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Table[1]describes the statistics of the in-situ STXM images. Some particles may be imaged under multiple
charge and/or discharge cycles at different rates. In the supplementary information, each sequence of
images during charge or discharge is called an episode. Fig. 1| shows the histograms of the number of
frames per episode, pixels of each particle, particle size, and average rate of each episode, which is defined
as the change in average Li fraction (from the first to last frames) divided by the duration of the episode.
The median number of pixels and major axis length are 458.5 and 1.60 ym while the corresponding mean

values are 458.75 and 1.65 pm.

Table 1: Statistics of the dataset

Total number of particles 39 Total number of frames 343
Number of particles with 1 episode | 21 Average number of pixels 486
Number of particles with 2 episode | 12 Total number of pixels (all frames) 186245
Number of particles with 3 episode | 6 | Total number of pixels (all frames but the first) | 155082

Number of charge episodes 29 Number of discharge episodes 34
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Figure 1: Statistics of the datasets. From left to right: the histogram of number of frames per episode,
number of pixels of each particle, major axis length of each particle, and average rate of each episode.

2 Model

2.1 Governing equations

The free energy of lithium iron phosphate in the bulk can be described variationally as consisting of
chemical free energy and mechanical energy (assumed to be linear elasticity),

1 1
G= / (CS (gh(C) + EK'VClz) + Eﬂ'ijklgie}g]il])dvs (1)
D

where D is the particle domain, ¢, is the maximum concentration of lithium, or the lattice site concen-
tration, c is the Li fraction 0 < ¢ < 1, gx(c) is the homogeneous free energy, A;ji; is the stiffness tensor,
and the elastic strain is

1
1
gfj = E( B+ uji) — s?jc(x), (2)

where u is the displacement field, u; ; denotes the derivative of the ith component in the jth direction,
and the second term is the chemical strain due to the change in lattice parameters (measured in Ref. [1]]),
which is approximately proportional to the local lithium concentration. ¢; is known as the stress-free
strain, or misfit strain. Since the relaxation time for mechanical deformation is fast for solids, we assume
mechanical equilibrium at all times, that is the variational derivative §G/du; = 0, or equivalently

V.-0=0, 3)
where the stress is (using Einstein notation)
oij = Aijklgf} = Aijiitik — oj¢(x), (4)
where we define ag. = A jklfgl- The chemical potential is defined by the variational derivative

168G
p=—-—=pp(c) —xVic—c,le

0
cs Oc ij 1) ©)

2 -1 0.0
= pn(c) —kVoc+cg o5;(g50 — ui ). (6)
Li inserts and de-inserts from the a-c plane. When LFP nanoparticles are thin in the b direction (or
depth direction), we may assume that phase separation does not occur in the depth direction and, due

to fast diffusion in the b direction, we assume that the Li concentration is uniform in the depth direction
[2,13,/4]. This effectively reduces the model to 2D, where we use a depth-averaged concentration c in the



a-c plane, and locally the rate of change of ¢ is governed by the (de)lithiation reaction rate. Diffusion in
the a-c plane is typically slow and can occur via defects or the surface layer [5]6]]. Neglecting the lateral

diffusion results in
o =R )
a
where we model the reaction rate R by Butler-Volmer kinetics for electrochemical reactions for the pur-
pose of inverting the unknown jy(c) and later compare with coupled electron transfer theory (CIET).

The Butler-Volmer rate formula for R is
R = jo(c) (e‘“”7 - e“‘“”?), (8)

where 7 is the nondimensionalized overpotential, kgTh = pies — 1, Where pis is the reservoir chemical
potential.

The natural boundary condition for c satisfies the minimization of the sum of bulk energy Eq.|1/and
interfacial energy at the particle boundaries /aD ydS,

n-Ve=—-—¢c; - —. 9)

Without the knowledge of the interfacial energy, we impose Dirichlet boundary condition for ¢ based on
the image data. We use the no traction boundary condition for Eq.

n-o=0. (10)

2.2 Chemomechanics

In this article, the mechanical parameters for LFP are given by literature values. The misfit strain in the
a-c plane is approximated by a linear dependence on Li concentration, based on the result inverted from
ptychography and the strain map [1]]. In the b direction, we use literature value of the lattice parameter
4.784 A for FePO, and 4.659 A for LiFePOy, €2, = —0.0186. The stiffness tensor is that of FePO, from
first-principles calculation using the GGA+U method [7]]. Using Voigt notation, C;; = 175.9, C,; = 153.6,
C33 = 135.0, C44 = 38.8, C55 = 47.5, C66 = 55.6, C12 = 29.6, C13 = 54.0, and C23 = 19.6.

For particles that are thin in the [010] direction, a 2D depth-averaged model in (010) plane is shown
to capture the particle behavior well. Following Ref. [8]], we use the plane strain condition. Under me-
chanical equilibrium, Eq.[3| can be written as

Aijkiti; = 039jc, (11)

where uy;; = Jjjux. This equation can be solved analytically in Fourier space, in an infinite domain.
Following [9],
dy = EgolikjA¢, (12)

where 1; is the Fourier transform of the heterogeneous displacement field (the total displacement sub-
stracted by the average), ¢ is the average concentration, A¢ is the Fourier transform of ¢ — ¢, and

(E_I)ik = )Lijklkjkl- (13)

Substituting the solution to the displacement into the total free energy results in

27

G = [/cs(gh(c) + %K|V0|2)dr+ y ! X [}B(n)|Aé|2dk (14)
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where d is the dimensionality, n = k/|k| is the unit vector, and
B(n) = Ajjpelier, — niot:Uj(n)o)) 15
n ijk1€i ;€ — 1i0;;Uji(n) oy, N, (15)

where

(U_l)ik = /ijlnjnl. (16)
Therefore, the minimum mechanical energy is obtained when the concentration field has zero compo-
nents other than the optimal direction n* = argmin B(n) in Fourier space. It has been shown that the
minimum energy for LFP corresponds to the LFP-FP interface being approximately [101] [8]. Therefore,
in an infinitely large, coherent, relaxed and phase-separated (FP and LFP are in coexistence) particle, the
total free energy can also be written as

1 1
G~ /cs(gh(c) + EBmin(c -0+ 51<|Vc|2 dr, (17)
v

where By, = miny, B(n). For LFP, By, = 0.19 GPa [10]. In the literature, when the lithium poor phase
and rich phases occur in different particles, hence the elastic energy is zero, the equilibrium composition
of LisFePOy is called the mosaic miscibility gap [c1, c2]. It minimizes the chemical free energy and satisfies
the following criteria, also known as Maxwell or common tangent construction,

gn(cz) — gn(cr) = pp(ca —c1) (18)
pr(e1) = pn(cz). (19)

When the two coexisting phases are in the same particle and remain coherent, the compositions are
called the coherent miscibility gap, which minimizes the free energy Eq. |17} If we define gy .(c) = gn(c) +
%Bmin(c — €)% and chemical potential . (c) = pp(c) + %Bmm(c —C), the equilibrium compositions ¢; . and
Cy,c satisfy

gh,c(CZ,c) - gh,c(cl,c) = ,Uh,c(Cz,c - Cl,c) (20)
/lh,c(cl,c) = :uh,c(CZ,c)- (21)

2D simulations are performed in the image coordinates. Since the particles are randomly oriented,
we need to perform a coordinate transformation of the aforementioned mechanical parameters from the
crystallographic coordinate system to the image coordinate system. The rotation matrix is

[ cosf sin 9]

O=1_ sinf cosf (22)
where 0 is the counterclockwise angle from a-c coordinates to x-y coordinates. For ptychography images
(1] with the electron diffraction measurement, we have the orientation of a-c in the image coordinate. For
STXM images where only the concentration profile is available, the lattice vectors need to be estimated.
Wulff reconstruction shows that a perfect and energetically stable LFP crystal is platelike and with the
major and minor axes of the plane being [001] and [100], as confirmed in experiments [11},[12,[13]]. There-
fore, for realistic irregular particles, we assume that a-c axis coincides with the minor and major axes of
the particle, defined by the major and minor axes of the ellipse that have the same normalized central
second moment as the particle shape (this assumption is revisited in Section [3).

The misfit strain in the image coordinate is

0 0
eij/ = Qiijlekls (23)
and the stiffness tensor is

A;jkl = QimQjnQkoQipAmnop- 24
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2.3 Parameterization of free energy and exchange current

In the literature, the regular solution model is typically used to model the homogeneous chemical free
energy,

gn(c)

kgT
In Ref. [8]], Q = 4.47, which corresponds to a mosaic miscibility gap of ¢; = 0.0126 (c; = 1 — ¢; due to
symmetry), and a coherent miscibility gap of ¢;. = 0.0927 (¢ = 1 — ¢;). Other parameters that we
use from the literature are [8]: k = 5.02 X 1071° J/m, maximum Li concentration ¢, = 2.29 X 10* mol/m?.
At T = 298 K, x/(RTcs) = 8.847 x 107¥ m?, L = 50 nm when normalized by STXM pixel size [14], and
K= gz = 3.54 X107,

For the inversion, we consider two choices of representing the chemical potential. One option has
an ideal entropic term and a polynomial function that corresponds to the enthalpic or excess part, which
follows the physical constraint that the concentration is within [0, 1]. In the following text, the chemical
potential y4(c) is nondimensionalized by kgT, that is, fi,(c) = g, (c)/kpT. For simplicity we drop the tilde
and

=clnc+(1-¢)In(1-c¢)+Qc(1-0c). (25)

Nﬂ
%@=mewao:mfi+gkmmx (26)

where P,(c) are Legendre polynomials defined on [0, 1]. The second option consists only of the polyno-

mials,
Ny

pn(e) = ) anPu(c), (27)
n=1
We constrain the chemical potential such that the miscibility gap is [c1, ¢z] (using values in [8]] as men-
tioned above),

/mem=wwm@—m (28)

pn(e1) = pp(ca). (29)

Because we do not have the local voltage data A¢ in our study because the voltage is imposed across the
electrode and local voltage losses are unknown, a constant shift in uj(c) is equivalent. Hence we may
fix the chemical potential at the binodal point to be 0, p(c1) = pr(cz) = 0. To illustrate the constrained
representation of py(c), Fig. [2| shows the family of py(c) curves when we allow one degree of freedom
(1-parameter representation). Using the lowest order polynomial possible, because there are three lin-
ear constraints, the highest order is a third-order polynomial. Since the derivative of Ginzburg-Landau
contains up to a third-order polynomial, the former choice of Eq. |26/ corresponds to a regular solution
model plus a rescaled Ginzburg Landau chemical potential (multiplied by a coefficient),

C c—¢C
yh(c) =In——+ Q(l — 20) +pGLyGL( ! ), (30)
1—-c cy —C1

The latter choice of Eq.[27| corresponds to a rescaled Ginzburg Landau chemical potential above (multi-
plied by a coefficient),

C2—C

pr(c) = PGL,UGL( A ) (31)

We also show pp, . (¢) = pp(c) +Bmin(c—0.5). At the same coherent spinodal barrier height, the Ginzburg-
Landau gives a smaller miscibility gap than the regular solution representation, it also has a smaller
unstable (spinodal) region. The coherent spinodal point is defined by dup./dc = 0.
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Figure 2: py(c) (first row) and pp.(c) (second row) with one degree of freedom with a fixed mosaic
miscibility gap, as seen in the first row. The lower right figure plots the coherent spinodal barrier (up,(c)
at the spinodal point, squares on pp,.(c)) versus coherent binodal point (circles on pp . (c)).
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Figure 3: py(c) (left) and pp.(c) (right) with one degree of freedom with fixed mosaic and coherent
miscibility gaps.

Next we constrain the coherent miscibility gap, that is,

C2.c
/ e (€)de = pine(ere)(cae — c1) (32)
C1

ﬂh,c(cl,c) = ,uh,c(CZ,c)» (33)

which adds two additional linear constraints. Fig. [3| shows the family of uj(c) and pp, curves when
we allow one degree of freedom with the entropic term. In this case, the highest order is a fifth-order
polynomial.

Using the first approach that includes the ideal entropy (Eq.[26), we assume the prior for the nonideal
part of the (excess) chemical potential follows a Gaussian distribution pex(c) ~ N(0, O—globalé (c=¢));

alternatively when using the second approach (Eq. , assume p(c) ~ N(0, O-gzlobala (c —¢’)). Due to the
orthogonality of Legendre polynomials, the prior for a, is

Ny

2

a 1

P(a) o« exp — ”2”2 = exp ———; Z at. (34)
20 20 —

global global n=1

For the exchange current jy(c), we consider two parameterizations. To ensure its positivity,

Ny
Jo(e) = exp > buPa(c). (35)
n=0

Because electron transfer requires the availability of vacancy in the lattice and, based on transition state
theory and coupled-electron transfer theory [15], jy is expected to approach 0 as ¢ approaches 0 and 1;
therefore, we consider the representation

Ny
Jo(e) = c(1=c)exp " buPy(c). (36)
n=0
Similar to the chemical potential, we suppose the prior for jy(c) is
N
b 2 1 H
P(b) ocexp—2”2”2 :exp—2 5 Zb,zl, (37)
Oglobal Oglobal n=1



See Section [6| for the choice of the number of parameters used in the inversion.

3 Relaxation toward equilibrium

To validate the chemomechanical model using images of relaxed particles, we simulate the relaxation
toward equilibrium under the condition that the average composition of the particles remains constant
in time. The variation of the total free energy (including the surface energy) is

oG = / (cs(llh(c)& —xV2%5¢c + o'?j(g?j - gij))éc)dV + / (kn - Ve +7(c))dcdS; (38)
b oD
if the natural boundary condition kn - Vc + y’(¢) = 0 is used, then
D

For a large particle, the surface energy has a very small contribution, hence we show the free energy
without the surface energy term. When the system is governed by reaction with the external reservoir,

ac
ET R(c, pres = 1) (40)
with the constraint that d fV cdx/dt = 0, the external reservoir changes in time to satisfy the constraint,
therefore,
oG ac ac
E = /Vﬂadx = [/ (u _,Ures)adx = [/ (M = pres)Rdx. (41)

Butler-Volmer kinetics satisfies the condition that when pies — 1 > 0 (known as chemical affinity), R > 0,
hence dG/dt < 0. Since the free energy decreases monotonically in time, we compute the free energy to
monitor the relaxation process and verify whether the system has reached equilibrium, that is, the local
minimum of the free energy. Because relaxation mostly occurs outside the electrolyte and happens at a
much longer time scale than reaction, we also consider modeling relaxation via lateral diffusion,

ac
— =V - -LVy, 42
m H (42)

In this case, the free energy of the system follows

oG 0
—:/y—cdx:/—yV-Fdx:—/ ,uF~nd5—/V,u~LV,udV:—/V,u-LV/1dV, (43)

where the flux F = —LVy, and the flux is zero on the boundary. Since L is positive definite, the free
energy also decreases monotonically dG/dt < 0.

We consider three scenarios for simulation of equilibration: starting from the experimentally ob-
served concentration field as the initial condition, 1) relax via diffusion, 2) relax via reaction, and 3)
starting from a uniform concentration field with the same composition as the average of the experimen-
tally observed concentration fields, relax via reaction. We do not consider relaxation from a uniform
concentration field via diffusion because of the formation of spinodal patterns, whose wavelength is
much smaller than the particle size and hence will take a long physical relaxation time and computa-
tional time (note that with diffusion, the domain size coarsens as t1/3 while with reaction the coarsening
follows t1/ 2). Essential boundary condition for the concentration field is imposed in all scenarios, that is,



the boundary values of ¢(x) are set to equal to the experimentally observed values throughout the entire
simulation.

The relaxation time in the following plots is nondimensionalized. When driven by reaction, the di-
mensionless time is tko, where k is the scale for the exchange current density. When driven by diffusion,
the dimensionless time is tDy/L?, where L = 300 nm is chosen such that reaction and diffusion relax-
ation be compared on the same dimensionless time axis. When reporting the free energy, we subtract
the following free energy which corresponds to a phase-separated, infinitely large, coherent, and relaxed
particle, without the interfacial energy,

Gref = Vlgh,c(cl,c) + (1 - Vl)gh,c(CZ,c)a (44)

where we have previously defined g (c) = gr(c) + 3Bmin(c — ¢)? as the sum of chemical free energy and
bulk elastic energy. c;. and ¢, are the coherent miscibility gap. V; is the fraction of phase 1, therefore,
we have ¢1 V] +¢5.(1—V;) = C. At later stages of the coarsening, the reported free energy G — Gyer is the
sum of interfacial and edge elastic energy [9]. The model parameters are described in Section [2|

Fig. |4 shows the relaxation process of one particle via the three scenarios up to dimensionless time
(tko or tDy/L?) 5000. 4 selected frames from the simulations are shown next to the experimental image
and the selected frames are highlighted as black dots in the plots of free energy versus dimensionless
time. The interface in the final frame is juxtaposed on the experimental image, as well as the free energy
in time. The experimental images are from Ref. [1]. Based on electron diffraction measurements, the a-c
crystallographic axes of these particles are known. The maximum mesh size is 5 nm, the same as the
pixel size, which is sufficiently fine as explained in Section Fig. |5/ compares the experiment and the
interface at equilibrium from simulation (white lines) and summarizes the evolution of free energy in
time for each method and particle.

We find that relaxation starting from the experimental images either via diffusion or reaction results
in similar final patterns (except for lateral displacement and mirror symmetry) and agrees well with the
experimental observation. The final free energy reflects the interfacial area; for example, for particle 2,
there are two LFP domains for scenarios 1 and 2 whereas, for particle 3, LFP has merged into one domain
and has a lower free energy than the former.

In the simulations above, essential boundary conditions are used for all scenarios. To illustrate the
effect of boundary condition, we perform simulations using the non-wetting boundary condition (n-Vc =
0) and relaxing via reaction from the experimental concentration field and compare it with scenario 2.
Fig. [6| shows that, for most particles, the boundary condition does not have any significant influence on
the final geometry of the bulk LFP or FP domains except for particle 2, in which two LFP domains are
still undergoing coarsening to merge into one. The difference between the two boundary conditions is
usually confined to within a very short distance (interfacial thickness) from the interface, for example,
the zoom-in views of particles 1 to 4 show a thin FP layer between the LFP domain in the bulk and the
particle boundary, the zoom-in view of particle 5 shows a particle boundary wetted by LFP. Therefore,
the influence of the boundary condition is typically within a distance of the interfacial thickness away
from the boundary and a much smaller length scale than the particle size.

In the image data above, the crystallographic orientation is known, as a result, the relaxed LFP-FP
interface predicted by the model (based on misfit measured from the 4DSTEM data) matches the exper-
iment nearly exactly. With in-situ STXM images, the crystallographic orientation is unknown. In the
relaxation simulations below, we assume that the c axis aligns with the major axis of the particle. We
have shown above that the difference in the equilibrium shape between essential and natural conditions
is minor. Hence in the simulations below, we show only the results using essential boundary condition.
Here the maximum mesh size is also set to 5 nm, or 1/7 of the pixel size, fine enough to resolve the
interface. We find in Figs.[7|and [§| that, regardless of the mode of relaxation (reaction from experimental
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Figure 4: The experimental image of Li concentration field in relaxed LFP particles, and the simulated
concentration field over time. The LFP-FP interface of the last frame is redrawn on the experimental
image as the white curve for comparison. The free energy evolution is plotted for all relaxation scenarios.
Legend 1, 2, and 3 refer to the relaxation via diffusion, via reaction (starting from experimental image),
and relaxation via reaction (starting from a uniform concentration field), and correspond to the 1st, 2nd,
and 3rd rows. Black dots in the free energy curves correspond to the simulation snapshots shown. The
scale bar is 500 nm. The image horizontal and vertical axes correspond to crystallographic a and c axes.

or uniform initial condition, or diffusion from experimental initial condition), the final pattern of phase
separation is similar to the experimental image. 7.9° and 10.0° deviation is observed between the simu-
lated and experimental LFP-FP interface for particles 3 and 4, which shows the error due to the unknown
crystallographic orientation.

4 Spatial heterogeneity

4.1 Model

As mentioned in the main text, we use a multiplicative prefactor k(x) (x corresponds to (x,y) in the
main text) to model the spatial heterogeneity in the reaction kinetics, that is,

% =k(x)jo(c) (e_“” - e(l_“)”). (45)

The prior that we choose for /(x) = Ink(x) is (¥(x) — o) |0 = ¥ (x) = ~ N(0,C), and ¢, ~ N (0, 0;0),
where )

C(xq,Xp) = JIIZ/ exp—[%]. (46)

11



0.03

0.025 |

o
o
o

0.015

o
o
=

Free energy ka/site

0.005

1072 10° 102 10*
Time

0.03

0.025

0.02 -

0.015

0.01r

Free energy ka/site

0.005

1072 10° 102 10*
Time

0.08

© o 9
o o o
a o

Free energy ka/site
o o
o o
w S

0.02 -

0.01r

Figure 5: Similar to Fig. The LFP-FP interface of the the last frame is redrawn on the experimental image
as the white curve. From top to bottom, simulations correspond to relaxation via diffusion, via reaction
(starting from experimental image), and relaxation via reaction (starting from a uniform concentration
field). Legend names 1 to 5 in the free energy curves corresponds to particles from left to right. The scale
bar is 500 nm.
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Figure 6: Comparison of the relaxation via reaction with non-wetting boundary condition (left) and es-
sential boundary condition (right, based on experimental image) for concentration. The frame is taken
at scaled time 5000. The inset is a zoom-in view of the highlighted region in the main image. All high-
lighted rectangles are 100 nm X 100 nm in size and are identical regions in space for the same particle
except for particle 2, which are shifted to highlight the LFP-FP-exterior junction.
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Figure 7: The experimental image of Li concentration field in a relaxed LFP particles, and the simulated
concentration field over time. The LFP-FP interface of the last frame is redrawn on the experimental
image as the white curve for comparison. The free energy evolution is plotted for all relaxation scenarios.
Legend 1, 2, and 3 refer to the relaxation via diffusion, via reaction (starting from experimental image),
and relaxation via reaction (starting from a uniform concentration field), and correspond to the 1st, 2nd,
and 3rd rows. Black dots in the free energy curves correspond to the simulation snapshots shown. The
scale bar is 500 nm. The image horizontal and vertical axes correspond to crystallographic a and c axes.
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Figure 8: Similar to Fig. |4, The LFP-FP interface of the last frame is redrawn on the experimental image
as the white curve. From top to bottom, simulations correspond to relaxation via diffusion, via reaction
(starting from experimental image), and relaxation via reaction (starting from a uniform concentration
field). Legend names 1 to 5 in the free energy curves corresponds to particles from left to right. The scale
bar is 500 nm.
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Therefore, the prior of /(x) is a Gaussian random field plus a constant that follows a normal distribution
independently. The random field {/(x) has the properties

E[ / Y(x)dx| =0 (47)

2] 2
(/ 1//(x)dx) :/C(xl,xg)dxldx2+c75/0(/ dx) (48)
E[/ l,bz(x)dx: =/C(x,x)dx+0';0/dx. (49)

We define the mean 1 = f Y(x)dx/ / dx. From the properties above, E [t/;] = 0. We also define the overall
variance, which is the expectation of the normalized and squared deviation of {/(x) from the ensemble
mean,

E

Vlll — E

7112
/ (¢<x)/— EI7) dx} _J C}x;;)d" vl =0} + ol (50

0
and the inter-particle variance, which is the variance of the mean,

2
_ x)dx C(x1,x9)dx1dx
7 = varlg] = | [L200%) | - LGz 0y -
[ dx [ dxydx; ’
Given the correlation function, when [ is much smaller than the size of the domain, in 2D, we have
,  2ml?
‘/3 X TG; + O"/ZJO, (52)

where A is the area of the domain. In our study, the correlation length is chosen to be the size of the pixel,

which is much smaller than the particle size ([> < A), hence the inter-particle variance is approximately

V) ~o?.

0
Finally, we define the intra-particle variance, which is the expectation of the normalized and squared
deviation of /(x) from the particle mean,

[ (¥(x) - 9)%dx
/ dx

Given the approximation for the inter-particle variance, the intra-particle is approximately V" = o7.

V) =E =V -V (53)

We often need to quantify the variance of a sample of particles. Here we define the sample overall,
intra-particle, and inter-particle variance by area (all pixels has the same weight),

% (0o ) d

Vi

2 A
T\ 2
R
_ -\ 2
ZiAi(lﬁi - lﬁ)
S I T
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where ;(x) is In k(x) of the ith particle, i; is the mean of the ith particle, A; is the area of the ith particle,

i=1,...,N,and lﬁ is the overall mean of all particles by area, i.e.,
- D / Ui(x)dx
= 55
VTTEA o9
We can also define the variance by particle (all particles are given the same weight),
(¢l ()= )
= Z (56)
iX i
Z J Wi ) 0i)’ (57)
’ _ l T
Vg—NZ(w, w), (55)
where l/jl is the overall mean by particle,
- 1 _
V=5 Z i (59)
Vi and V] can be expanded and written as
X i B;Zif hidx g % Qu)’dx 7 (60)
T4 ZiAi S L4
and / , / / ,
o WAy 1o [ede 1w [ i)
VI_EZT_W'NZTHP _NZT_w' (61)
Similarly,
LAY -,
= 2
v = T -7 (62)
== Y- (63)

Vo=Vi-Vs,and V, = V] - V.
Because k is a multlphcatwe factor and both k and jy(c) are inferred from the images, it is necessary

to impose a normalization constraint, which can either be lﬁ =0 or lﬁ’ = 0. We use the former in this
study. Suppose the sample ¥;(x) follows the distribution ¢/;(x) ~ ¥/(x) i.id. fori = 1,2,.... When the

constraint ¢ = 0 is imposed, we have E[V;] = V/, and in the limit of > < A, we have

E[Vg] ~ o—lﬁ ~ V” (64)

and E[V,] = V,’. Similarly, when the constraint 1/3 = 0" is imposed, E[V]] = V/”, and when I’ < A,
E[V]] = V] and E[V]] = V.

16



In summary, when the correlation length is much smaller than the particle size, the sample intra-

particle variance V, and V, are unbiased estimator of the intra-particle variance o7 o When the constraint

l// =0 (l//’ =0)is 1mposed the sample inter-particle variance V3 (V) is a unbiased estimator of the inter-
particle variance o2 o Regardless of the particle size, when the constraint 1// =0 (gV = 0) is imposed,

the overall sample variance V; (V) is a unbiased estimator of the overall variance o? s+ o? U We use this
property later to estimate oy and oy,.
Given the prior structure, we expand /(x) — ¥y in orthogonal basis functions, that is, we use the

Karhunen-Loeve expansion to represent /(x) using eigenfunctions of the covariance operator,

[ et = e = 2. (69
We use finite elements to numerically solve the eigenvalue problem by taking its inner product with

finite element basis {¢;(x) }. This procedure converts the integral equation to a matrix form. Given that
each eigenfunction is ¢(x) = X ; s;¢;(x),

si [[ Clxr = x2)pi(x1)pj(x2)dxrdxz =i ) sj [ Ppi(x1)gpj(x1)dx1. (66)
Zjlj/]lz 1)Ppj(X2)dx10X2 Zj:]/ 1 @pj(x1)dx

which is a generalized eigenvalue problem of the form Ax = AyBx. The integrals are computed using
quadrature. After obtaining the eigenfunctions, ¥/(x) can be written as

Nk
(%) =0y Zo+ ) N () Z; (67)
i=1
where Z; ~ N(0,1) (i = 0,..., Nxp) ii.d.. Oftentimes, we need to numerically compute the variance of

¥ (x) given Z. Recall that ¢/;(x) are orthonormal,

Nxo NxL

/ Y2 (x)dx = Z MZ2+2 Z oy ZoZi / Vaigi (x)dx + o7 Z5 - / dx. (68)
i=1 i=1

4.2 Estimates of intra- and inter-particle variance
When the concentration field ¢(x) is uniform and the insertion or de-insertion reaction occurs,

? = k(x)jo(c) - 2sinh ,ure52 H = k(x)Kj, (69)

where K] is a constant in space. Therefore we can estimate 1/(x) = In k(x) using

10¢ ac

Y(x) - = InK;" — p —In Kllat (70)

where the overhead bar is the spatial average over the particle. This quantity is important in finding the
intraparticle variance. When k(x) is close to 1, the expression above is approximately

Y(x) -y~ 2L 1. (71)
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Proof: For brevity, we use k to represent k(x) First, we have

- k - k
Ink=Ink+ln==Ink+--1 (72)
k k
therefore B
Ink ~Ink (73)

Hence the left-hand side of the equation is

Y(x)—¢Y=Ink—-1In zln%z%—l (74)

Since K] is a constant in space, we have

_ ot (75)

=&

From Section we use the sample variation V; to estimate intra-particle variance 0';0. The time
derivative % used to estimate 1/(x) is estimated using finite difference of two consecutive frames. The
frames chosen must satisfy the following conditions: the concentration field is close to being uniform
with no clear phase separation and, during Li insertion, the frames chosen must not contain pixels whose
Li fraction is too close to 1, because those regions are prevented from reacting further by the thermo-
dynamic limit (hence nonuniform overpotential) and do not reflect the kinetic properties and will be
misidentified as the kinetically slow region; similarly, during Li de-insertion, the Li fraction must not be
too close to 0. The difference in the average compositions of the two frames Ac used for finite differ-
encing is subtle. It should not be too large due to the error of finite differencing compared to the time
derivative. It should also not be too small because the pixel noise leads to an increase in the estimated
intra-particle variance by 202 /Ac.

In practice, we use the following set of criteria to determine pairs eligible for finite differencing:
« The smaller concentration variance ( / (c(x) —¢)%dx/ f dx) of the two frames is smaller than 0.01.
+ The larger concentration variance of the two frames is smaller than 0.02.

« The difference in the average Li fraction between the two frames is greater than 0.05 and smaller
than 0.3

« For Li insertion episodes, the percentage of pixels whose Li fraction is above 0.85 in the selected
frame is smaller than 1%. For Li extraction episodes, the percentage of pixels whose Li fraction is
below 0.15 in the selected frame is smaller than 1%.

For some particles with multiple pairs of consecutive frames that satisfy the criteria above, we take the
average of the estimated 1/(x) — 1 based on these multiple pairs.

The finite differencing estimates based on pairs from the same episode are averaged to obtain an
estimate for /(x). 1(x) —¢ from all available episodes of the same particle is averaged to give an estimate
for oy. The overall oy is computed by taking the area-weighted average for all available particles (V5).
Both the logarithm method (Eq. and ratio method (Eq. are used. When the logarithm method is
used, pixels where K;1% are negative are omitted. The estimate for oy using the logarithm and ratio

I ot
methods are 0.68 and 0.76, respectively.

18



Figure 9: An example of particle on which estimates of the spatial heterogeneity 1/(x) — 1/ are performed.
On the left are STXM images of lithium fraction. Each row corresponds to an episode. Frames with the
same color are pairs that are used in finite differencing. Some frames have two colors, meaning that they
are used in two different pairs. On the right are the estimated 1/(x) — 1/ based on the episode of the same

ac _
row. The average of & — 1 of all pairs is used as an estimate for {(x) — ¢ of each episode, respectively.

o
Pixels whose values are smaller than —1 are rare and have a local reaction rate that has an opposite sign
compared to that of the average reaction rate. /(x) — ¥ maps share the same color map.

ac
Fig. 9| shows an example of the pairs used for finite differencing and the estimated In k(x) (£ - 1).

The estimated spatial heterogeneity from the first and third episodes shows a correlation coefficient of
0.81.

For the estimation of inter-particle variance, we select particles in the same batch of experiments
having similar average composition at the same time and calculate the average reaction rate of each
particle R;. Assuming that all particles have the same composition and overpotential, the variance of In R;
is an estimate of V3. However, because the local environment of particles are different, the overpotential
can be different, hence this approach may overestimate V3. Fig. (10| shows the trajectory of the average
compositions of all particles in the same batch of experiment (charge/discharge rate and belonging to
the same electrochemical cell). The region of data selected to calculate V3 is highlighted by rectangles.
V3 for the different batches shown in Fig. are 1.51, 0.92, 0.25, 1.11, 0.33, and 0.76, respectively.

5 Inference based on uniformity coefficient

Ref. [14] observed that the uniformity of the Li concentration field c¢(x) depends on the C-rate (reaction
rate) and direction of reaction (charge or discharge). As mentioned in the main text, it is possible to infer
the reaction kinetics and thermodynamics from the uniformity coefficient. Here we discuss in detail the
model and procedure.

The heterogeneity of the concentration field is defined by its variance v (t) = / (c(x, t) — &(t))*dx/ / dx.
The maximum variance (¢(1—¢)) given the mean ¢ is attained when the concentration values are either 0
or 1, or . The closer u(t) is to this maximum value, the more nonuniform the concentration field. Follow-
ing Lim et al. [14]], we define the uniformity coefficient UC from the least squares fitting of the standard
deviation according to m = (1 -UC)y/c(t)(1 —¢(2)), that is, given v(¢;) at each time point of the

episode,

B Yivo(t)e(t) (1 - E(ti)).

Ve - e

(76)

19



0.24C 06C 2C 2C 2C 28C

1 =1 ‘ .
g 7 pchip
f
/
ol @//
0 5 0 0.5 1 0 0.50 0.2 04 0 0.2 04 0 0.5
Time (hr)
1 02C 05C 0.6C 0.75C 2C 2C 28C
I\
w0 0.5 \\ \ \
BN ‘ —
0 ! -
0 1 2 0 1 0 0.5 1 0 0.5 1 0 0.2 04 0 05 0 0.5 1
Time (hr)

Figure 10: The average composition of particles based on images taken versus time since the beginning
of charge of discharge. The discrete data points are interpolated using pchip. The reaction rates in the
highlighted boxes are used to compute interparticle variation.

The model predicted UC is computed using c(x, t) from simulations at a fine time resolution (100 frames
from beginning to end). Using Bayesian inference, the likelihood is

I;;p) — UCqara(l))?

2
2070,

P(UCuulp) x exp— 3 , 77)

where UC and UCgat, refer to the model predicted and experimental uniformity coefficients, respectively,
I; is the global C-rate of the ith data point, Uéc,i is the variance of the ith data point measured experimen-
tally, p are the model parameters. The model predicted UC is solved at constant C-rate [; The data can
be found in Fig. 3E of Ref. [14]. The data point that corresponds to I; = 0 is not used in the fitting, since,
the model prediction for UC at equilibrium does not dependent on the parameters related to reaction
kinetics.

Since the model predicted UC is for any generic particle geometry, the model is solved on a square
domain with periodic boundary condition. The surface heterogeneity is assumed to be a realization of a
Gaussian random field, where the covariance is given in Eq. |46 With periodic boundary condition, the
eigenfunctions of the convolution operator are Fourier basis functions, in other words,

Ly o exp |3 [ UG - g | = exp [—%ZAMFI, 79
k

where A(x; — x;) is the inverse covariance, and hat is used denote Fourier transform, A = CA,;I. There-
fore, the random field {/(x) can be generated by first generating a white noise random field (no spatial
correlation) £(x), and tﬁk = /A\:/ ng. The variance of /(x) (01/2/) is an unknown parameter and we assume
its prior is In oy ~ N(In0.1, 2).

Due to the limited number of data points for UC (6), we use a one-parameter representation of yp(c)
constrained by the mosaic miscibility gap (Eq.[30). We know that, in order for ¢ = 0.5 to be within
the spinodal region, we have y; (c = 0.5) < 0. Since, with this representation, y; (¢ = 0.5) = 4 — 2Q -
pcLg (¢ = 0.5), we choose a reasonable prior for pgL ~ N (0, |pGL crit]) Where porcrit = (4—2Q) /iy (¢ =
0.5). Alternatively, we also consider representing pj(c) using Eq. 31| and require pgr, > 0 for stability.
Based on the literature value for the spinodal barrier, we choose a reasonable prior In pgr, ~ N(0,0.5).
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It is known that, at higher overpotential, the dependence of the reaction rate on overpotential can
deviate from exponential dependence as predicted by Butler-Volmer. This deviation can be due to Ohmic
resistance or electron transfer rate at high potential (Markus-Hush-Chidsey model [3}[15]) both of which
causes d In R/dn to decrease at high overpotential. Therefore, we examine the importance of the over-
potential dependence given the experimentally measured uniformity coefficient in this section. For the
reaction kinetics R, we consider the effect of film resistance that is in series with the surface reaction
that follows Butler-Volmer kinetics,

R = jo(c) [ew—RRQ)/z _ e—(n—RRQ)/Z]’ (79)

where Ry, is the film resistance scaled by the thermal voltage. The film resistance is an unknown param-
eter and we assume its prior follows InRg ~ N(In0.1,2). The surface heterogeneity is multiplicative,

% = k(x)R.
In the literature, a symmetric exchange current /c(1 — c) is frequently used [16]. From transition
state theory [2]], we expect that the exchange current approaches zero as ¢ approach 0 and 1. Hence we

use the representation in this section,
—e 1Y
c Cm 1-c 1—-cm
— , (80)
Cm 1—cpy

where y sets the shape, K = max,jy(c), and c,, = argmax_jo(c) since

jo(c) =K

(81)

ac ¢

dlnjo(c)  |em 1-—cm
ir 1-c |

and d1n jyo(cyy)/0c = 0. We assume the prior for c,, follows uniform distribution on (0, 1). We use the

transformation z,, = In;=2- € R. Therefore the probability distribution of the prior for z,, is

P(zp) = ZZ—:: = isechz%". (82)
K and y are positive, and we assume their priors are given by InK ~ AN (In0.5,2) (the unit of K is
hr_l) and Iny ~ N(In 1.5, 2). In total, we have 6 parameters p = [K, ¢, ¥, PGL, oy, Ra] whose priors are
independent.

The initial condition c(x) is generated using lnlf(c’&) = p'+ojy(x), such that ¢(t = 0) = / c(x,t =0)dx/ f dx
is 0.05 and 0.95 for lithiation and delithiation, respectively, and variance O'CZO = / (c(x,t =0) —¢)%dx/ / dx
is 0.052, as suggested by the experimental values.

To illustrate the importance of reaction kinetics, we first omit the mechanics in the model. In a large
domain, the effective gradient penalty scaled by the domain size x/L? — 0, and the correlation length of
the surface heterogeneity field 1/(x) satisfies vk < | < L, the continuum model reduces to the discrete
0D model, in which all grid points (pixels) has no spatial interaction. We find the maximum a posteriori
estimate (MAP) for p using the discrete model (Eq.[31]is used to represent the chemical potential), and
then solve both discrete and continuum model (v/k = 0.01L, [ = 0.2L) and using MAP p. The simulations
are repeated 10 times with different random noise (for the initial condition and surface heterogeneity)
to obtain the mean and variance of the model predicted UC.

Fig. shows that both models are sufficiently close to the experimental values. The insets show
examples of the concentration fields at ¢ = 0.5 at the same current and opposite directions, illustrating
the increasing uniformity with increasing C-rate and the asymmetry between lithiation and delithiation.
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Figure 11: The comparison between uniformity coefficients predicted by the discrete model, continuum
model, and the experimental values. The error bars for the model prediction are the standard deviation
from 10 realizations of simulations. (a) the continuum model does not have coherency strain.(b) the
continuum model with coherency strain is fitted to the uniformity coefficient data. The inset figures are
the simulated concentration fields at an average fraction of 50% at C-rates indicated by the arrows. For
the inset figures in the rightmost panel, the horizontal and vertical axes are a and c directions of the LFP
crystal lattice, respectively.

When mechanics is included in the model, we must use the full continuum model to find the MAP. In
Fig.[11p, the uncertainty of the MAP model prediction due to stochasticity is well within the uncertainty
in the UC data. The influence of C-rate and direction on the uniformity coefficient and the concentration
field is qualitatively similar to the model that omits mechanics.

Next, based on the full continuum model with mechanics, we perform Hamiltonian Monte Carlo
(HMC) to sample the posterior distribution of the parameters. The number of steps is 5; the step size
is 0.1. 5000 samples are used, with an acceptance ratio of 0.81. FSA is used to compute the gradient
of the log-posterior. The scatter plots and histograms for each pair and each parameter are shown in
the left panel of Fig. Instead of pgr, we plot y; (¢ = 0.5). We see a strong correlation between K
and p; (¢ = 0.5). The two parameters for the shape of jo(c) is also highly correlated. We attempt to
understand this correlation analytically.

Without the voltage and spatial information, the evolution of the concentration variance is approxi-
mated by the auto-catalytic rate s defined below to first order [17],

_dR_OR oRdy

_GR _oR R 83
T T e ou dc (83)
or normalized by the reaction rate
s dlnR JlnRdy
- = +——. (84)
R dc ou dc

In the case of Butler-Volmer kinetics,

s dlnj, 1dp R\? N
R™ dc ' Rde (2) +o(©); (85)
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at low rate (R — 0),
s dlnjo jodp
SR80 86
R dc " R dc (86)

and at high rate (R — *00),

s _dlnjo  sgn(R)dp

R~ dec * 2 dc
At lower C-rates, the compositional heterogeneity is determined more by the thermodynamics (the mag-
nitude of the second term in Eq.[86|is large compared to the first), and less by the reaction kinetics, that
is, s/R ~ jodu/dc/R. Therefore, given UC in the low rate limit, the posterior falls on the manifold of
constant s/R, or 1/j, « dp/dc (note that the proportionality constant is negative because j, > 0 and
dp/dc < 0 to ensure thermodynamic phase separation). Since dy/dc differs from g, (¢) due to the me-
chanical effect we perform a linear regression between 1/K and 1, (¢ = 0.5) (it is found using 1/K versus
1/jo(c = 0.5) gives similar results) and found

(87)

1.2 hr!
K

%(c =0.5) = - ~5.1. (88)
dc
The fitted correlation between K and y; (¢ = 0.5) is shown by the red curves.

Since the experimental UC is observed at multiple C-rates, we expect that the first and second terms of
the autocatalytic rate Eq.[85/can be identified separately since the C-rate affects only the second term and
not the first term. Therefore, we hypothesize that in the posterior distribution ¢, and y approximately
lies on the manifold of constant (In j;)’. Since

d1In jj cm 1—cm Cm—C
Y L = 89
dc (c 1-c¢ yc(l—c) (89)
we perform a linear regression between c,, and 1/y to find that
0.39
— =¢, - 0.57 (90)
Y

which translates into In jy’(¢ = 0.57) =~ 1.57. Having collapsed ¢, and y into a single parameter In j,’ (¢ =
0.57) related by the first term in Eq. 85} and K and y; (¢ = 0.5) into a single parameter related by the
second term in Eq. (85} these two pairs can be identified separately. This is confirmed by the lack of any
significant correlation between the pairs (the shape parameters of jy(c) are not strongly correlated with
the magnitude of jy(c) and the thermodynamic parameter pgp). In fact, we have shown previously [18]]
that datasets from both lithiation and lithiation allow one to decorrelate In jo'(c) and g (c).

The analysis above shows that the magnitude of j, cannot be determined from this set of uniformity
coefficient data due to its strong correlation with pgr. However, its shape can be determined separately
using effectively one parameter. We show the uncertainty of jy(c)/K in red in Fig. |12} which is defined
by the 90% percentile at each c.

Additionally, note that there is some negative correlation between the strength of surface hetero-
geneity oy and the chemical potential barrier, and some positive correlation between o, and K, both of
which suggest that when the system has a greater tendency to phase separate, the surface heterogeneity
should be smaller given the same observed values of uniformity coefficient. We also find that the film
resistance Ry, is not sensitive to the observed UC and does not have any significant correlation with other
parameters. Therefore, the following discussion omits the film resistance Rg,.

In comparison, we perform HMC using the discrete model without mechanical effects and with Eq.
(10000 samples and the acceptance ratio is 0.85). We find a strong correlation between In K and In pg;..
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Figure 12: Left and middle: the scatter plots and histograms for each pair and each parameter in p using
the continuum model (5000 samples) and the discrete model (10000 samples), respectively. Red and greens
lines are fitted curves showing the correlation between K and pgr, as well as ¢, and y, respectively. Right:
the mean and 90% confidence interval of jy(c)/jomax(c) = jo(c)/K using the continuum model (red) and
the discrete model (gray).

A linear regression finds

_2.7hr! ©1)
pGL = K
A linear regression also finds a similar correlation between c,, and y,
0.31
—2 = ¢, — 0.54 (92)
Y

or In jy’(c = 0.54) ~ 1.26. Note that this result is very close to that using the continuum model. In fact, in
Fig.[12)we plot the uncertainty of j(c)/K using the discrete model in gray beneath that for the continuum
model and find they are very close. Therefore, the posterior normalized jy(c)/jomax is insensitive to the
addition of mechanical effects given the uniformity coefficient data.

Finally, we show the posterior distribution of jy(c) and p(c) in Fig. 13| when using full representa-
tion Eq. 26| with fixed mosaic and coherent miscibility gap, the same as what will be used in full image
inversion, with the number of parameters being N, = 1, and N; = 3, less than full image inversion where
N, =3,N;=5.

6 Objective function and number of parameters

In this section, we compare inference based on all the pixels in the image versus uniformity coefficient.
Suppose the likelihood of the pixel values cgata (x;) follows cdata (x;) — c(xi5p) ~ N (0, 0%). Based on the
definition of the variance of the concentration field,

1
Odata = Fp Z(Cdata(xi) - 5data)z’ (93)

where ¢ refers to the average composition. Similarly, the model predicted variance is
| &
v(p) = N, ;(C(xi; P) — Caata)”- (94)
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Figure 13: Posterior distributions of jy(c) and p(c) given the experimental UC values. The shaded region

is the 99% confidence interval.

Based on the likelihood of the pixel values, the conditional mean and variance of the variance are

Ny—1,
[Udatalp] - U(P) + N Oc¢ (95)
p
a; N, -1 2 Gg
Var[vgata|p] = zﬁp o(p) + N, oc| = ZFPE[Udmalp]' (96)

As an order of magnitude, the value o2 = 0.07? is typically smaller than the variance v, we estimate
E[vdata|lp] = 0(p). Next, given the definition of uniformity coefficient we evaluate the mean and

variance of y/vdata. In the limit of large number of pixels N, Var[vgata|p] is small and vqata|p approaches

a normal distribution. To first-order approximation,
E[ VUdatalp] ~ \/E [0datalP] ~ \/U(P)
- (98)

Var[\/udatalp] (E Udata|P] )~ Var [0datalP] ~ N
P

(97)

Proof: (all symbols used in this proof are local) Given that x ~ N (y, o

/ \/—e—g( x—p1)?

( M = ) = i = ) o(((x = ) | a

B[] =

oVN2r

0\/_

,U 4IJ -3/2 2+O(o_4)

and
Var[\/ﬂ =E[x] - E[\/;]z =pu-— E[\/ﬂz = %,u_laz +0(c%).

Similar to the variance, we define the experimental and model predicted uniformity coefficient UCy,t,
and UC, respectively. Given that different snapshots in time are independent and the properties above,
E[Ucdatalp] ~ UC(p) (99)

Var[\F] Var[\/g] o2
~ < (100)

Var[UC i
ar[UCdata|p] = Yie(t)(1=¢(t)  Vinax NpVimax
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where we defined Vj,ax as the sum of maximum variance for all snapshots. When the number of pixels
is large, the observed UC approaches a normal distribution. Therefore, in summary for each episode,

Np
1

Pegualp) o exp —273 Z 2., (caual 1) = i :P)° (101)

(Udata(t] U(tﬁp))z
p -— 102
(Vaatalp) o exp Z ) (102)

Vmax

P(Ucdatalp) X exp — (Ucdata - UC(P)) (103)

6

As a result, we compare the sensitivities of the following objective functions to determine the identifia-
bility of the parameters (including multiple episodes at different C-rate Ii):

SLz (P) sz Z Z (cdata(xl’ t]» Ik) C(xl’ t], Ii; P)) (104)
Js k i=1
_ (Udata(tj’Ik) U(tﬁlk;P))z
(P) = ;; ot Tep) 10
Suc(p) = 22 3 (UCka(I) - UC(k:p))° (106)
k

We study the sensitivities by computing the Hessian when the model prediction is equal to the data. For
example, the Hessian of the first objective function is

Z Z (30 (tJaIk,P)) aci (tJ’Ik,P) (107)
ap ap

]kll

We numerically evaluate the Hessian using the model in Section 5| with parameters from the optimal
result (MAP) from fitting the uniformity coeflicients. In this section, we focus on the identifiability of
pr(c) and jo(c), and for simplicity omit the spatial heterogeneity oy = 0 and set the series resistance
R = 0. This is equivalent to the best-case scenario with the highest identifiability where the spatial
heterogeneity is known. When pixel-based objective function Sy, is used and the spatial heterogeneity
is unknown, the uncertainty in py(c) and jo(c) increases. Hence, the analysis below provides an upper
bound on the sensitivities. The geometry, simulation grid, and parameters are kept the same as that
in Section |5, We use 5 snapshots for each dataset, which are simulated at C-rates of 0.3, 0.6, and 2 for
charge, and 0.2, 0.6, and 2 for discharge. The average concentration ranges from 0.05 to 0.95. Thus, with
Vmax = 0.74, omitting this constant in the objective function is acceptable for an order of magnitude
estimate. In order to be consistent for all objective functions, the model predicted UC is also defined
based on the least square fitting (Eq. [76| given the variance v(t) at the same 5 snapshots, instead of 100
for v(t) used in Section 5] The initial condition is generated using the same approach as Section 5 Since
the initial condition is random, we compute the Hessian given the same initial condition for all C-rates
and take the average using 20 realizations.

Using full representation of y;(c) and jo(c) (N; = N, + 2), Fig. [14/ shows the sorted eigenvalues of
the Hessian for the three objective functions using in total 12, 8, and 4 parameters. We find that the
eigenvalue declines more rapidly in the order of pixel-, variance-, and UC-based objective functions.
Therefore, more information is lost and parameters become increasingly unidentifiable by discarding
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Figure 14: Eigenvalues of the Hessian of different objective functions Sz,, S,, and Syc using different

number of parameters. From left to right, 12, 8, and 4 parameters are used in total. The black dashed
lines are the threshold value 1073 used in the main text.

spatial information and further compressing the experimental data down to statistical descriptors. We
provide an estimate of the number of identifiable principal components by the relative magnitude of
the eigenvalue compared to the largest. By choosing 107> as the threshold value, we find that by using
Suc, only two principal components can be identified, with the other parameters highly correlated. This
is consistent with the conclusion in Section |5 With the same threshold, we use 8 parameters (up to
polynomials of the fifth order) to parameterize pj(c) and jy(c) when full concentration field is used as
training data.

Fig.|15|compares the posterior distribution of parameters using the two likelihood based on UC (Eq.
and pixels (Eq. obtained using Hamiltonian Monte Carlo (6Z/N, = 107*). We find that using
full pixel information significantly reduces the inference uncertainty and the posterior distribution is
clustered around the optimum.

7 Optimization and numerical methods

This section discusses the optimization procedure and the numerical methods when full images are used
and spatial heterogeneity is included in the inference. The numerical solver for the PDE is the core
component of the inversion framework. The requirement of its accuracy, efficiency, and robustness will
also be considered in this section.

7.1 Objective function

We define the squared error,

SE= > > llcij (Pgiobat Z1) = Caatai I (108)
m T

where ¢; j and cgata; j are the model prediction and experimental concentration field of the jth episode
of particle i and the L, norm of their difference is defined to be the sum of squared error of all pixels of

the episode; the mean squared error
MSE = SE (109)
i Zj Np,i(NT,i,j - 1)
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Figure 15: The scatter plots and histograms for each pair and each parameter in p generated by Hamil-
tonian Monte Carlo using UC-based (left. Eq. and pixel-based (right. Eq. likelihood (5000
samples), respectively. Red and greens lines are fitted curves showing the correlation between K and
pacL, as well as ¢, and y, respectively.

where N,,; is the number of pixels of particle i, Nr; ; is the number of snapshots for episode jth episode
of particle i, the first frame is excluded in the normalization because it is used as the initial condition,
and the root mean squared error

RMSE = VMSE. (110)

We also define the squared error of a particular particle,

SEi = > lleij(Pgiobab Z1)) — Caata s> (111)
J

Next we describe in detail how the L, norm of the error in Eq.[108|is computed. Given the Li fraction
and optical density at all the pixels, the image is binarized to produce the boundary of the particle.
Triangulation is then performed on the particle geometry to be used as the mesh in the finite element
simulation. The first frame of the images is interpolated onto the mesh and used as the initial condition.
The solution is then interpolated onto a fine rectangular mesh (10 times finer than the image pixel),
and averaged over neighboring grid points that are within [—-0.5,0.5] relative to itself in both x and y
directions, and then downsampled onto the image pixel positions. Invalid pixels and pixels outside of
the particle boundary are not included in the L, norm.

The convolution is performed here because, in the experiment, X-ray absorption is measured at 706
eV and 713 eV at all pixels [14]. Locally the optical densities (OD) relative to the OD at 703 eV (S70¢ and
S713) are related to the local compositions by

S706 LFP706 FP706)(a
= 112
(5713) (LFP713 F1’713) (b) (112)

where the matrix is the optical densities of LFP and FP references. Pixels where a < 0 or b > 0 are
considered invalid. Recall that the mosaic miscibility gap [cy, c2] is close to [0,1] (¢; = 0.013), and ¢;
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is much smaller than the experimental error o, = 0.07 [ [14]. Hence, concentration within [0, c¢;]| and
[c2, 1] cannot be reliably inferred from the experiment. As a result, we make the reasonable assumption
that the LFP and FP references corresponds to ¢ = c¢; and ¢ = ¢y, respectively. By constraining the
observed values to within [cy, ¢;], we allow data to inform physical properties only within this range, in
the narrow regions of [0, ¢1] and [c3, 1], px(c) and jy(c) will be informed by the prior. The representation
for these two functions (Eqs.[26|and [36) and their prior determined their asymptotic behavior: y, — Inc,
Injy— Incasc — 0,and g, —» In1—¢,Inj, — In1—c asc — 1. Because the first frame is used
as the initial condition, the choice of references precludes values of 0 and 1 in the initial condition and
hence numerical issues due to the logarithmic terms in the chemical potential. Therefore in summary,
Cdata,ij = (€2 — ¢1) 755 + c1.

Following Ref. [14], we define the relative thickness of the particle to be h(x) = (a + b) /a+b, or the
normalized optical density.

Suppose the measured optical density at the two energy levels and at each pixel is the convolution
of true optical density and the same point spread function (PSF) (in the limit of small spatial variation),
then the observed a and b are also the convolution of the true values of a and b (because the spatial
convolution and the matrix above commute). We ignore the variation in a + b within the extent of PSF,
which is about the size of one pixel in our case. This assumption is reasonable given that the overall
relative standard deviation of a + b is 17% to 27% and that the variation within the extent of one pixel is
unknown. Therefore, the observed Li fraction ¢” is related to the true Li fraction ¢’ by

o ¢’ ® PSF (113)
I ® PSF
where ® denotes convolution, and I is the shape function for the particle (1 inside the particle and 0
outside).

Because the X-ray beam is focused using 45 nm to 60 nm zone plates, and the images are raster-
scanned in 50 nm steps [[14], hence we assume that PSF is a nonzero constant within a box of one pixel
in width and height. Correspondingly, we average the values on the finer simulation grid within the box
to obtain the model prediction value at the location of the pixel ¢; j(pglobal, Zi)). The difference with the
pixel value is the error.

7.2 Numerical solver

We use finite element to solve the model. The use of the regular solution model for thermodynamics also
forbids ¢ = 0 and ¢ = 1, therefore ¢ € (0,1). Numerically, if the Li fraction c is too close to 0 or 1 (when
large overpotential is imposed), the solver might cause ¢ to go beyond this range, leading to complex
and hence nonphysical values in the equation due to the presence of Inc¢/(1 — ¢) in pp(c). Therefore, to
improve the robustness of the solver during optimization, we perform the nonlinear transformation

c
z(c) =log — (114)
or )
c(z) = —E (115)
We use the linear basis functions {¢;,i = 1,...} on the triangular mesh to represent the variables,
2(x) = ) zii(x), (116)

1
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and similarly for y and u. Using the basis functions also as the test function, the weak form is

ac Dc
(50 91) = R 90 = (0 V4) (117)
(i) = (un(c), §i) + (kVe, Vi) + ¢; L ompemnc, §i) = ¢5 Oonn (Umns $i) (118)
0= <0'mn: lem)
or 0= </1mnopuo,p’ ¢i,n> - O'?rm<c, ¢i,n> (119)
<%, 1) = 1) (120)

where the bracket (-, -) denotes the inner product of two functions, that is, the integral over V. uy,
denotes the derivative of the mth component of the displacement field in the nth direction, ¢;, denotes
the partial derivative of test function ¢; in the nth direction, I(¢) is the interpolated average reaction
rate. When essential boundary condition is imposed, the chemical potential equations at the boundary
is replaced by the essential boundary condition.

The time derivative of Eq. can be written in a form that explicit in terms of dz;/dt,

oc dc oz dc dz;
P =\ i) = P Pi ) —— 121
<at’¢> <dzat ¢> ;<dz¢]¢>dt (121)
and similarly Eq. can be written as

dc dz j
—¢i,1)— =1 122
PRI 12
j
The discretized equations are a set of differential algebraic equations (DAEs), where z is the dynamic
variable (except for nodes at the boundary where essential boundary condition is imposed) and the other
variables 1, u, and A¢ are algebraic. The DAE is of the form
dy
M— =F(t,y). 123
L) (123)
We use an implicit solver with adaptive time stepping, adaptive order and error control to solve the DAEs
[19].

7.3 Temporal accuracy

Because an implicit adaptive DAE solver is used, the objective function may be discontinuous or non-
differentiable in certain regions. The objective function becomes smoother as the solver tolerance de-
creases (higher temporal accuracy). Here we study the effect of temporal accuracy by computing the
objective function around a nominal set of parameters. We perform a preliminary optimization on all of
the datasets, choose the result at the 4th iteration as the nominal parameters and compute the objective
function along a direction in the parameter space by varying one global parameter while keeping all
other parameters fixed.

Fig.|16/shows the half squared error of all particles SE/2, and half squared error of the second particle
SE,/2 as a function of the second parameter for p;(c) (az) as well as the gradient computed from adjoint
sensitivity analysis (ASA). The tangent line with the slope of the computed gradient is shown as red
lines. From left to right, the first case is when the solver solves ¢ directly and the relative (RelTol) and
absolute tolerance (AbsTol) of the DAE solver is 107> and 107*, respectively. We find that the objective
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Figure 16: The objective function landscape in the direction of the second parameter for y(c). The
objective function and parameter are centered so that they are zero at the nominal parameters. The blue
lines with markers correspond to the function value at discrete points. The red lines correspond to the
tangent line at p = 0 computed by the adjoint sensitivity analysis. See the main text for the description
of the different cases.

function is highly noisy. Compared to the first case, the second case uses the z transformation in Eq.
Compared to the second case, the third case reduces the relative tolerance of the DAE solver to 5 X 1074,
which reduces the roughness to some extent. The fourth case is the most stringent and compared to the
second case, it reinitializes with a small time step at each frame, this significantly reduces the roughness
of the objective function, and the slope agrees well with the adjoint sensitivity analysis.

Note that the adjoint and forward sensitivity analysis can return a sufficiently accurate gradient
even with low accuracy such as in the first or second case. With increasing accuracy, the computational
time increases. Therefore, the setting of the DAE solver tolerance should be balanced between the need
for accuracy and time. With optimization, RelTol = 10~ and AbsTol = 107* is often sufficient since
the gradient calculated using forward sensitivity analysis and the approximated Hessian can lead to
the minimum despite the rough landscape. Fig. 17| shows the objective function as a function of the
parameters of j,(c) around the optimum found by the optimizer when DAE tolerance is RelTol = 1073
and AbsTol = 10™%. The objective function is computed using RelTol = 5 x 10™* and AbsTol = 10~*
with reinitialization. We find that the lower accuracy used during optimization is sufficient to find the
optimum.

However, when doing a gradient-based Monte Carlo sampling such as Hamiltonian Monte Carlo,
we need to make sure that the roughness is not much larger than o?; otherwise, the acceptance ratio
becomes low and the sampling is inefficient. Here, we define roughness of the objective function in the
direction of parameter p by

1/2

po+Ap/2 2
roughness = [i / [S(p) - (S(po) + %(Po)(!’ - Po))] dp (124)
14

Ap o—Ap/Z

The integral is approximated using the trapezoidal rule using the points shown in Fig.|16/and Ap = 0.01.
dS/dp is computed from ASA. Table [2|lists the roughness of the objective function SE/2 including all
particles in the direction of 3 parameters for p(c) under different solver accuracy, as well as the 25%,
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Figure 17: The objective function as a function of the three parameters of yy(c) at the optimum found
by the optimizer. The blue lines with markers correspond to the function value at discrete points. The
red lines correspond to the tangent line at p = 0 computed by the adjoint sensitivity analysis. Both are
evaluated using RelTol = 5 X 10™* and AbsTol = 107 and reinitialization at each frame.

50%, and 75% percentile of the roughness of SE;/2 for the same three parameters. We find that using the
z transformation in Eq. decreases the roughness. Decreasing the solver tolerance and reinitialization
decrease the roughness.

The roughness for individual particles is on the order 107, and much smaller than ¢ = 4.9 x 107>.
Hence HMC performed on a few particles will only need a low-accuracy time integrator. However, the
objective function including all particles has a much higher roughness. In fact, when reinitialization is
not applied, the roughness is much larger than ¢?, resulting in inefficient sampling. Hence, when HMC
is performed on all particles, a much tighter DAE tolerance is suggested. If only the solver numerical
error is accounted for, and the solver error is independent for all particles are independent, the roughness
scales with the square root of the number of particles VN.

7.4 Spatial accuracy

The finite element solver uses a fixed mesh, which should be fine enough to resolve the gradient in the
concentration field c(x) when phase separation occurs or in the presence of strong spatial heterogeneity.
At the same time, since the computation time is dominated by model evaluation, the scale of the prob-
lem (particle size and mesh size) determines the computational cost of the inversion and uncertainty
quantification. In this section, we discuss the tradeoff between fidelity and cost.

The important length scales are the characteristic length of the particle and the thickness of the
interface (between the two phases in a phase-separated particle). The interfacial thickness is found to
be 12nm ~ 4+/k [8] in a coherently phase-separated particle. In comparison, the pixel size of the STXM
images is 50 nm, which is unable to resolve the interface.

We perform simulations on two particles where the particle’s major axis length is 0.9 and 1.7 ym (300
and 1000 pixels in STXM image unit). We study the error and computational time as a function of the
maximum mesh size.

The particles are subject to two different constant total reaction rates chosen to correspond to those
observed in the experiments that lead to the largest and smallest uniformity coefficients, which are
—0.3 hr™! (de-insertion) and 2 hr™!. Since the uniformity of c(x) is very different in these two cases,
this study is designed to test the numerical accuracy at different levels of concentration gradient. It is
expected that finer mesh is needed to resolve features of large spatial gradient while the gradient de-
creases with increasing uniformity. The simulations are performed using the MAP result in[5| The same
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Table 2: The roughness of the objective function. SE is the squared error of all particles, and SE; is
that of each particle. Three parameters of yy(c) ai, az, and as are varied. For the objective function of
individual particles, the 25%, 50%, and 75% percentile roughness of all particles for all three parameters
are tabulated. “reinit.” stands for reinitialize the solver at each frame; “in ¢ (no z)” stands for solving in
the variable c, with all other cases solved using the z transformation.

SE/2 SE;/2

Natural boundary condition a as as 25% 50% 75%

RelTol = 1073, AbsTol = 107%, in ¢ (no z) 0.024 0.026 0.030 | 1.7x107* 9.7x10™* 23x107*
RelTol = 1073, AbsTol = 10™* 0.019 0.015 0.015 | 1.6x10™* 63x107* 17x10™*
RelTol = 5 x 1074, AbsTol = 1074 0.013 0.010 0.010 |1.3x10™* 54x107* 11x107*
RelTol = 1073, AbsTol = 10~* and reinit. 0.0045 0.0056 0.0037 | 0.5%x107* 1.7x107* 3.2x107*
RelTol = 5 x 1074, AbsTol = 10™* and reinit. | 0.0039 0.0021 0.0050 | 0.4 x 10™* 1.3x10™* 2.9x107*
Essential boundary condition D1 D2 D3 25% 50% 75%

RelTol = 1073, AbsTol = 10~* 0.031 0.011 0030 |1.1x107* 54x10* 12x107°*
RelTol = 5 x 107, AbsTol = 1074 0.0066 0.0060 0.0051 | 0.9x10™* 3.1x10™* 7.4x107*
RelTol = 1073, AbsTol = 10~* and reinit. 0.0050 0.0035 0.0064 | 0.4x10™* 1.4x10™* 3.2x107*
RelTol = 5 x 1074, AbsTol = 10~* and reinit. | 0.0046 0.0036 0.0029 | 0.3 x 10™* 0.9x10™* 2.7x107*

random fields are generated and scaled to the sizes of different particles.
The L, norm of the error is defined by

1/2

Error = max [/ lle(x, t;) — E(x, ) ||>dV (125)
1

where t; is the ith time point, ¢ is the concentration field at a given mesh resolution, and ¢ is the solution
on a sufficiently fine mesh (maximum mesh size being 0.3y/k = 0.89nm) that is considered to be the truth.
The integral is evaluated through quadrature and by projecting the coarse solution c onto the fine mesh.

Fig. |18 shows the L, norm of the error and computational time as a function of maximum mesh
size hmax. We also show the convergence of the largest magnitude of concentration gradient. The error
and the gradient ||Vc||) are reported in the unit of STXM pixel size (50 nm) and its inverse, respectively
on the left axes. hpay is normalized by +/k at the bottom axes. The corresponding values in nm are
shown at the upper and right axes. The error scales as h)% . The computational time scales as h%2 (or
about Néfde where Njode is the number of nodes), which suggests that the costs of model evaluation for
the experimentally observed particles differ by at least 16 (10-fold difference in area). Since the time
integrator is adaptive, the time also depends on the reaction rate. The slower and negative reaction
enhances the nonuniformity and increases the computational time. Note that the error for two particles
of different sizes are close and the error in the largest magnitude of concentration gradient converges
very slowly, suggesting that the L, error mostly comes from the error at the interface. In fact, when the
mesh is very coarse, max || Vc|| approaches the its upper bound h;l  (gray curve in Fig. ), suggesting
a sharp transition across the distance of one triangular element. The computational time for the two
particle sizes collapses onto the same curve based on the number of nodes.

To put the magnitude of the numerical error in perspective, for an error of 10, the average error per
pixel for a particle of area 300 and 1000 is 0.03 and 0.01. In comparison the standard deviation of the
pixel error is 0.07 [14].

Fig.[19visualizes the numerical error using two sets of mesh whose maximum mesh size is 20 nm and
5 nm, respectively, (or 0.4 and 0.1 in STXM pixel unit), which are equal to 6.7+/k and 1.7+ (highlighted
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Figure 18: Error, computational time, and convergence analysis based on simulated data. The horizontal
axis is the maximum mesh size hyax normalized by v/, or in physical unit nm, or the total number of
nodes in the mesh. The dimensionless error and ||Vc|| are based on STXM pixel size. The area for small
and large particles are 300 and 1000 pixels, respectively. The vertical dashed lines correspond to two sets
of mesh used in performing forward simulation and inversion tests.
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Figure 19: A comparison of solution using different mesh size at reaction rate R = 2hr™! and R =
—0.3 hr™!. The first row is solved using very fine mesh and considered to be an approximation of the
truth. The second row is the solution on a coarse mesh. The third and fourth rows are errors using
different mesh sizes indicated in the left. All concentration and error fields are interpolated onto the
same grid size (100 X 136).

as vertical dashed lines in Fig. [18). The error is about 16 and 2.2, respectively (the error per pixel for
a particle of area 300 is 0.05 and 0.016). We visualize the solution on the coarse mesh and the error
compared to the fine mesh result. We find that for the Li de-insertion case with large spatial gradient,
most of the error comes from the region near the interface and regions of large concentration variation,
while the position of the interface is well captured despite the low spatial resolution. For the Li insertion
case with high uniformity coeflicient, the error is small and more evenly distributed, the error using
mesh size 5 nm is dominated by the DAE solver error (107%).

In summary, we find that the error of 5 nm mesh size is significantly smaller than the experimental
error. However, in our study, the computational cost of optimization, cross-validation, and uncertainty
quantification (Hamiltonian Monte Carlo or bootstrapping) can be high, since simulations must be per-
formed for a large number of particles and for many repeated model evaluations.

Therefore, we compare the inversion result using 20 nm and 5 nm mesh size in Fig[20] The maximum
Jjo(c) differ between the two meshes, due to insensitivity to the magnitude of jy(c), but the scaled jy(c)
and pp(c) from the two are sufficiently close. We also show examples of inverted In k(x) in Fig.|21| The
inverted In k(x) is interpolated onto image pixels and compared. We find that In k(x), when subtracted
by the mean of each particle, differ only slightly, much less than its uncertainty (see uncertainty quan-
tification of In k(x) in Section . Therefore, for computational efficiency, we use a maximum mesh
size of 20 nm for cross-validation and uncertainty quantification.

7.5 Optimization algorithm

To minimize the objective function, each iteration of optimization performs the evaluation of the model
and the sensitivities for all episodes in parallel. In this section, we compare quasi-Newton with the BFGS
and trust-region algorithms. We set the initial guess of uj(c) to be the same as the model in Ref. [8],
Jo(c) = ic(l —¢),and Ink(x) = 0.

For quasi-Newton, we use adjoint sensitivity analysis to compute the gradient of the objective func-
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Figure 20: The MAP estimate of p;(c) and jy(c) using a coarse (maximum mesh size equals 40% pixel
size, or 20 nm) and fine mesh (maximum mesh size equals 10% pixel size, or 5 nm).
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Figure 21: Centered In k(x) of two select particles inverted using a coarse and fine mesh (see Fig.|20) and
their difference (the latter subtracted by the former)
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tion. In Fig.|22| we show py(c), jo(c), and the In k(x) variation at each step of the iteration. Because yup(c)
and jo(c) are shared by all simulations, the gradient with respect to these parameters are much greater
than the parameters for In k(x). At the initial guess, the L, norm of the gradient of all parameters for
pr(c) and jo(c) (a; (i = 1,...,N,) and b; (i = 1,...,Ny)) is 676 (root mean square is 104), that that for
Ink(x) (Z; (i = 1,...,N) ) is 104 (root mean square is 3.3). Therefore at the first few iterations of the
optimization (gradient descent), it is mostly y;(c) and jo(c) that are updated while In k(x) stays close
to 0. Eventually, this leads to an exchange current that is very small and converges to a high objective
function value and large residual gradient.

For the trust-region algorithm, we use forward sensitivity analysis to compute the gradient of the
objective function and Gauss-Newton approximation of the Hessian [18} 20] (Eq. [107). In comparison,
Fig. |23| shows that using FSA the optimizer converges quickly to a local minimum in about 20 itera-
tions, with a final objective function smaller than ASA. Compared to ASA, pp(c), jo(c), and k(x) are
updated simultaneously. Therefore, throughout the manuscript, we use the trust-region algorithm for
optimization.

7.6 Interpolation of average composition

As explained in the methods (PDE-constrained optimization), the average Li fraction of each frame is
interpolated in time to give the average reaction rate. This section discusses the choice of interpolation
method. We consider two interpolating methods: spline and shape-preserving piecewise cubic Hermite
interpolation (pchip). Both methods are piecewise cubic polynomials and have continuous first-order
derivatives. The former has a continuous second-order derivative, and the latter preserves the mono-
tonicity of the interpolated data, but its second-order derivative may be discontinuous.

To quantify the error due to the interpolation, we simulate with nominal parameters used in Section
[5lin a 1.5 ym x 1.5 ym periodic domain on a uniform 512 X 512 grid. The correlation length [ is set to be
75 nm and oy, = 0.2. The reaction rate is constant in time and the average Li fraction goes from 0.05 to
0.95 or backward. The domain is divided into 3 X3 500 nm X 500 nm subdomains. The average Li fraction
¢ of each domain is recorded. Five equally spaced points from the beginning to end are selected and the
average fractions at these time points are used as known data points. Time is normalized for all cases
to be t € [0, 1]. We compute the error between the actual average composition and that of interpolated

1/2
composition: ”AE(DHZ = [/(;1 (Einterp(f) - Etruth(f))zdf] / and ”Aé(f)”w = maxX; fléinterp(f) - Etruth(f)L
where Cipterp is the interpolated average fraction based on the five data points and &y, is the true average
fraction from the simulations. We also compare the norm of the error of the first derivative %, which is
the average reaction rate.

We run the simulations using 5 different realizations of the random field. Fig. 24/ shows the median,
25%, 75% quantile of the error of all subdomains and all realizations. We see that the difference in error
between spline and pchip is negligibly small. The error increases with decreasing reaction rate, due to
the enhanced tendency to phase separate and hence increasingly nonlinear ¢(t) trajectory.

Fig.|10|shows the average composition of all particles and episode (dots) and the interpolated trajec-
tory ¢(t) (solid lines) using pchip. The data in the same plot corresponds to the particles in the same
batch of experiment and the same charge or discharge episode, Time is synchronized and shifted such
that the time for the earliest snapshot is 0. The title of each plot is the global rate of charge of discharge.
In contrast, Fig. 25| shows the interpolation using spline. Because spline interpolation does not preserve
non-monotonicity, it is possible that the average composition overshoots to values beyond [0, 1]. There-
fore, the spline is performed on z = lnl%é, and then transformed back to ¢(z(t)). Significant oscillations
are observed. In view of this feature and the error analysis above, we choose pchip interpolation.

37



0.8}
0.6
D
o
0.4}
02}
—1
_2 0 "
—3 0 02 04 06 08 1
—A C C
5
—6
7 1000
—8
—9 900 |
5
£ 800
C
=
o 700F
=
8
2 600}
o)
500 |
400 A
0 2 4 6 8
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Figure 25: The average Li composition from experimental data (dots) and the interpolated trajectory
using spline on the transformed variable z.
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Figure 26: The MAP estimate of p;(c) and jy(c) and the 99% confidence interval estimated using the
Hessian at MAP. Natural boundary condition is used for the model.

7.7 Function representation

Recall that we consider two representations for jo(c) (Egs. [35 and [36).

We test the optimization using these representations starting from initial guess b, = 0 (n = 0,1,...)
for both representations and Ny = 5. Regularization on In k(x) is imposed (p; = 0.01, see Section [9.5and
the main text). The natural boundary condition n- V¢ = 0 is used. Fig.|26|shows that the MAP (uy,(c) and
Jjo(c)) found by the optimizer using the two different representations are close, jy(c) are close to zero as ¢
approaches 0 or 1 in both cases. Fig. [26/also shows the uncertainty estimated by the Hessian at the MAP
using the Gauss-Newton approximation (o, = 0.07). The shaded region is the 99% confidence interval.
We find that the uncertainty of jy(c) is mostly in its magnitude and not the functional form and that
MAP of both representations lies within the confidence interval of each other.

Numerically, the computational time using the second representation is faster than the first, because
the second forces the exchange current to approach 0 near ¢ = 0 or 1, reducing the strong dependence
of the reaction rate on ¢ because of the large slope of p(c) near ¢ = 0 and 1.

The squared error found using the first and second representations are 594.9 and 587.8. The objective
functions S(p) are 301.5 and 297.9. The former is 1.2% higher than the latter.

In summary, since the results of jy(c) using the two representations are similar, the second repre-
sentation finds a smaller objective function and squared error, and the second is computationally more
efficient. The second representation is used in the main text.

7.8 Boundary condition

We consider two different boundary conditions: the natural and essential boundary conditions. Fol-
lowing the relaxation simulation in Section [3| we assume no wetting when using the natural boundary
condition n - V¢ = 0. When the essential boundary condition is used, we interpolate the data at the
particle boundaries in time using pchip, for the same reason as the interpolation of the average concen-
tration, and impose the time-dependent concentration at the boundaries in the model. Fig.|27|shows the
MAP (py(c) and jo(c)) using either boundary conditions (using the second representation for jy(c), Eq.
[36). Regularization on Ink(x) is imposed (p, = 0.01, see Section [9.5 and main text). We find that the
resulting normalized jy(c) and py, using the two boundary conditions are very close. The difference in
the magnitude of jy(c) is due to the insensitivity of the objective function with respect to Zy: a change
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Figure 27: The MAP estimate of yj(c) and jy(c) using the natural and essential boundary conditions.
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Figure 28: Centered In k(x) of two select particles obtained using either boundary conditions and their
difference (the latter subtracted by the former).

in the boundary condition or other parameters causes a large shift in Z; (see Section[9.3).

Fig. |28 shows two examples of In k(x) (subtracted by the mean), which shows that the difference is
small (much smaller than the uncertainty in In k(x), see Section and the difference mostly occurs
along the boundaries.

Using the same procedure as in Section we compare the MAP and uncertainty (estimated using
linear approximation) results using two different representations of jy(c) using essential boundary con-
dition in Fig. 29| The total SE of the first and second representations are 569.9 and 563.8. The objective
functions S(p) are 288.8 and 285.9. The former is 1.0% higher than the latter. The training error using
essential boundary condition is smaller than natural boundary condition in Section Therefore in
the main text and the rest of the supplemental information, we represent jy(c) using Eq.[36/and use the
essential boundary condition.

8 Identifiability

This section discusses the identifiability of the model based on simulated data. The simulations are
performed on three randomly shaped convex polygons with nominal parameters used in Section 5| The
particles have on average 459 pixels and 5 frames. The first particle is cycled at 0.3C discharge and 2C
charge, the second at 2C discharge and 0.2C charge, and the third at 0.6C discharge and charge.
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Figure 29: The MAP estimate of p;(c) and jy(c) and the 99% confidence interval estimated using the
Hessian at MAP. The essential boundary condition is used for the model.

Using Hamiltonian Monte Carlo (HMC), Fig. [30[ shows that at the current level of pixel error of o, =
0.07 the posterior distribution of yy(c), jo(c) and k(x) are distributed around the truth.

Next, we perform the optimizations starting at different initial guesses. Regularization is not in-
cluded. The simulated data are created using the exact same model and solver that the optimizer uses
and has no noise. So ideally the optimizer should be able to find the exact set of parameters that the
simulated data are generated with. However, because the DAE solver is an adaptive and fully implicit
solver, the numerical error and the roughness of the objective function landscape will cause the con-
verged parameters to deviate from the truth. Such deviation must be controlled within a tight error that
is comparable to the numerical error of the solver and tolerance of the optimizer. If this is not true, then
that suggests multiple optimal solutions exist and the parameters are nonidentifiable.

Fig.[31p shows the sorted final objective function (S(p) = RMSE?-Y; A;Nr;/2, where A; is the particle
area and Nr; is the number of frames for particle i excluding the initial frame. Note that in Fig.[31]particle
sizes are scaled such that the average long axis length of the particles is nondimensionalized to be 1) as
well as the corresponding RMSE starting from 500 randomly drawn initial guesses when the DAE solver
has a relative tolerance of 107> and absolute tolerance of 10™%, when the optimizer tolerance is 107¢ and
107, and when « is excluded or included in the optimization. The optimizer terminates when function
tolerance (function difference between consecutive iterations less than Tol - (1 + FunVal), where FunVal
is the function value of the previous step, absolute step tolerance, or the absolute optimality (infinity
norm of the gradient at the current step) tolerance meets the aforementioned threshold. When « is set
to be the truth and not optimized, the final RMSE drops below the dashed line, which is the absolute
tolerance of the DAE solver. The corresponding error in the objective function due to numerical errors
is estimated to be 6.8 X 1078 (the square of absolute error multiplied by total area and number of frames,
excluding the initial frame). Decreasing the optimizer tolerance decreases the final objective function
further, while when the optimizer tolerance is 10~ there is a still large proportion of the final objective
function that stays close to the dashed line, which suggests that the optimizer may be limited by the
error of the forward sensitivity solver that computes the gradient and Hessian. When « is unknown
and included as a free parameter in the optimizer even when the optimizer tolerance is 10~°, more than
80% of the solutions are above the DAE absolute error and the plot is tilted without a plateau region,
suggesting the nonidentifiability of the problem when x is unknown. Therefore, in this study, we will
use the literature value for «.

Figs.[31pcd show the RMSE of the pp(c), In jo(c), and In k(x) that correspond to the sorted objective
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functions in Fig. . The RMSE of inferred function a(x) is defined by ( f (a(x) — atruth(x))2dx)l/ 2

where aum(x) is the known truth. We see that when RMSE for the concentration field c(x) is 1074,
the error for the inferred functions are around 1073, This is the level set by the DAE solver tolerance.
When « is unknown, the error for the inferred functions can greatly exceed this level, suggesting their
nonidentifiability.

Fig. compares the sorted final objective function using low and high DAE solver tolerance. The
high tolerance is the same as above, while the lower one corresponds to a relative tolerance of 107°
and absolute tolerance of 107°. The dashed line is the optimizer tolerance. Switching to a lower DAE
tolerance (higher accuracy) reduces the objective function, eliminating the region that is limited by the
solver accuracy. Fig. shows the corresponding RMSE of the inferred functions with the lower DAE
tolerance.

In comparison with the result on the spatial accuracy in Section a particle of 300 STXM pixels
with the discretization used in the study above has a maximum MSE of 3.5 x 1073, Therefore a large
percentage of the results that the optimizer converges to can be considered to have found the truth.

9 Cross-validation

As mentioned in the main text, regularization (especially that of spatial heterogeneity) is essential to
prevent overfitting. This section discusses in detail the effect of regularization, the sensitivities of pa-
rameters and cross-validation to determine the optimal regularization parameter.

9.1 Regularization

In this section, we use simulated data to study the effect of regularization on the global parameters pyop;
(p1) and parameters for the heterogeneity Z; (p;). We use the same simulated datasets as used in section
[8] with added noise that corresponds to a pixelwise error o, = 0.07 that is consistent with experimental
images. We perform regularization test on the three particles above, each having two episodes at 0.2C
(charge and discharge), 0.3C, and 0.6C, and use the same particles at 2C (charge or discharge) as validation
dataset.

Fig. [32| shows the validation error (RMSE) as a function of p; and p,. The validation error shows a
minimum near p; = p, = 10~%, however, the minimum is not sensitive to the value of p;. This is also
illustrated in Fig. which shows negligible change in the validation error as a function of p; when
p2 = 0. On the other hand Fig. shows significant reduction and minimum in validation error as a
function of p; when p; = 0. Correspondingly, in Fig. 32, the L, norm of the error of In k(x also shows
a minimum around the p, that has the minimum validation error.

9.2 Variance and bias of MAP estimate

Understanding the variance and bias of the MAP estimate with regularization is important for cross-
validation. In this section, we use simulated data generated using the same method as in sec. [§] to
study the scaling of the variance and bias of the MAP estimate for the global parameters pgjobal for px(c)
and In jy(c) with respect to the number of particles. The variance and bias are computed using linear
approximation of the model as explained further in sec. With the variance of the MAP py(c) given
the dataset (Eq. [134), we plot its L, norm (std) as a function of the number of particles in the dataset for
obtaining the MAP when p, = 107* in Fig. and similarly for In jo(c). Note that the normalization
condition on Z; is imposed. We see that the
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Figure 31: The optimization results starting from 500 randomly chosen initial guesses. (a) The sorted
final objective function S(p) and RMSE of ¢(x) when the DAE solver relative and absolute tolerance is
1073 and 10™*. A comparison of high and low optimizer tolerance and when « is or is not included as
a free parameter. The dashed line corresponds to the absolute tolerance of the DAE solver. (b,c,d) the
RMSE of p(c), jo(c), and k(x) that correspond to the sorted objective function in (a). (e) The sorted final
objective function S(p) and RMSE of c(x) when the optimizer tolerance is 10~°, a comparison of high
and low solver tolerance. The dashed line corresponds to the optimizer tolerance. (f) the RMSE of i (c),
Jjo(c), and k(x) that correspond to the sorted objective function in (e).
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Figure 33: L, norm (std) of the variance of the MAP pj;,(c) and In jy(c) estimated using linear approxima-
tion as a function of the number of particles in the dataset for obtaining the MAP when p, = 10™*

The bias of p;(c) is defined to be the L, norm of the deviation of the expectation of the MAP estimate
un(c) (E[pp(c)] from the truth. Again, the expectation is estimated using the linear approximation of the
model. The bias of In jy(c) is defined similarly. In Fig. we plot the bias as a function of the number
of particles in the dataset for obtaining the MAP with p, = 10™%. We see that the bias decays toward
a finite and nonzero value with increasing number of particles. Fig. shows that the bias increases
with increasing regularization parameter p, when the number of particles is 50. Therefore, in summary,
the bias of global parameters increases with increasing regularization of the spatial heterogeneity p;,
regardless of the number of particles. Note that this is the result of the heterogeneity being a multiplica-
tive prefactor. In linear mixed model where the random effect is additive, unbiased estimator of the fixed
effect (which correspond to the global parameters in our nonlinear model) can be obtained regardless of
the regularization on the random effect[21]].

9.3 Sensitivity analysis of spatial heterogeneity

In choosing the prior for the spatial heterogeneity 1/(x), we make the assumption that the same prior
distribution for the random field /(x) is shared by the entire ensemble of particles. This is because, for
some particles, especially when the concentration field is nearly uniform, low-order components of {(x)
cannot be identified.

First, we illustrate the claim above by analyzing synthetic datasets generated using parameters in
Section |5| with additive noise. we compute the squared error SE for different data sets as a function of
Z, while all other parameters are fixed to be the truth.

Fig.[35|shows that when Z; = 0, at an average reaction rate of 0.3C, there is a distinct local minimum
for SE at around Zy = Zjun- Note that noise is added to the synthetic dataset to this case so SE # 0
at Zy = Zywuth- However, we notice that with a noiseless dataset with Z, = —1, at an average reaction
rate of 2C, there is a very shallow local minimum for SE at Z, = Zj t;uth, and when noise is added, local
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Figure 34: (a) The bias of y;(c) and In jy(c) as a function of the number of particles in the dataset for
obtaining the MAP with p, = 107%. (b) The bias of y;,(c) and In jy(c) as a function of p, when the number
of particles is 50.

minimum no longer exists. Therefore, it is possible that the optimal value of Z; is unbounded.

Next, we show that this phenomenon is also observed with experimental dataset. Fig. |36/ plots the
squared error SE; and SE;/2 + png /2 as a function of Zj of each particle around the MAP while all other
parameters are fixed. We find that some particles have clear minimal squared errors while for others the
squared error is monotonic within the bound. Adding the regularization ensures that a local minimum
exists and prevents Z, from becoming too large or small. The insensitivity may also be found in other
low-order parameters. Therefore, it is important to impose a prior on the spatial heterogeneity shared
by all particles.

9.4 Regularization of Z; and higher order parameters

As a result of the insensitivity with respect to Zj, we ask the question: should we impose a different reg-
ularization coefficient on Z; and Z;4,? From a Bayesian perspective, the variance of the prior for Z; and
Zizo is oy, and oy, respectively, which may in general be different. Correspondingly, the regularization
coefficient for Zy (py,y,) and Zixo (p2,y) can be different.

To answer this question, we vary p; y, and p, y independently. jo(c) and p(c) are fixed at MAP when
P2y, = P2y = 0.01, hence optimization of Z; of each particle can be done independently. The objective

function
Nxw

SI(Z) = SSE(Z:) + 5pay Zho + 5p2y )\ 7 (126)
=1
is minimized where Z; ; is the jth coefficient for particle i.

Particles with three episodes are used for the validation study. The first episode with the largest
absolute C-rate is chosen for validation. Fig.[37| shows that while p,; has the larger influence on the
validation error, the validation error also shows a local minimum as a function of p;y, at a given pyy.
The minimum validation error is found at p,y = 5 and p,y, = 3. In addition, increasing p,y mostly de-
creases the intraparticle variance of {/(x), or V5. Increasing p; y, mostly decreases interparticle variation
V3. However, at small p;y, this reduction of V3 is limited, because as py, increases, Zixo can adjust to
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Figure 37: The validation error, intraparticle variation Vzl/ 2, and interparticle variation V31/ % of the val-
idation dataset when p,y, and p,y, the regularization coefficients on Zy and Z;4, respectively, varies
independently.

compensate for decreasing |Zy| such that the particle In k mean barely changes, hence V3 only decreases
slightly.

Therefore, regularization on both Z, and Z;, is important and for simplicity, in the following text,
we consider only when these two parameters are equal.

9.5 Method of regularization

With synthetic datasets, we have shown that the reduction in the error of y;(c) and jy(c) with the use
of regularization is much smaller than that of k(x) and it becomes increasingly negligible with a larger
number of particles. We found that with synthetic datasets, fixing py,(c) and jy(c) to be the MAP solution
at a small or zero regularization coefficient p; results in a similar optimal p, and similar reduction of the
validation error, compared to allowing uj(c) and jy(c) to vary. Therefore, this section compares these
two methods of validation with experimental datasets. In the first approach, p;(c) and jy(c) are free to
change as p, changes, the optimization is

. 1 p2 2
S(p; p2) = =SE(p) + = Z; 127
min S(p; pa) = - SE(p) ZZII || (127)

where p = [pglobal Z1, - - ., Zn] and the normalization condition is imposed on the spatial heterogeneity.
All particles are included in the optimization and must be evaluated in parallel.

In this section, we split the entire dataset into training and validation datasets: for particles with
three episodes, the first episode with the largest absolute C-rate is chosen for validation, while all the
other episodes and particles with less than three episodes are used for training.

The second approach is fixing the parameters of y;(c) and jo(c) when p, = 02/ 01/2/ = 0.01 is small
to reduce bias of y4(c) and jo(c), that is pglobal is the global parameters part of arg min, S(p; p2 = 0.01),
where the objective function includes all datasets. As p, varies, since the global parameters are fixed,
particle square error SE; is only dependent on Z;, hence the following optimization problem is solved
independently for each particle,

1 P2
min SE; (Pglobal. Zi) + - [|Zi]”. (128)

zZ; 2 2
The same training and validation datasets are used for the second approach. Clearly, the normalization
condition cannot be imposed on individual particles, and hence the constraint is removed. The normal-

ization is re-applied after the optimization when In k(x) is obtained for all particles.
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Fig. [38(a-b) reports the training and validation RMSE. The training error increases with increasing
p2, while the validation error shows local minima for both approaches. The training error when pp(c)
and jo(c) are free is lower than when they are fixed, since the optimization is performed with more
degrees of freedom. In contrast, the validation error when pj;(c) and jy(c) are free is higher than when
they are fixed, suggesting that a larger error in p when global parameters are free during regularization
coefficient sweep.

Fig.|38c shows that the two approaches produce a similar variance of the spatial heterogeneity, which
decreases with increasing p,, while the decrease in the interparticle variation is more significant than
intraparticle variation, consistent with the insensitivity of the objective function with respect to Zj. Fig.
also compares pup,(c) and jy(c) at the optimal p, when the validation error is at its minimum.

Since fixing pp(c) and jy(c) when performing the sweep of regularization coefficient yields a smaller
validation error, we will use this method in our subsequent discussion and the main text.

9.6 k-fold cross-validation

In the previous validation, we chose a particular partition of training and validation datasets. In this
section, we explore different combinations and perform k-fold cross-validation. Since up(c) and jy(c)
are fixed during the sweep of the regularization coefficient, particles can be simulated, optimized with
respect to their spatial heterogeneity, and evaluated on the validation set independently.

Within particles that have three episodes, we denote SE; ; to be the squared error of the jth episode
(validation set) of particle i using other episodes of the particle for training. 3-fold cross-validation can
be performed, yielding validation error for j = 1, 2, 3. Suppose episode V(i) is chosen for validation for
particle i, we define the validation MSE,

2iSEiv )
2 Ai(Nriyiy — 1)

where the summation is over particles with three episodes, V(i) = 1,2, or 3, A; is the number of pixels
in particle i, and N7 ; is the number of images in the jth episode of particle i. We compute the MSE for
all possible V (3 raised to the power of the number of particles with three particles possibilities, or 3° in
our study).

We define the sample mean MSE« and sample variance s?(MSE«) based on all combinations. Fig.
plots MSE«, + s(MSE«y) as a function of the regularization coefficient p,. Since the validation error
is estimated with uncertainty, instead of the choosing p, with the smallest mean validation error, we
can use the one-standard-error rule, choosing the smallest p, that is one standard deviation above the
minimum validation error [22], which is p; = 0.88.

We can evaluate the performance of the model by analyzing the result of the 3-fold cross-validation.
Fig.|40|shows the validation error curve for each particle, including the validation RMSE of each of the 3-
fold validation of the particle RMSE, ; (jth episode is the validation dataset), and the average validation

RMSE of each particle, defined by the square root of %
validation error of particle i using the jth episode for validation.

The average validation errors of particles 1, 2, 3, 5, and 6 show clearly defined local minimum valida-
tion errors. The corresponding optimal p; are 15, 0.7, 2, 6, and 0.7. The validation error curves of particle
4 and RMSE, ; of particle 1 do not have a well-defined local minimum and decrease with increasingly
large p, and approaches the asymptotic limit when p, — oo, which is indicated by the dashed lines
and corresponds to when there is no spatial heterogeneity In k(x) = 0. This suggests the model is not
generalizable to all episodes of particle 4 and episode 1 of particle 1, in other words, there exist some

particles and episodes in the dataset that the current model does not fully account for.

MSEq =

(129)

, where SE; ; is the squared error of the
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By examining the centered In k(x) (subtracted by its mean) from each of the 3-fold cross-validation
(Fig. at same regularization coefficient (p, = 0.88), we find that particles 2, 3, 5, and 6 show strong
pointwise correlation among all three Ink(x). The consistency of In k(x) indicates that the physical
model can explain the data under different charge or discharge rates, therefore, all three validation errors
increase at large enough p;.

The other way of evaluating the validation error is to take the average MSE of all particles and k-fold
validation tests, or the weighted squared error,

S l,]
WSE = . (130)

We exclude validation error curves that decrease monotonically in the range of p, studied and give all
variance curves the same weight and compute the WSE. In addition to the 3-fold validation that we
performed earlier on particles with 3 episodes, we also do 2-fold validation on particles with 2 episodes,
that is, one is used as the training set and the other is the validation set, and vice versa. In Fig. [42] we
find that 3-fold and 2-fold minimum validation WSE is found at p; = 2. Comparing this optimal p, with
optimal p; = 0.88 determined previously, we choose the lower value p, = 0.88 since p; = 0.88 produces
a validation error in Fig. 42| that is only slightly larger than p, = 2.

10 Validation

10.1 Uncertainty quantification

This section considers three methods of uncertainty quantification, linear approximation, Hamiltonian
Monte Carlo, and bootstrapping.

Based on the discussion in Section [9.5/and Bayesian inference, the corresponding posterior distribu-
tion is

B (5(p>

obs

1 1
P(P|Cdata) & exp _5 Z ?”Ci,j(Pglobal, Zi) - Cdata,i,j”g Z ”Z ”2 )s (131)

ij €
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since we set p, = 0.
Linear approximation expands the model linearly at the MAP, hence

1 . 1
P(plegata) o< exp—= [p*Hp + = > 1Zill*|, (132)
2 o'lp -
where *
_ 1 aC,"j aCi’j _ 1 "
e 5 P P

H is evaluated at pypap, and X is the estimated covariance. In addition, we also impose the normalization
constraint on the spatial heterogeneity (Section [4.1); therefore, the posterior distribution is conditional
on the constraint (parameters are projected on the null space of the constraint [20]). Under the linear
approximation and given a linear constraint, the posterior distribution of the parameters is Gaussian.
We report the marginal distribution of the functions. Due to the representation of yy(c) (Eq.[26),

Var[pup(c)] = ZPi(c)Pj(c)Cov(ai, aj), (134)
ij

where the covariance is taken over the posterior distribution, and similarly for In jy(c). Recall from the
previous discussion that the magnitude of k(x) and jy(c) has a large uncertainty in this study. Therefore
we aim to quantify the uncertainty of intraparticle variation /(x) — /. Given Eq.[67, and define the mean
of the basis functions ¢; = f ¢i(x)dx/A, where A = f dx is the area of the particle, then the marginal
posterior mean and variance is

NkL

E[y(x) - §] = > VAi(gi(x) - $)E[Z] (135)
i=1
Nkr

Var[y(x) = ] = > \Jhidi(i(x) = $)(¢5(x) — §;)Cov(Z:, Zy), (136)
ij=1

where the expectation and covariance of Z; are taken over the posterior distribution. We are also inter-
ested in quantifying the averaged variance over space,

1 - _
T / Var[(x) — ] dx = Z AiVar[Z;] - Z]: Aid iy, Cov(Zi, Z)). (137)

The linear approximation is very fast because only FSA needs to be performed but the uncertainty
is only a very crude estimate. Hamiltonian Monte Carlo (HMC) is commonly used to sample posterior
distribution, especially when model evaluation is computationally expensive. For HMC, models and ASA
are evaluated on all particles and episodes in parallel at each step. ASA computes the gradient of S(p)
efficiently. However, the particles have different sizes and hence the evaluation time varies widely; a
small subset of particles and episodes takes significantly longer time than others, creating a bottleneck
effect while most other workers become idle. Therefore, we rank the particles and episodes by their
model evaluation time and choose 21 particles (30 episodes in total) that are faster to evaluate, ensuring
efficient use of all workers by reducing their idle time so that the Monte Carlo sampling can be achieved
in a reasonable amount of time. In total, we obtained a chain of 53,000 samples. Normalization constraint
is imposed. The parameter space is transformed based on Cholesky decomposition of the Hessian at the
MAP. The preconditioning leads to significantly more efficient chain mixing.
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To be consistent with the MAP solution p; = 0.01, the variance of the prior for {/(x) is based on
the estimate p. = 0.7. Fig. shows the 99% confidence interval of yj(c), jo(c), and jo(c)/jomax from
a HMC of 5.3 X 10° samples on the subset of particles. We also show the standard deviation of the
centered spatial heterogeneity (i(x) — /) for each particle (Fig. ). HMC results are then compared
with the uncertainty and posterior mean estimated using linear approximation based on the same subset
of particles (Fig. [43p,d). The magnitude of the uncertainty of intra-particle is well captured by the linear
approximation. Linear approximation underestimates the uncertainty of jy(c) compared to the HMC
result.

The average standard deviation of In k(x) over all particles,

ZifiVar[tﬁ(x) - lﬂdx 12
i A ’

(138)

is 0.24, which is much larger than the variation due to the difference in boundary condition or mesh size,
justifying the choice of boundary condition and mesh size made in Sections[7.8]and [7.4]

There exists a small difference between the posterior mean of i, (¢) and jy(c) based on a subset of par-
ticles from HMC and the MAP based on the entire dataset shown in Fig. |38 which is due to the presence
of particles and episodes that are not completely accounted for by the model. Hence the heterogeneity
of the dataset may also contribute to the uncertainty of the inferred models. For this reason, we next use
bootstrapping to estimate the uncertainty of the MAP estimators for yj(c) and jo(c).

Specifically, we sample N, times from all particles (N, = 470) with replacement. Images from different
particles can be assumed to be independent and hence the noise of each particle can be assumed to
satisfy the iid condition for bootstrapping. For each sample, optimization with regularization (p, = 0.01)
is performed to find the MAP. Here we do not use optimal p, because we are interested in estimating
the uncertainty of uj(c) and jy(c) and in previous discussions, their MAPs are obtained at p, = 0.01.
Some particles may be drawn n times and hence their squared errors are multiplied by n in the objective
function. Based on the bootstrap method, the ensemble of MAP serves as an estimation of the uncertainty
of pp(c) and jo(c) [23]. Fig. shows the MAP of all samples. Fig. shows the 99% confidence interval
from this ensemble of MAP results. We notice that there is a significant spread in the magnitude of jy(c)
due to the insensitivity to its magnitude as explained above but the normalized jj(c)/jomax is consistent
among different samples. Fig. shows the histogram of the training RMSE.

We remark that the uncertainty of yj,(c) and jy(c) is reduced significantly compared to those inferred
based on the uniformity coefficient (Fig. [13).

10.2 Comparison of spatial heterogeneity estimated using finite difference
and inversion

We relax the criteria used in Section[4.2]to find pairs of images eligible for finite difference (FD) estimate
of /(x) — ¥/ in order to have a particle whose all three episodes are eligible for the estimate. The second
criteria is relaxed to: the larger variance (V2) of the two frames must be smaller than 0.04.

In Fig. [45h, we highlight pairs chosen for FD estimates by coloring frame edges with the same color.
FD estimates for /(x) — i are plotted next to the images. The scatter plots for all three pairs are shown
in Fig. [45b. We find that correlation between estimates based on the three episodes is poor. The range of
In k(x) from the second episode is much larger than the other two.

(x) — i from the full inversion using an optimal regularization parameter p, = 0.88 are also shown
in Fig. next to the FD estimate. The label indicates which dataset is used for training. For example,
(1,2) means trained on episodes 1 and 2. Comparing the FD estimate and inversion result, we find that
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the pattern and magnitude of spatial heterogeneity revealed from the FD estimate of episode 1 is mostly
consistent with inversion, except in a small region near the left boundary. In comparison with the poor
correlation of the FD estimates, We find remarkably good correlation and match between each pair of
1/(x) — i from the full inversion using different training datasets (Fig. ,d).

These results suggest that PDE-constrained optimization and regularization may be needed to obtain
a solution of the spatial heterogeneity that is consistent across different episodes.

Fig. [46| shows an example of a particle with 2 episodes. We see a significant improvement in the
correlation between the /(x) — 1/ trained on two different episodes using full inversion than using FD.
The optimization reveals details of In k(x) that must rely on the entire sequence, which FD estimate
cannot capture due to nonlinearity and the constraints on the frames that can be chosen. For example,
the full inversion based on either episode can reveal the two small hotspots in the left half of the particle,
while FD misses that. FD also fails to identify the right half of the particle as a kinetic hotpot and only
identifies the isolated island in the middle.

10.3 Comparison with auger electron microscopy (AEM)

The model assumes the rate of change of the local composition is k(x) multiplied by the local surface
reaction rate given by the Butler-Volmer kinetics. We hypothesize that the spatial heterogeneity comes
from the nonuniform thickness of the particle and the surface heterogeneity caused by nonuniform car-
bon coating, which impacts the local reaction rate. Since we use a depth-averaged model and the reaction
happens on the top and bottom surface of the LFP nanoparticles, the spatial heterogeneity is

()

k(x) = ) (139)
where js(x) is the surface heterogeneity which we hypothesize to be correlated with the local carbon
coating. A factor of 2 is absorbed into h(x) because we can only measure its relative magnitude. The
particle thickness is proportional to the optical density OD(x) from the STXM and we average the optical
density over all snapshots and define nondimensionalized thickness h(x) = OD(x)/OD where OD is the
spatially averaged optical density of the particle. The density of carbon is indicated by AEM. To test the
hypothesis, we compare j;(x) and the AEM image. Fig.[47] plots the pixel-wise comparison of the values
of js(x) and AEM image intensity after being centered (shifted by their respective mean) and scaled by
their respective standard deviation js(x). The correlation coefficient is —0.4.

10.4 Comparison of different models

Table 3| and Fig. [48|compares the RMSE using different models. We introduce another objective function
which minimizes difference in the variance of the concentration field o(t) = f (c(x,t) —&(t))%dx/ f dx
between model and data. Define square error of variance by

SEV = Z Z 105 j (Pglobals Zi) = Vdata,i ||’ (140)
iJ

where v; ; and 04ata; ; are the model prediction and experimental variance of the concentration field of
the jth episode of particle i and the L, norm is the sum of the squared error over all frames of the episode.
Similar to RMSE, define root mean squared error of the variance,

SEV

RMSEV = . (141)
2i 2 Npi(Nrij— 1)
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Figure 45: (a) Frames of all three episodes and estimated spatial heterogeneity /(x) — ¢. Frames chosen
for FD estimate of In k(x) are highlighted. The same pair are highlighted with the same color. On the
right are the FD estimate for each episode and the inversion result p, = 0.88. The label indicates which
dataset is used for training. For example, (1,2) means training on episodes 1 and 2. (b) scatter plots of
each pair of the FD estimates. (cd) Scatter plots of each pair of the full inversion result. Diagonal dashed
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Figure 46: (a) All the frames and estimated spatial heterogeneity of a particle with two episodes. Frames
chosen for FD estimate of In k(x) are highlighted. The same pair are highlighted with the same color. On
the right are the FD estimate for each episode and the inversion result p, = 0.88. The first and second
rows are trained on episodes 1 and 2, respectively. (b) Scatter plots of each pair of FD and full inversion
estimates. Diagonal dashed lines are y = x.
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Table 3: List of optimal RMSE and RMSEV using different models and objective function. jy(c), up(c),
and k(x) may either be specified or optimized based on the chosen objective function. lit. refers to the
model in the literature (Section [2.3).

Model and objective functions RMSE | RMSEV
(@) jo(c) = ye(1 = ¢), pup(c) = lit., k(x) =1 11.2% | 0.0177
(b) jo(c) and pp(c) are MAP (sec. , k(x) =1 11.0% | 0.0143
(c) min;, ) i, (c) RMSE, k(x) =1 10.6% | 0.0167
(d) minj; (), () RMSEV, k(x)=1 12.8% | 0.0104
(e) jo(c) = y/c(1 =c), pp(c) = lit., ming(x) S(p) with p, =0.01 | 7.2% | 0.0118
(f) MmNy (¢),up(c)k(x) S(p) with p, = 0.01 6.0% 0.0077
(g) minj; (), 4, (c).k(x) S(P) With p; = 0.88 6.8% | 0.0095
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Figure 48: Comparison of the RMSE and RMSEV of some methods in table.
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Figure 49: Comparison of experimental (data) and simulated Li concentration field based on three meth-
ods (a,b,g) in Table [3| for key frames of three selected episodes. The methods chosen are (based on the
numbering in Table [3) (a) baseline model without spatial heterogeneity, (b) jo(c) and gx(c) from MAP
without spatial heterogeneity, and (g) inverted model with spatial heterogeneity included. The standard
deviation of the concentration field (std = v'/?) of all frames (from data and models) are shown below
each episode. The RMSE and RMSEV of these three models quantified by all episodes (including those
not shown) are shown in the bar graph.

The biggest reduction in the RMSE (compare (a) and (f) or (g)) is due to the introduction of spatial
heterogeneity, i.e., the optimization of yy(c), jo(c), and jo(x) simultaneously. We show that when there
is no spatial heterogeneity, using the optimal pp(c) and jo(c) from the full optimization captures the
trend in uniformity better than the symmetric model, and results in a lower error in the variance of the
concentration field (RMSEV) even though the RMSE does not differ greatly (compare (a) and (b)). We
demonstrate this visually with a few examples in Fig. comparing cases (a), (b), and (g). Notice that
the baseline (a) results in most uniform concentration fields, hence both RMSE and RMSEV are large;
with the optimal py(c) and jo(c) (b), the variance of the concentration v is much closer to the data, but
details of the simulated patterns may differ from data. By including spatial heterogeneity, both RMSV
and RMSEV decrease further and a closer pixel-to-pixel agreement between model and data is achieved.

Without spatial heterogeneity, the optimization of SE can only decrease the RMSE slightly (compare
(a) and (c)). This case is equivalent to setting the regularization coefficient for In k(x), or p,, to infinity.

Alternatively, when we set the objective function to be RMSEYV, or the error in the variance of the
concentration field, which measures the heterogeneity of the concentration field and is known to largely
be influenced by the form of jy(c) and py(c), the resulting RMSEV is significantly reduced compared to
using the pixel-wise error in the objective function (compare (c) and (d)).

Comparing the results when spatial heterogeneity is included in the optimization, we find that using
the optimal p;(c) and jo(c) (all three optimized simultaneously) results in a smaller RMSE than when
up(c) and jo(c) are fixed at the baseline and k(x) alone is optimized (compare (e) and (f) or (g)). More
notably, the former approach leads to a larger percentage decrease in RMSEV than RMSE, again reflecting
the importance of yj(c) and jy(c) in determining the uniformity of the concentration field.
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10.5 Reaction kinetics

In this section, we briefly describe the coupled-ion-electron transfer (CIET) model[15}24]]. CIET predicts
the Li intercalation rate to be

R=j(1-x) ./_ [Cine(€)prea(€) — c(1 — ne(€)pox(€)]p(e)de (142)

where j, is a rate constant, ¢, is the fractional coverage of reactive surface sites by absorbed Li*, n.(¢) =
1/(1+ e/*8T) is the Fermi distribution, preq(€) and pox (€) are the normalized electron transfer probabil-
ities of reduction and oxidation, respectively and

1 /1+eryf—e] (143)
red = ————= €Xp | —————
Pred = kT P | aMksT
and ]
1 —enp+e
= ———exp |- H " 144
Pox = kT P [ 22ksT (144)

where A is the reorganization energy of the solid host, which is set to A = 8.3kgT /e based on previous
estimate[15], s the formal overpotential, defined to be

) kBT(

nr=—|\n +lnc—+) + RR. (145)
n

c
where R, is the ionic resistance of the carbon coating on the surface. R, can be related to the surface
heterogeneity j;. Here, we focus only on the non-spatially dependent reaction kinetics and hence set
R. = 0. Assuming surface adsorption of Li* is fast compared to CIET, the surface coverage can be related
to the bulk via Langmuir isotherm for non-interacting surface sites

N a, e—W+/kBT
“= 1+ a e w+/ksT (146
where a, is the activity of Li* in the electrolyte and w, is the Li* surface adsorption energy.

Because the dependence of CIET reaction rate on c and 5 is non-separable, in order to compare with
Butler-Volmer (BV) kinetics, we need to first quantify the distribution of 7.

Fig.|50| shows the distribution of overpotential at all frames and pixel locations when trained using
all datasets and at the optimal regularization coefficient p, = 0.88, as well as the distribution for each
episode. The standard deviation is 2.7kgT /e, which is consistent with the estimate of the overpotential
in Ref. [14] (2.5kpT/e) which is used to compare an experimental estimate of reaction rate with CIET
prediction in Ref. [15]].

We first illustrate how BV and CIET reaction rates depend on the overpotential by assuming the
surface coverage ¢, = 1 (which corresponds to a strong affinity of Li* to the surface).

Fig.|51|compares R(c, 1) between CIET and BV using inverted jy(c) as well as
|R(c, n)|/max. |R(c,n)|, since we are more interested in the normalized reaction rate since the magni-
tude of jy(c) cannot be accurately inferred. For BV, |R(c, )|/| max. R(c,n)| = jo(c)/jomax- We find that
the normalized reaction rate predicted by CIET in the range of [-5, 5]kgT /e are mostly within the 99%
confidence interval of the normalized reaction rate inferred from the images.

Next, we study the effect of c,. The electrolyte used in this study is 1M LiClO, in tetraethylene
glycol dimethyl ether. ¢, cannot be directly measured. As a reference, we use the activity of 0.358
mol/kg LiClOy in dimethoxyethane a; = 0.015 [25] as an reference and vary w, /kgT from -10 to 10. Fig.
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Figure 50: The histogram of overpotential (a) at all frames and pixel locations (b) for episode when trained
using all datasets and at the optimal regularization coefficient p, = 0.88.
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Butler-Volmer CIET

15

Figure 51: Comparison of R(c,n) and |R(c,n)|/| max. R(c, )| between CIET (c; = 1) at different over-
potential and the inferred reaction kinetics based on Butler-Volmer kinetics. For the latter, R(c,n) =
2jo(c) sinh /2 where jo(c) is from the MAP result, and |R(c, n)|/| max. R(c,n)| = jo(c)/jomax 1S shown
with the shaded 99% confidence interval (Fig. [44| or Fig. 3 in the main text). 1 is the overpotential nor-
malized by kgT /e.
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Figure 52: Comparison of |R(c, 17)|/| max. R(c, n)| predicted by CIET at n = 2.5, a; = 0.015 and various
values of surface adsorption energy w, = w,/kgT with the inferred reaction kinetics based on Butler-
Volmer Kkinetics.

shows the normalized rate |R(c, )|/max, [R(c,n)| at n = 2.5, ay = 0.015 and at various wy. As wy
decreases (increasing affinity), the peak of the normalized rate shifts to higher values of ¢, asymptotically
approaching the limit when ¢, = 1. We see that CIET agrees better with the inverted normalized rate
when w, is negative or as ¢, approaches 1. Hence in summary, we compare inverted normalized reaction
rate jo(c) and CIET-predicted normalized reaction rate |R(c, n)|/max. |R(c,n)| using n = 2.5kgT /e and
&, = 1in Fig. 3.

10.6 Variation in concentration field

Fig.|53| shows the uniformity coefficient versus I/I,, where the uniformity coefficient is defined as (see

also

i (o(@)e) (1 - c(t))'*
i c(t) (1 — ()

where the summation is taken over all frames of each episode, ¢(#;) is the spatially average composition

at time t;, and again, the variance of the concentration field is

. f(c(x) —¢)%dx
- fdx

where the integral here is performed by summing over all pixels that belong to the particle. The unifor-
mity coefficient UC fits the standard deviation (std) of the concentration field to std = (1-UC)+/¢(1 — ¢).

uC=1

(147)

(148)
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Figure 53: The uniformity coefficient of each episode computed from image data versus I/Ij.

When UC is 1, the concentration field is uniform; when UC is 0, the std is maximum, i.e., consisting of 0
and 1. I is the defined to be the average reaction rate, that is, I = (¢(t,) — ¢(t1))/(t, — t1), where t; and
t, are the time of the first and last frames, respectively. Iy = f k(x)dx/ f dx. We find that, while there
is a significant spread due to the different initial conditions, geometry, spatial heterogeneity, and the
non-constant total reaction rate I(t), the general trend is that the concentration field ¢(x)becomes more
uniform with increasing reaction rate and that c¢(x) is more uniform during Li insertion than extraction.

11 Inversion result

Fig. 54| compares the standard deviation (v!/2) of ¢(x) of all frames between data and model. We find
good agreement between the two.

Fig.|55|displays all the experimental images and the inversion result using the optimal regularization
parameter p, = 0.88 determined in Section[9.6|trained on the entire dataset. The inversion results include
k(x) of each particle and the concentration field c(x, t) predicted by the inferred model.
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Figure 55: All the experimental images and the inversion result using the optimal regularization param-
eter p, = 0.88. The inferred k(x) and the corresponding colormap of each particle is displayed to the left
of the concentration fields. For each particle, the first row is the experimental data, the second row is
the model, and the third row is the difference between data and model. Colorbars for them and the scale
bar are shared and shown on the right. The time duration from the first frame and the global C-rate of
each episode is shown below the images.
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