min), Ar sample gas (1.1-1.3 NL/min). Isotope data were collected in E-scan mode with magnet set at mass 202, and RF Power at 1245 W. Isotopes measured include 202Hg, 204(Pb+Hg), 206Pb, 207Pb, 208Pb, 232Th, and 238U. All isotopes were collected in counting mode with the exception of 232Th and 238U which were collected in analogue mode. Analyses were conducted in a ~40-minute time resolved analysis mode. Each zircon and titanite analysis consisted of a 20-second integration with the laser firing on sample, and a 20 second delay to purge the previous sample and move to the next sample. Approximate depth of the ablation pit was ~20-30 microns.
For zircon, the primary standard, 91500, was analyzed every 10 analyses to correct for in-run fractionation of Pb/U and Pb isotopes. The secondary zircon standards (Temora-2) was also analyzed every ~10 analyses to assess reproducibility of the data. U-Pb analysis of Temora-2 during all analytical sessions yielded concordant results and error-weighted average ages of 411 ± 0.4 Ma (n=280) which is within 1.4 to 1.8% uncertainty of the accepted ages of 416.8-418.4 Ma1,9. The quoted uncertainties in the text, Supplementary Figure 2A-H and Supplementary Table 1 are reported as 2SE internal calculated from Iolite and IsoplotR10,11; however, when compared to data from other laboratories, we assign a 2% uncertainty to all dates to account for reproducibility of standards during analyses (Supplementary Table 1 & 8).
Zircon dates are reported using the 206Pb/238U date for analyses <1100 Ma, and the 207Pb/206Pb date for those >1100 Ma. For zircons younger than 1100 Ma, the 207Pb/206Pb date is an unreliable indicator of discordance due to low abundances of measured 207Pb. For these zircons, discordance is calculated as the percent difference between the 207Pb/235U date and 206Pb/238U date. Corrections for minor amounts common Pb in zircon were made on 206Pb/238U dates following methods of Tera and Wasserburg6 using measured 207Pb/206Pb and 238U/206Pb ratios and an age-appropriate Pb isotopic composition of Stacey and Kramers7. Zircons with large common Pb corrections (e.g., analyses interpreted as having ~20% or greater contribution from common Pb) were discarded from further consideration. No corrections were made on 207Pb/206Pb dates due to large uncertainties in measured 204Pb. For Proterozoic-age samples, we report the upper intercept of the 207Pb/206Pb dates as the best approximation for the age of the sample. 
In samples that exhibited multiple age populations, CL images of samples were examined for textural evidence. In granulitic zircons from the Cucamonga terrane (eastern San Gabriel Mountains), zircons display rounded shapes and complex zonation patterns often consisting of thin luminescent overgrowths (e.g., Supplementary Figure 1C). These overgrowths are similar to those observed in other high-grade metamorphic terranes (e.g., 12,13). Consequently, we interpret them as metamorphic in origin and assign them as such in Supplementary Table 10. In cases, where older and younger populations are present, we interpret the older age as the likely protolith crystallization age and the younger grain reflect the timing of metamorphism. In some, but not all instances, chondrite-normalized, rare-earth-element patterns show depletions in heavy-rare-earth-element concentrations which indicate that these zircons grew in the presence of metamorphic garnet (e.g., Supplementary Figure 4C). We targeted these zircons for Ti-in-zircon petrochronology analysis (Supplementary Table 5); however, many were too thin (<20 microns) to measure with confidence and so we report only a few analyses for these high-grade samples. Overall, Ti-in-zircon our results match oxygen isotope temperatures and those from prior studies of the Cucamonga terrane14.
For titanite, the primary age standard, MKED, was analyzed every 10 analyses to correct for in-run fractionation of Pb/U and Pb isotopes. The 207Pb/206Pb isotope-dilution thermal-ionization mass spectrometry (ID-TIMS) age of 1521.02 ± 0.55 Ma15 was chosen as the primary reference titanite for U, Th, and Pb isotopes. To assess accuracy and precision, two secondary reference titanites were analyzed every ~10 analyses for U, Th, and Pb isotopes (BLR (1047.4 ± 1 Ma ID-TIMS age16) and Fish Canyon (28.4 ± 0.05 Ma 206Pb-238U ID-TIMS age17). Depending on abundance, between 30-50 titanite grains per sample were picked from polished thin sections and analyzed. Data were reduced with Iolite10,18. Titanite data presented in this study are corrected for common Pb using a regression on the Tera-Wasserburg Pb/U isochron, where the y-intercept will yield the 207Pb/206Pb isotopic ratio of the common Pb for each individual sample. Titanite ages are presented as lower intercepts calculated from regression of 207Pb/206Pb and 238U/206Pb data by IsoplotR11. The quoted titanite dates in the text and tables are internal 2SE, and when compared to data from other laboratories we assign 2% uncertainties based on reproducibility of standards during analyses. In this study, inverse isochron ages for secondary standards using age appropriate initial Pb ratios from Stacey and Kramers7 were 1063 ± 3 Ma for BLR (MSWD 6, initial 207Pb/206Pb 0.91) and 27.2 ± 2.5 Ma (MSWD = 2.5, initial 207Pb/206Pb 0.83) for Fish Canyon tuff titanites. The age for Fish Canyon overlaps within analytical uncertainty and the age of BLR is within 1.5% of the accepted value. The 207Pb-corrected 206Pb-238U dates for the unknown titanite were calculated using a free regression and data are shown in Supplementary Figure 3. All data including standards are reported in Supplementary Table 6 and are in summarized in Supplementary Table 1.

Zircon and titanite LA-SF-ICPMS trace element geochemistry
Trace elements were measured simultaneously with U-Pb isotopes by LA-SF-ICPMS as described above using Zr and Ca as internal standards for zircon and titanite respectively. For zircon we use nominal values of 43.14 % Zr, and for titanite we use 19.2 wt.% Ca. Trace element data were reduced using Iolite10,18 and concentrations calculated relative to NIST-612 as a primary standard. BHVO-2G was analyzed as a secondary standard to assess reproducibility of the data. For zircon, model Ti-in-zircon temperatures were calculated using the Ferry and Watson19 calibration. All samples contain quartz fixing the aSiO2 at unity. Samples from the Cucamonga granulites are associated with granulite-facies mineral assemblages containing rutile. For these samples we estimate the activity of TiO2 at unity, and for samples that lack rutile we assume a value of 0.6 based on the presence of ilmenite.
For titanite, model Zr-in-titanite temperatures were calculated following the methods from Hayden et al.20. Temperature uncertainties result from analytical uncertainties in the Zr measurements in titanite, which were < 10% (2σ). We assume an activity of TiO2=0.7 based on the scare presence of rutile or ilmenite in analyzed samples, and activity of SiO2 was assumed to equal 1.0 due to the presence of quartz. Pressures were estimated at 0.6 GPa for mid-crustal samples21. Given uncertainties in measurements, pressure and activities, we conservatively apply an uncertainty of ± 50°C to all our temperature estimates.

Oxygen isotope thermometry
We report bulk-mineral oxygen isotope results from 6 samples in the Cucamonga terrane to establish temperatures of metamorphism during granulite-facies metamorphism. Thermometry is based on quartz-almandine/grossular fractionation factures described in 22

Areal Addition Rate Calculations 
        	We use igneous zircon ages collected in this study with published dates8,23–41, and the duration of individual pluton emplacement to calculate areal addition rates for Mesozoic magmatism in the SCB. The midpoint of each pluton emplacement event was then binned within 5-million-year time increments. Areal intrusive rates (km2/Ma) were calculated by dividing the area of each pluton (obtained from geologic maps) by the temporal span of emplacement. The final graph produced by this process plots magmatic addition rate vs. bin midpoint and provides a visual representation of the magmatic addition rates over time in the Mesozoic SCB (Fig. 2B).
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San Gabriel Mountains (Cucamonga terrane)
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San Gabriel Mountains (Cucamonga terrane & San Gabriel block)
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