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Abstract

The supplementary material consists of two sections. Section 1 presents proofs of the

theorems and propositions in the main paper. Section 2 provides some additional simulation

studies under the continuous-time capture–recapture models. In Section 3, the proposed

penalized empirical likelihood (PEL) method is further extended to the capture-recapture

models with ephemeral behavioral effect.
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1 Proofs of the theorems and propositions in the main

paper

This section is divided into seven subsections, in each of which we prove one of the theorems

and propositions in the main paper. The following lemma plays an important role in these

proofs.

Lamma 1. Suppose that C = Op(N
−2
0 ), f(N) = −(N − Ñc)

2I(N > Ñc) and Ñc is the Chao

(1987)’s lower bound. Then (a) Cf ′(N0) = Op(N
−1
0 ); and (b) Cf ′′(N0) = Op(N

−3/2
0 ).
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Proof. It suffices to show that Ñc = Op(N0), which clearly holds according to the definition

of Chao (1987)’s lower bound.

1.1 Proof of Theorem 1

Define Zk, Zik, and zik similar to zk and define Zk0, Zik0, and zik0 similar to zk0, with X, Xi,

and xi in substitution for x.

Theorem 1. Let (N0,β0, α0) be the true value of (N,β, α) where α0 ∈ (0, 1). Define

W =


−V11 0 −V13

0 −V22 + V24V−1
44 V42 −V23 + V24V−1

44 V43

−V31 −V32 + V34V−1
44 V42 −V33 + V34V−1

44 V43

 , (1)

where V11 = 1− α−1
0 , V13 = V31 = α−1

0 , and

V22 = E

[
{∂φ(X;β0)/∂β}⊗2

{1− φ(X;β0)}φ(X;β0)
−

K∑
k=1

g(Zk;β0){1− g(Zk;β0)}Z⊗2
k

]
,

V23 = V>
32 = −E

{
∂φ(X;β0)/∂β

1− φ(X;β0)

}
, V24 = V>

42 = (1− α0)2V23, V33 = ϕ− α−1
0 ,

V34 = V43 = (1− α0)2ϕ, V44 = (1− α0)4ϕ− (1− α0)3, ϕ = E{1− φ(X;β0)}−1.

Here the expectation operator E is taken with respect to the distribution of (X>, D(1), . . . , D(K))
>.

Suppose that the matrix W is positive definite. When f(N) = −(N − Ñc)
2I(N > Ñc) and

C = Op(N
−2
0 ), as N0 →∞,

(a)
√
N0{log(N̂p/N0), (β̂p − β0)>, α̂p − α0}>

d−→ N(0,W−1), where
d−→ stands for conver-

gence in distribution;

(b) Rp(N0,β0, α0)
d−→ χ2

2+s and R′p(N0)
d−→ χ2

1, where s is the size of β, and χ2
df is the

chi-square distribution with df degree of freedom.

3



Proof. Recall the profile penalized log EL function is

`p(N,β, α) = log

(
N

n

)
+ (N − n) log(α)−

n∑
i=1

log[1 + ξ{φ(xi;β)− α}] + Cf(N)

+
n∑
i=1

K∑
k=1

[dik log{g(zik;β)}+ (1− dik) log{1− g(zik;β)}],

where φ(xi;β) =
∏K

k=1{1− g(zik0;β)} and ξ = ξ(β, α) satisfies

n∑
i=1

φ(xi;β)− α
1 + ξ{φ(xi;β)− α}

= 0. (2)

Under model Mh and when C = 0 (i.e. there is no penalty), the profile log EL reduces

to `s(N,βs, α) in Section 3.2 of Liu et al. (2017). Thus, the former can be regarded as an

extension of the latter to general capture probability models. Theorem 1 can be proved with

similar arguments to those in the proof of Corollary 1 of Liu et al. (2017). We highlight only

their differences which lie in matrices V and Σ.

Note that ξ(β̂p, α̂p) is the solution to equation (2) with (β̂p, α̂p) in substitution for (β, α).

It can be shown that the limit value of ξ(β̂p, α̂p) is ξ0 = −1/(1− α0). Define

~(N,β, α, ξ) = log

(
N

n

)
+ (N − n) log(α)−

n∑
i=1

log[1 + ξ{φ(xi;β)− α}] + Cf(N)

+
n∑
i=1

K∑
k=1

[dik log{g(zik;β)}+ (1− dik) log{1− g(zik;β)}].

It can be seen that `p(N,β, α) = ~(N,β, α, ξ∗), where ξ∗ is the solution to ∂~/∂ξ = 0. Denote

θ = (θ1,θ
>
2 , θ3, θ4)>, where θ1 =

√
N0(N/N0− 1),θ2 =

√
N0(β−β0), θ3 =

√
N0(α−α0), and

θ4 =
√
N0(ξ − ξ0). Define

H(θ) = ~(N0 +N
1/2
0 θ1,β0 +N

−1/2
0 θ2, α0 +N

−1/2
0 θ3, ξ0 +N

−1/2
0 θ4).
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According to Lemma 2 in the supplementary material of Liu et al. (2017), deriving the

formula of V is equivalent to calculating the first two derivatives of H(θ). By the weak law

of large numbers and the central limit theorem, we have

∂H(0)

∂θ1

= N
1/2
0

(
n/N0 − 1

α0

+ 1

)
+N

1/2
0 Cf ′(N0) +Op(N

−1/2
0 )

= N
1/2
0

(
n/N0 − 1

α0

+ 1

)
+Op(N

−1/2
0 ),

∂H(0)

∂θ2

= N
−1/2
0

n∑
i=1

[
K∑
k=1

{dik − g(zik;β0)}zik +
φ̇(xi;β0)

1− φ(xi;β0)

]
,

∂H(0)

∂θ3

= N
−1/2
0

{
N0 − n
α0

−
n∑
i=1

1

1− φ(xi;β0)

}
,

∂H(0)

∂θ4

= −N−1/2
0 (1− α0)

n∑
i=1

φ(xi;β0)− α0

1− φ(xi;β0)
,

where φ̇(x;β0) = ∂φ(x;β0)/∂β and the first equation is from the result in Section 2.2 of the

supplementary material of Liu et al. (2017). In addition,

∂2H(0)

∂θ2
1

= 1− α−1
0 +N0Cf

′′(N0) +Op(N
−1/2
0 ) = 1− α−1

0 +Op(N
−1/2
0 ),

∂2H(0)

∂θ2∂θ>
2

= E

[
{φ̇(X;β0)}⊗2

{1− φ(X;β0)}φ(X;β0)

]
−

K∑
k=1

E
[
g(Zk;β0){1− g(Zk;β0)}Z⊗2

k

]
+Op(N

−1/2
0 ),

∂2H(0)

∂θ2∂θ3

=

{
∂2H(0)

∂θ3∂θ>
2

}>

= −E φ̇(X;β0)

1− φ(X;β0)
+Op(N

−1/2
0 ),

∂2H(0)

∂θ2∂θ4

=

{
∂2H(0)

∂θ4∂θ>
2

}>

= −(1− α0)2E
φ̇(X;β0)

1− φ(X;β0)
+Op(N

−1/2
0 ),

∂2H(0)

∂θ2
3

= −α−1
0 + E

1

1− φ(X;β0)
+Op(N

−1/2
0 ),

∂2H(0)

∂θ3∂θ1

=
∂2H(0)

∂θ1∂θ3

= α−1
0 ,

∂2H(0)

∂θ4∂θ3

=
∂2H(0)

∂θ3∂θ4

= (1− α0)2E
1

1− φ(X;β0)
+Op(N

−1/2
0 ),
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∂2H(0)

∂θ2
4

= (1− α0)4E
1

1− φ(X;β0)
− (1− α0)3 +Op(N

−1/2
0 ).

The matrix V is the leading term of ∂2H(0)/(∂θ∂θ>). It follows that

V =


V11 01×s V13 0

0s×1 V22 V23 V24

V31 V32 V33 V34

0 V42 V43 V44

 ,

where 0s×1 is a s-dimensional zero vector and Vij’s are defined in Theorem 1.

Let ∂H(0)/∂θ = un +Op(N
−1/2
0 ), where un = (un1,u

>
n2, un3, un4)> with

un1 = N
1/2
0

(
n/N0 − 1

α0

+ 1

)
, un2 =

∂H(0)

∂θ2

, un3 =
∂H(0)

∂θ3

, un4 =
∂H(0)

∂θ4

.

It can be verified that E(un) = 0 and

Var(un1) =
N0

α2
0

· (1− α0)α0

N0

= α−1
0 − 1, Cov(un3, un1) = −α−1

0 , Cov(un4, un1) = 0,

Var(un2) = E


[

K∑
k=1

{D(k) − g(Zk;β0)}Zk +
φ̇(X;β0)

1− φ(X;β0)

]⊗2

I

(
K∑
k=1

D(k) > 0

)
=

K∑
k=1

E
[
g(Zk;β0){1− g(Zk;β0)}Z⊗2

k

]
− E

[
{φ̇(X;β0)}⊗2

{1− φ(X;β0)}φ(X;β0)

]
,

Var(un3) = α−1
0 + ϕ, Cov(un2, un1) = Cov(un2, un3) = Cov(un2, un4) = 0,

Cov(un3, un4) = (1− α0)2ϕ− (1− α0), Var(un4) = (1− α0)4ϕ− (1− α0)3.
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By the central limit theorem, we have un
d−→ N(0,Σ) as N0 →∞, where

Σ =


−V11 01×s −V13 0

0s×1 −V22 0s×1 0s×1

−V31 01×s 2V34(1− α0)−2 − V33 V44(1− α0)−2

0 01×s V44(1− α0)−2 V44

 .

Now that Σ has the same form as that in Lemma 3 of the supplementary material of Liu et al.

(2017), so does the matrix W. Using similar arguments to those in the proof of Theorem 1

of Liu et al. (2017), we have

√
N0{log(N̂p/N0), (β̂p − β0)>, α̂p − α0}> = W−1t+Op(N

−1/2
0 ), (3)

as N0 →∞, where t = (t1, t2, t3), t1 = un1, t2 = un2−V24V−1
44 un4, and t3 = un3−V34V−1

44 un4.

The rest of the proof is similar and omitted. This completes the proof of Theorem 1.

1.2 Proof of Proposition 2

Proposition 2. Under the conditions in Theorem 1, as N0 →∞,

(a) β̂p − β̂c = Op(N
−1
0 ) and N̂p − N̂c = Op(1);

(b)
√
N0(β̂p − β0)

d−→ N(0,−V−1
22 ) and

√
N0(β̂c − β0)

d−→ N(0,−V−1
22 );

(c) N
−1/2
0 (N̂p − N0)

d−→ N(0, σ2) and N
−1/2
0 (N̂c − N0)

d−→ N(0, σ2), where σ2 = ϕ − 1 −
V32V

−1
22 V23, ϕ and Vij’s are defined in Theorem 1.

Proof. By definition, β̂c must be a stationary point of of `c(β) = log{Lc(β)}, which implies
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0 = ∂`c(β̂c)/∂β. Applying the first-order Taylor expansion to this equation, we have

0 =
∂`c(β0)

∂β
+
∂2`c(β0)

∂β∂β>
(β̂c − β0) +Op(1)

= N
1/2
0 un2 +N0V22(β̂c − β0) +Op(1),

which implies

√
N0(β̂c − β0) = −V−1

22 un2 +Op(N
−1/2
0 ). (4)

Denote the inverse of W = (Wij)1≤i,j≤3 by (Wij)1≤i,j≤3. Equation (3) implies

N
−1/2
0 (β̂p − β0) = W21t1 + W22t2 + W23t3 +Op(N

−1/2
0 )

= W21un1 + W22un2 + W23un3

−(W22V24V−1
44 + W23V34V−1

44 )un4 +Op(N
−1/2
0 ).

By the definition of un, it can be verified that un4 = (1−α0)un1 + (1−α0)2un3 +Op(N
−1/2
0 ).

Using this expression, we have

N
−1/2
0 (β̂p − β0) = {W21 − (1− α0)(W22V24V−1

44 + W23V34V−1
44 )}un1 + W22un2

+{W23 − (1− α0)2(W22V24V−1
44 + W23V34V−1

44 )}un3 +Op(N
−1/2
0 ).(5)

Comparing Equations (4) and (5), we find that proving β̂p − β̂c = Op(N
−1
0 ) is equivalent to

proving the following equations:

W21 − (1− α0)(W22V24V−1
44 + W23V34V−1

44 ) = 0, (6)

W23 − (1− α0)2(W22V24V−1
44 + W23V34V−1

44 ) = 0, (7)

W22 = −V−1
22 . (8)
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In fact, we can show that

W23 = −V23 + V24V−1
44 V43 = (1− α0)V24V−1

44 ,

W33 = −V33 + V34V−1
44 V43 =

(1− α0)3(ϕ− 1)

α0

V−1
44 .

Comparing the second row of W−1 ·W = I, we have

W21(α−1
0 − 1)− α−1

0 W23 = 0,

−α−1
0 W21 + W22(1− α0)V24V−1

44 + W23 (1− α0)3(ϕ− 1)

α0

V−1
44 = 0,

W22
(
−V22 + V24V−1

44 V42

)
+ W23(1− α0)V−1

44 V42 = I. (9)

Simplifying the first two equations gives

W23 = (1− α0)W21, W21 = −W22V23.

From these two equations, we immediately have Equations (6) and (7) and Equation (9)

becomes −W22V22 = I, which is equivalent to Equaion (8).

So far, we have proven β̂p− β̂c = Op(N
−1
0 ). Since

√
N0(β̂c−β0) = −V−1

22 un2 +Op(N
−1/2
0 )

and un2
d−→ N(0,−V22), then we conclude that both

√
N0(β̂p − β0) and

√
N0(β̂c − β0)

converge to N(0,−V−1
22 ) in distribution. This completes the proof of Result (b).

We now turn to Result (c). By the definition of N̂c,

N
−1/2
0 (N̂c −N0) = N

−1/2
0

n∑
i=1

{
1

1− φ(xi; β̂c)
− 1

1− φ(xi;β0)

}

+N
−1/2
0

{
n∑
i=1

1

1− φ(xi;β0)
−N0

}
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= −V32

√
N0(β̂c − β0)− (un1 + un3) +Op(N

−1/2
0 )

= V32V
−1
22 un2 − (un1 + un3) +Op(N

−1/2
0 ).

In addition, it follows from (3) that

N
−1/2
0 (N̂p −N0) = {W11 − (1− α0)(W12V24V−1

44 + W13V34V−1
44 )}un1 + W12un2

+{W13 − (1− α0)2(W12V24V−1
44 + W13V34V−1

44 )}un3 +Op(N
−1/2
0 ).

Comparing the above two approximates, we find that proving N̂p− N̂c = Op(1) is equivalent

to verifying the following equations:

W11 − (1− α0)(W12V24V−1
44 + W13V34V−1

44 ) = −1, (10)

W13 − (1− α0)2(W12V24V−1
44 + W13V34V−1

44 ) = −1, (11)

W12 = V32V
−1
22 . (12)

In fact, comparing the first row of W−1 ·W = I gives

W11(α−1
0 − 1)− α−1

0 W13 = 1, (13)

−α−1
0 W11 + W12(1− α0)V24V−1

44 + W13 (1− α0)3(ϕ− 1)

α0

V−1
44 = 0, (14)

W12
(
−V22 + V24V−1

44 V42

)
+ W13(1− α0)V−1

44 V42 = 0. (15)

Then, Equation (13) plus Equation (14) implies Equation (10). Equation (10) ×(1 − α0)

minus Equation (13) ×α0 gives Equation (11). Equation (13) times (1−α0)−1 plus Equation

(14) leads to

W12(1− α0)V24V−1
44 + W13(1− α0)2V−1

44 =
1

1− α0

. (16)
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Equation (16) ×V42/(1− α0) plus Equation (15) gives

W12V22 =
V42

(1− α0)2
= V32,

which implies Equation (12).

Therefore N̂p−N̂c = Op(1). Since N
−1/2
0 (N̂c−N0) = V32V

−1
22 un2−(un1+un3)+Op(N

−1/2
0 )

and un
d−→ N(0,Σ), then we conclude that both

√
N0(N̂p−N0) and

√
N0(N̂c−N0) converge

to N(0, σ2) in distribution, where

σ2 = Var{V32V
−1
22 un2 − (un1 + un3)} = E{1− φ(X;β0)}−1 − 1−V32V

−1
22 V23.

This completes the proof of Result (c). Result (a) has been proved in our proofs of Results

(b) and (c).

1.3 Proof of Theorem 3

The penalized log EL function under discrete-time capture–recapture models is

˜̀
p(N,β, α, {pi}) = log

(
N

n

)
+ (N − n) log(α) +

n∑
i=1

log(pi) + Cf(N)

+
n∑
i=1

K∑
k=1

[dik log{g(zik;β)}+ (1− dik) log{1− g(zik;β)}]. (17)

Theorem 3. With discrete-time capture–recapture models, the EM algorithm proposed for

the PEL method has following properties.

(a) When N is fixed, the penalized log EL is nondecreasing after each EM iteration.

(b) When N is unknown, the penalized log EL is nondecreasing after each EM iteration.

(c) When N is unknown, the sequence of EM iterations (N (r),β(r), α(r)) converges to a local

maximum PEL estimator (N̂p, β̂p, α̂p).
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1.3.1 Proof of Result (a)

Proof. Let θ = (β>, α)> and ψ = (θ>, p1, . . . , pn)> with θ(r) and ψ(r) being their values at

the rth iteration (r = 0, 1, . . .). When N is fixed, the penalized log EL function of ψ is

˜̀
p(ψ) = log

(
N

n

)
+ (N − n) log(α) +

n∑
i=1

log(pi) + Cf(N)

+
n∑
i=1

K∑
k=1

[dik log{g(zik;β)}+ (1− dik) log{1− g(zik;β)}].

To prove Result (a), it suffices to prove ˜̀p(ψ(r+1))− ˜̀p(ψ(r)) ≥ 0 for any r = 0, 1, . . .. To this

end, we define κ(ψ,ψ(r)) = Q(ψ|ψ(r))− ˜̀p(ψ). Since Q(ψ(r+1)|ψ(r)) ≥ Q(ψ|ψ(r)) for all ψ,

we shall have ˜̀p(ψ(r)) ≤ ˜̀p(ψ(r+1)) if we can prove κ(ψ(r+1),ψ(r)) ≤ κ(ψ(r),ψ(r)).

It can be verified that

κ(ψ,ψ(r)) =
n∑
i=1

[
w

(r)
i log{φ(xi;β)pi}

]
− log

(
N

n

)
− (N − n) log(α)− Cf(N)

=
n∑
i=1

[
w

(r)
i log

{
φ(xi;β)pi

α

}]
− log

(
N

n

)
− Cf(N)

=
n∑
i=1

N∑
j=n+1

(
E[I(Xj = xi)|Dj = 0,ψ = ψ(r)] log

{
φ(xi;β)pi

α

})
− log

(
N

n

)
− Cf(N)

= Eψ(r)

(
log

[
N∏

j=n+1

n∏
i=1

{
φ(xi;β)pi

α

}I(Xj=xi)
] ∣∣∣Dn+1 = . . . = DN = 0

)

− log

(
N

n

)
− Cf(N)

= Eψ(r) [log{k(X∗;ψ)}|Dn+1 = . . . = DN = 0]− log

(
N

n

)
− Cf(N),

where X∗ = (X>
n+1, . . . ,X

>
N)>, Eψ(r) is the expectation operator with respect to k(x;ψ(r)),
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and k(X∗;ψ) is the conditional probability function of X∗ given Dn+1 = . . . = DN = 0.

When N is fixed, it follows from Jensen’s inequality that

κ(ψ(r+1),ψ(r))− κ(ψ(r),ψ(r)) = Eψ(r)

[
log

{
k(X∗;ψ(r+1))

k(X∗;ψ(r))

} ∣∣∣Dn+1 = . . . = DN = 0

]
≤ log

[
Eψ(r)

{
k(X∗;ψ(r+1))

k(X∗;ψ(r))

∣∣∣Dn+1 = . . . = DN = 0

}]
= 0.

1.3.2 Proof of Result (b)

Proof. When N is unknown, we redefine θ = (N,β>, α)> and ψ = (θ>, p1, . . . , pn)> with θ(r)

and ψ(r) being their values at the rth iteration (r = 0, 1, . . .). Now,

κ(ψ,ψ(r)) := Q(ψ|ψ(r))− `(ψ)

=
n∑
i=1

[w
(r)
i log{φ(xi;β)pi}]− log

(
N

n

)
− (N − n) log(α)− Cf(N)

=
n∑
i=1

[
w

(r)
i log

{
φ(xi;β)pi

α

}]
− log

(
N

n

)
− (N −N (r)) log(α)− Cf(N)

= Eψ(r) [log{k(X∗;ψ)}|Dn+1 = . . . = DN(r) = 0]

− log

(
N

n

)
− (N −N (r)) log(α)− Cf(N),

where X∗ = (X>
n+1, . . . ,X

>
N(r))

> and k(X∗;ψ) is the conditional probability function of X∗

given Dn+1 = . . . = DN(r) = 0.
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It follows from Jensen’s inequality that

κ(ψ(r+1),ψ(r))− κ(ψ(r),ψ(r))

= Eψ(r)

[
log

{
k(X∗;ψ(r+1))

k(X∗;ψ(r))

} ∣∣∣Dn+1 = . . . = DN(r) = 0

]
+ log

(
N (r)

n

)
− log

(
N (r+1)

n

)
− (N (r+1) −N (r)) log(α(r+1))

+C{f(N (r))− f(N (r+1))}

≤ log

(
N (r)

n

)
+ (N (r) − n) log(α(r+1)) + Cf(N (r))

−
{

log

(
N (r+1)

n

)
+ (N (r+1) − n) log(α(r+1)) + Cf(N (r+1))

}
≤ 0,

where the last inequality holds because N (r+1) maximizes the function log
(
N
n

)
+ (N −

n) log(α(r+1)) + Cf(N). Then,

˜̀
p(ψ

(r)) = Q(ψ(r)|ψ(r))− κ(ψ(r),ψ(r))

≤ Q(ψ(r+1)|ψ(r))− κ(ψ(r+1),ψ(r))

= ˜̀
p(ψ

(r+1)).

1.3.3 Proof of Result (c)

Proof. Let θ = (N,β>, α)> and ψ = (θ>, p1, . . . , pn)> with θ(r) and ψ(r) being their values

at the rth iteration (r = 0, 1, . . .). To prove Result (c), we first note that θ̂p = (N̂p, β̂
>
p , α̂p)

>
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is the solution of

S1(N, n)− log(α)− 2C(N − Ñc)I(N > Ñc) = 0, (18)

N − n
α

+
n∑
i=1

ξ

1 + ξ{φ(xi;β)− α}
= 0, (19)

n∑
i=1

K∑
k=1

{dik − g(zik;β)}zik −
n∑
i=1

ξφ̇(xi;β)

1 + ξ{φ(xi;β)− α}
= 0, (20)

n∑
i=1

φ(xi;β)− α
1 + ξ{φ(xi;β)− α}

= 0, (21)

where S1(N, n) = ∂ log{Γ(N + 1)}/∂N − ∂ log{Γ(N − n + 1)}/∂N . Combining (19) with

(21) gives ξ = −(N − n)/(nα).

Recall the conditional expectaton of the complete-data log-likelihoodQ(ψ|ψ(r)) = `1(β)+

`2(p1, . . . , pn), where

`1(β) =
n∑
i=1

(
K∑
k=1

[dik log{g(zik;β)}+ (1− dik) log{1− g(zik;β)}] + w
(r)
i log{φ(xi;β)}

)
,

`2(p1, . . . , pn) =
n∑
i=1

(w
(r)
i + 1) log(pi), w

(r)
i = (N (r) − n)φ(xi;β

(r))p
(r)
i /α(r).

Maximizing Q(ψ|ψ(r)) or `1(β) with respect to β gives β(r+1), which satisfies

∂`1(β(r+1))

∂β
=

n∑
i=1

K∑
k=1

{dik − g(zik;β
(r+1))}zik +

n∑
i=1

w
(r)
i φ̇(xi;β

(r+1))

φ(xi;β(r+1))
= 0. (22)

Under the constraint
∑n

i=1 pi = 1, maximizing Q(ψ|ψ(r)) or `2(p1, . . . , pn) with respect to

15



pi’s gives the (r + 1)th iteration of pi’s, namely

p
(r+1)
i =

w
(r)
i + 1

n+
∑n

i=1w
(r)
i

=
w

(r)
i + 1

N (r)
, i = 1, . . . , n. (23)

Note that α(r+1) and N (r+1) satisfy

α(r+1) =
n∑
i=1

φ(xi;β
(r+1))p

(r+1)
i , (24)

S1(N (r+1), n)− log(α(r+1))− 2C(N (r+1) − Ñc)I(N (r+1) > Ñc) = 0. (25)

Without loss of generality, we assume that ψ(r+1) and ψ(r) converge to ψ. After substi-

tuting w
(r)
i = (N (r) − n)φ(xi;β

(r))p
(r)
i /α(r) and ψ(r+1) = ψ(r) = ψ into Equations (22)–(25),

it can be verified that

(23) ⇒ pi =
α

αN − (N − n)φ(xi;β)
, i = 1, 2, . . . , n,

(25) ⇒ S1(N, n)− log(α)− 2C(N − Ñc)I(N > Ñc) = 0,
n∑
i=1

pi = 1 ⇒
n∑
i=1

1

αN − (N − n)φ(xi;β)
=

1

α
,

(22) ⇒
n∑
i=1

K∑
k=1

{dik − g(zik;β)}zik +
n∑
i=1

(N − n)φ̇(xi;β)

αN − (N − n)φ(xi;β)
= 0,

(24) ⇒
n∑
i=1

φ(xi;β)

αN − (N − n)φ(xi;β)
= 1.

The last four equations agree with Equations (18)–(21), respectively. This guarantees that

the sequence {ψ(r) : r = 1, 2, . . . , } converges to a local maximum PEL estimator.
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1.4 Proof of Proposition 4

Proposition 4. In the framework of Remark 2 in the main paper, the sequence of EM

iterations {(N (r),β(r)) : r = 1, 2} converge to a local maximum CL estimator (N̂c, β̂c).

Proof. By definition, the maximum CL estimator θ̂c = (N̂c, β̂
>
c )> is the solution of

N −
n∑
i=1

1

1− φ(xi;β)
= 0, (26)

n∑
i=1

K∑
k=1

{dik − g(zik;β)}zik −
n∑
i=1

φ̇(xi;β)

1− φ(xi;β)}
= 0. (27)

The remaining proof is similar to that of Result (c) in Theorem 3. For the CL method, the

iterations {(N (r),β(r), α(r), p
(r)
i ) : r = 0, 1, . . . } satisfy Equations (22), (23), (24), and

N (r+1) =
n

1− α(r+1)
. (28)

Without loss of generality, we assume that ψ(r+1) and ψ(r) converge to ψ. After substi-

tuting w
(r)
i = (N (r) − n)φ(xi;β

(r))p
(r)
i /α(r) and ψ(r+1) = ψ(r) = ψ into Equations (22)–(24)

and (28), we have

(23) & (28) ⇒ pi =
1

N{1− φ(xi;β)}
, i = 1, 2, . . . , n,

n∑
i=1

pi = 1 ⇒
n∑
i=1

1

1− φ(xi;β)
= N,

(22) ⇒
n∑
i=1

K∑
k=1

{dik − g(zik;β)}zik +
n∑
i=1

φ̇(xi;β)

1− φ(xi;β)
= 0.

Note that the last two equations respectively agree with Equations (26)–(27). This means

that the EM iterations converge to a local maximum CL estimator.
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1.5 Proof of Theorem 5

Theorem 5. Let (N0,β0, η0, α0) with α0 ∈ (0, 1) be the true value of (N,β, η, α). Define

W =


−V11 0 −V14

0 −VΘΘ + VΘ5V−1
55 V5Θ −VΘ4 + VΘ5V−1

55 V54

−V41 −V4Θ + V45V−1
55 V5Θ −V44 + V45V−1

55 V54

 , (29)

where V11 = 1 − α−1
0 , V14 = V41 = α−1

0 , VΘΘ = (Vij)2≤i,j≤3, V4Θ = V>
Θ4 = (V42, 0),

V5Θ = V>
Θ5 = (V52, 0), ϕ = E{1− φ(X;β0)}−1, and

V22 = E

[
τ 2e2β>

0 Xφ(X;β0)

1− φ(X;β0)
+ (eη0 − 1){1− φ(X;β0)} − τeβ>

0 X+η0

]
X⊗2,

V23 = V>
32 = E

[
eη0{1− φ(X;β0)} − τeβ>

0 X+η0
]

X, V24 = V>
42 = E

{
τeβ

>
0 Xφ(X;β0)X

1− φ(X;β0)

}
,

V25 = V>
52 = (1− α0)2V24, V33 = E

[
eη0{1− φ(X;β0)} − τeβ>

0 X+η0
]
,

V44 = −α−1
0 + ϕ, V45 = V54 = (1− α0)2ϕ, V55 = (1− α0)4ϕ− (1− α0)3.

Suppose that the matrix W is positive definite. When f(N) = −(N − Ñc)
2I(N > Ñc) and

C = Op(N
−2
0 ), as N0 →∞,

(a)
√
N0{log(N̂p/N0), (β̂p − β0)>, η̂p − η0, α̂p − α0}>

d−→ N(0,W−1);

(b) Rp(N0,β0, η0, α0)
d−→ χ2

3+s and R′p(N0)
d−→ χ2

1 where s is the dimension of β.

Proof. The profile penalized log EL under continuous-time model Mhb is

`p(N,β, φ, α) = log

(
N

n

)
+ (N − n) log(α)−

n∑
i=1

log[1 + ξ{φ(xi;β)− α}] + Cf(N)

+
n∑
i=1

[
miβ

>xi + (mi − 1)η − {τeη + ti1(1− eη)} eβ>xi

]
,
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where φ(x;β) = exp(−τeβ>x) and ξ = ξ(β, α) satisfies

n∑
i=1

φ(xi;β)− α
1 + ξ{φ(xi;β)− α}

= 0. (30)

It can be verified that ξ0 = −1/(1− α0) is the limit of ξ(β̂p, α̂p) which is the solution of

(30) with (β̂p, α̂p) in place of (β, α). Define

~(N,β, η, α, ξ) = log

(
N

n

)
+ (N − n) log(α)−

n∑
i=1

log[1 + ξ{φ(xi;β)− α}] + Cf(N)

+
n∑
i=1

[miβ
>xi + (mi − 1)η − {τeη + ti1(1− eη)}eβ>xi ].

It can be seen that `p(N,β, φ, α) = ~(N,β, φ, α, ξ∗), where ξ∗ is the solution to ∂~/∂ξ = 0.

Denote θ = (θ1,θ
>
2 , θ3, θ4, θ5)>, where θ1 =

√
N0(N/N0−1),θ2 =

√
N0(β−β0), θ3 =

√
N0(η−

η0), θ4 =
√
N0(α− α0), and θ5 =

√
N0(ξ − ξ0). Define

H(θ) = ~(N0 +N
1/2
0 θ1,β0 +N

−1/2
0 θ2, η0 +N

−1/2
0 θ3, α0 +N

−1/2
0 θ4, ξ0 +N

−1/2
0 θ5).

As clarified in the proof of Theorem 1, the proof can be done if we derive the formulae of

V and Σ. It follows from the law of large numbers and the central limit theorem that

∂H(0)

∂θ1

= N
1/2
0

(
n/N0 − 1

α0

+ 1

)
+Op(N

−1/2
0 ),

∂H(0)

∂θ2

= N
−1/2
0

n∑
i=1

[
mi − τγi0eη0 + ti1(eη0 − 1)γi0 −

τγi0φ(xi;β0)

1− φ(xi;β0)

]
xi,

∂H(0)

∂θ3

= N
−1/2
0

n∑
i=1

{mi − 1− (τ − ti1)γi0e
η0},

∂H(0)

∂θ4

= N
−1/2
0

{
N0 − n
α0

−
n∑
i=1

1

1− φ(xi;β0)

}
,
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∂H(0)

∂θ5

= −N−1/2
0 (1− α0)

n∑
i=1

φ(xi;β0)− α0

1− φ(xi;β0)
,

where γi0 = eβ
>
0 xi and φ(xi;β0) = e−τγi0 for i = 1, . . . , n. Let ∂H(0)/∂θ = un + Op(N

−1/2
0 ),

where un = (un1,u
>
n2, un3, un4, un5)> and

un1 = N
1/2
0

(
n/N0 − 1

α0

+ 1

)
, un2 =

∂H(0)

∂θ2

, unj =
∂H(0)

∂θj
, j = 3, 4, 5.

For the second partial derivative of H at θ = 0, we have

∂2H(0)

∂θ2
1

= 1− α−1
0 +Op(N

−1/2
0 ),

∂2H(0)

∂θ4∂θ1

=
∂2H(0)

∂θ1∂θ4

= α−1
0 ,

∂2H(0)

∂θ2∂θ>
2

= N−1
0

n∑
i=1

[
−{τeη0 + ti1(1− eη0)}γi0 −

e−τγi0τγi0(1− τγi0)

1− e−τγi0

+
τ 2γ2

i0e
−2τγi0

(1− e−τγi0)2

]
x⊗2
i ,

∂2H(0)

∂θ2∂θ3

=

{
∂2H(0)

∂θ3∂θ>
2

}>

= −N−1
0

n∑
i=1

{(τ − ti1)eη0γi0xi} ,

∂2H(0)

∂θ2∂θ4

=

{
∂2H(0)

∂θ4∂θ>
2

}>

= N−1
0

n∑
i=1

τγi0φ(xi;β0)xi
{1− φ(xi;β0)}2

,

∂2H(0)

∂θ2∂θ5

=

{
∂2H(0)

∂θ5∂θ>
2

}>

= (1− α0)2N−1
0

n∑
i=1

τγi0φ(xi;β0)xi
{1− φ(xi;β0)}2

,

∂2H(0)

∂θ2
3

= −N−1
0

n∑
i=1

{(τ − ti1)eη0γi0},

∂2H(0)

∂θ2
4

= N−1
0

[
−N0 − n

α2
0

+
n∑
i=1

1

{1− φ(xi;β0)}2

]
,

∂2H(0)

∂θ4∂θ5

=
∂2H(0)

∂θ5∂θ4

= (1− α0)2N−1
0

n∑
i=1

1

{1− φ(xi;β0)}2
,

∂2H(0)

∂θ2
5

= (1− α0)2N−1
0

n∑
i=1

{φ(xi;β0)− α0}2

{1− φ(xi;β0)}2
.
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In the process of deriving V and Σ, we need to calculate the limit of ∂2H(0)/∂θ∂θ> and

the mean and variance of un. The following lemma eases much of the calculation burden in

our proofs.

Lamma 2. Define γ0 = eβ
>
0 X and let T1 denote the time of an individual being first captured.

Given the covariate X, the following conditional expectations hold:

E{I(N (τ) > 0)|X} = 1− e−τγ0 , E{N (τ)|X} = 1− e−τγ0 + τeη0γ0 − eη0 + eη0−τγ0 ,

E{T1I(N (τ) > 0)|X} = 1/γ0 − τe−τγ0 − e−τγ0/γ0,

E{N 2(τ)|X} = 1− e−τγ0 + 3τγ0e
η0 − 3eη0 + 3eη0−τγ0 + τ 2γ2

0e
2η0

−2τγ0e
2η0 + 2e2η0 − 2e2η0−τγ0 ,

E{T1N (τ)|X} = τeη0 − τe−τγ0 + τeη0−τγ0 + 1/γ0 − e−τγ0/γ0

−2eη0/γ0 + 2eη0−τγ0/γ0,

E{T 2
1 I(N (τ) > 0)|X} = 2/γ2

0 − 2e−τγ0/γ2
0 − 2τe−τγ0/γ0 − τ 2e−τγ0 .

Proof. The first equation is derived from the fact that N (τ) follows a Poisson distribution

Poi(τγ0) given X. By the property of conditional expectation and the integration by parts,

we have

E{N (τ)|X} = E[E{N (τ)|T1,X}|X] =

∫ τ

0

{1 + (τ − t)γ0e
η0}γ0e

−γ0tdt

= 1− e−τγ0 + τeη0γ0 − eη0 + eη0−τγ0 ,

E{T1I(N (τ) > 0)|X} = E[T1E{I(N (τ) > 0)|T1,X}|X] =

∫ τ

0

tγ0e
−γ0tdt

= 1/γ0 − τe−τγ0 − e−τγ0/γ0,

E{N 2(τ)|X} = E[E{N 2(τ)|T1,X}|X]

=

∫ τ

0

[Var{N (τ)|T1 = t,X}+ E2{N (τ)|T1 = t,X}]γ0e
−γ0tdt

=

∫ τ

0

[(τ − t)γ0e
η0 + {1 + (τ − t)γ0e

η0}2]γ0e
−γ0tdt
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= 1− e−τγ0 + 3τγ0e
η0 − 3eη0 + 3eη0−τγ0 + τ 2γ2

0e
2η0

−2τγ0e
2η0 + 2e2η0 − 2e2η0−τγ0 ,

E{T1N (τ)|X} =

∫ τ

0

E{N (τ)|T1 = t}tγ0e
−γ0tdt

=

∫ τ

0

{1 + (τ − t)γ0e
η0}tγ0e

−γ0tdt

= τeη0 − τe−τγ0 + τeη0−τγ0 + 1/γ0 − e−τγ0/γ0

−2eη0/γ0 + 2eη0−τγ0/γ0,

E{T 2
1 I(N (τ) > 0)|X} =

∫ τ

0

t2γ0e
−γ0tdt = 2/γ2

0 − 2e−τγ0/γ2
0 − 2τe−τγ0/γ0 − τ 2e−τγ0 .

Applying Lemma 2 and the central limit theorem, it can be verified that

∂2H(0)

∂θ2∂θ>
2

= E
(
τ 2γ2

0e
−2τγ0

1− e−τγ0
+ τ 2γ2

0e
−τγ0 − 1− τγ0e

η0 − eη0−τγ0 + eη0 + e−τγ0
)

X

+Op(N
−1/2
0 ),

∂2H(0)

∂θ2∂θ3

=

{
∂2H(0)

∂θ3∂θ>
2

}>

= −E
(
τγ0e

η0 + eη0−τγ0 − eη0
)

X +Op(N
−1/2
0 ),

∂2H(0)

∂θ2∂θ4

=

{
∂2H(0)

∂θ4∂θ>
2

}>

= −E φ̇(X;β0)

1− φ(X;β0)
+Op(N

−1/2
0 ),

∂2H(0)

∂θ2∂θ5

=

{
∂2H(0)

∂θ5∂θ>
2

}>

= −(1− α0)2E
φ̇(X;β0)

1− φ(X;β0)
+Op(N

−1/2
0 )

∂2H(0)

∂θ2
3

= −E(τγ0e
η0 + eη0−τγ0 − eη0) +Op(N

−1/2
0 ),

∂2H(0)

∂θ2
4

= −α−1
0 + E

1

1− φ(X;β0)
+Op(N

−1/2
0 ),

∂2H(0)

∂θ4∂θ5

=
∂2H(0)

∂θ5∂θ4

= (1− α0)2E
1

1− φ(X;β0)
+Op(N

−1/2
0 ),

∂2H(0)

∂θ2
5

= (1− α0)4E
1

1− φ(X;β0)
− (1− α0)3 +Op(N

−1/2
0 ).
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The matrix V, which is the leading term of ∂2H(0)/(∂θ∂θ>), is

V =



V11 01×s 0 V14 0

0s×1 V22 V23 V24 V25

0 V32 V33 0 0

V41 V42 0 V44 V45

0 V52 0 V54 V55


,

where Vij’s are defined in Theorem 5. Using Lemma 2, it can be verified that E(un) = 0 and

Var(un1) =
N0

α2
0

· (1− α0)α0

N0

= α−1
0 − 1, Cov(un4, un1) = −α−1

0 ,

Var(un2) = E
[
1− e−τγ0 + τγ0e

η0 − eη0 + eη0−τγ0 − τ 2γ2
0e
−τγ0 − τ 2γ2

0e
−2τγ0

1− e−τγ0

]
X⊗2

= −V22, Cov(u1, u3) = Cov(u1, u5) = 0,

Cov(un2, un3) = E{(τγ0e
η0 + eη0−τγ0 − eη0)X} = −V23,

Cov(un2, un1) = Cov(un2, un4) = Cov(un2, un5) = 0s×1,

Var(un3) = E
(
τγ0e

η0 + eη0−τγ0 − eη0
)

= −V33,

Cov(un3, un4) = Cov(un3, un5) = 0, Var(un4) = α−1
0 + ϕ,

Cov(un4, un5) = (1− α0)2ϕ− (1− α0), Var(un5) = (1− α0)4ϕ− (1− α0)3.

By the central limit theorem, we have un
d−→ N(0,Σ) as N0 →∞, where

Σ =



−V11 01×s 0 −V14 0

0s×1 −V22 −V23 0s×1 0s×1

0 −V23 −V33 0 0

−V41 01×s 0 2V45(1− α0)−2 − V44 V55(1− α0)−2

0 01×s 0 V55(1− α0)−2 V55


.
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Note that Σ has the same form as that in Lemma 3 of the supplementary material of Liu

et al. (2017), so does the matrix W. This completes the proof of Theorem 5.

1.6 Proof of Proposition 6

Proposition 6. Define Θ = (β>, η)>, Θ̂p = (β̂>
p , η̂p)

>, and Θ̂c = (β̂>
c , η̂c)

>. Under the

conditions in Theorem 5, as N0 →∞,

(a) Θ̂p − Θ̂c = Op(N
−1
0 ) and N̂p − N̂c = Op(1);

(b)
√
N0(Θ̂p −Θ0)

d−→ N(0,−V−1
ΘΘ) and

√
N0(Θ̂p −Θ0)

d−→ N(0,−V−1
ΘΘ);

(c) N
−1/2
0 (N̂p − N0)

d−→ N(0, σ2) and N
−1/2
0 (N̂c − N0)

d−→ N(0, σ2), where σ2 = ϕ − 1 −
V4ΘV−1

ΘΘVΘ4.

Proof. Since the matrix W defined in (29) of Theorem 5 has the same form as (1) in Theorem

1, the proof of this proposition is similar to that of Proposition 2 and hence omitted.

1.7 Proof of Theorem 7

Theorem 7. Under continuous-time capture–recapture models, the EM algorithm proposed

guarantees that the penalized log EL ˜̀p(N,β, η, α, {pi}) increases after each EM iteration.

Proof. The proof is the same as that of Theorem 3 (a) except that φ(x; β) = exp{−τ exp(x>β)}
in this case.

2 Simulations for continuous-time models

In this subsection, we investigate the finite-sample performance of the proposed PEL and the

EM algorithm under continuous-time capture–recapture models. This section can be seen as
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a complement to the simulation studies in the main paper. Here, we focus on the capture

intensity model Mhb and generate data from the following two scenarios:

(D) Set N0 = 200. Consider the covariate X = (1, X)>, where X ∼ N(0, 1). Let β0 =

(−0.7, 1.2)> and η0 = 0.5.

(E) Same as (D) except that η0 = −0.5.

In each scenario, we set the endpoint to τ = 0.4, 0.6, and 1.0, where the corresponding

capture probability varies from 26% to 45%. For each simulated data set, we deploy the

proposed EM algorithm to implement the CL, EL, and PEL estimation methods under the

model Mhb. We compare their performances based on 500 simulated samples.

Table 1 presents the simulated root mean square errors (RMSEs) of the maximum CL,

EL, and PEL estimators of N . It is clear that the maximum PEL estimator N̂p always

has the smallest RMSE, followed by the maximum EL estimator N̂e, and the maximum CL

estimator N̂c has the largest RMSE in most cases. This demonstrate the advantage of the

PEL method or adding penalty on EL. In Scenario E with τ = 0.4, N̂c has a smaller RMSE

than N̂e, which seems controversial to the findings in Liu et al. (2018). A possible reason for

this phenomenon is that the EM algorithm might stop far away from the “true” estimates

when the CL or EL function is large.

Table 1: Simulation results under continuous-time capture–recapture models.

Scenario D Scenario E
RMSE Level: 95% RMSE Level: 95%

τ N̂c N̂e N̂p Ic Ie Ip N̂c N̂e N̂p Ic Ie Ip
0.4 578.7 429.5 114.0 86.4 94.4 93.4 3677.1 4391.6 216.7 85.4 94.6 94.8
0.6 110.5 107.8 77.9 90.6 94.8 94.8 175.9 170.7 131.2 88.2 93.4 93.8
1.0 63.5 62.6 54.8 91.2 95.0 94.4 70.4 68.0 66.6 90.8 94.4 94.4

Next, we investigate the performance of the CL (Ic), EL (Ie) and PEL (Ip) confidence

intervals at the 95% level. Table 1 presents their coverage probabilities. We can see that the
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EL and PEL confidence intervals have comparable coverage probabilities, which are closer to

95% than those of the Wald-type confidence interval. Figure 1 displays the boxplots of the

logarithm of interval widths. There are many extremely long widths of Ic and Ie especially

in the low capture probability case. In Scenario D (E) with τ = 0.4, 29% (32%) of the upper

limits of Ie are greater than 200 ×n, which is undesirable. In contrast, there are no such case

for the proposed PEL interval Ip. This indicates that the PEL can successfully overcome the

unstability of the EL and produce much better interval estimates.
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Figure 1: Boxplots of the logarithm of lengths of the CL (Ic), EL (Ie) and PEL (Ip) confidence
intervals at the 95% level when τ = 0.4 (column 1), 0.6 (column 2) and 1.0 (column 3) in
Scenarios D (row 1) and E (row 2).
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3 Extension to the ephemeral behavioral models

In the main paper, we have considered the behavioral effect with enduring (long-term) mem-

ory. That is, after an individual is captured, the individual has a long memory of its first-

capture experience and the effect lasts in the remaining period of the experiment, leading to

a higher (trap-happy) or lower (trap-shy) capture probability for all subsequent recaptures.

For individuals with short-term memory, the capture probability of an individual may be

ephemeral and depends on whether or not it was caught on the most recent occasion (Yang

and Chao, 2005). In this section, we take into account this kind of ephemeral behavioral

effect and consider a general model Mthbc1 , where the subscripts h, t, b, and c1 represent

individual heterogeneity, time, enduring behavioral effect, and ephemeral behavioral effect,

respectively. Similarly, we may consider Mhc1 , Mhtc1 , and Mhbc1 as special cases.

Under model Mhc1 , Mhtc1 , Mhbc1 , and Mhtbc1 , we assume that the conditional probability

of the individual being captured on the kth occasion is

P (D(k) = 1|X = x, D(1) = d(1), . . . , D(k−1) = d(k−1)) =
exp(β>zk + γd(k−1))

1 + exp(β>zk + γd(k−1))

for k = 1, . . . , K, where the unknown parameter γ measures the ephemeral behavioral effect,

β and zk are same as those under model Mh, Mht, Mhb, and Mhtb defined in Table 1 of the

main paper.

With similar arguments, we can show that Theorems 1 and 3 and Propositions 2 and 4

also hold under the general models involving the ephemeral behavioral effect. This means

that the PEL estimation approach and the EM algorithm proposed in Sections 2 and 3 of

the main paper are applicable to these general models.

3.1 Simulation studies

We carry out simulations to investigate the proposed method and algorithms under models

Mhc1 and Mhbc1 . We set N0 = 200 and K = 6, and generate the capture–recapture data from
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the following two scenarios:

(F) Let the covariate vector be X = (X1, X2)>, where X1 ∼ N(0, 1) and X2 ∼ Bi(1, 0.5).

Consider the capture probability model Mhc1 with β = (0.1,−2.5,−0.15)> and γ = 0.8.

(G) Same as Scenario (F) except that model Mhbc1 is considered with β = (0.1,−2.5,−0.15, 0.3)>

and γ = 0.5.

All simulation results were obtained based on 500 repetitions. Table 2 presents the root

mean square errors (RMSEs) of the point estimators and the coverage probabilities and

widths of the interval estimators for the abundance N based on the CL, EL and PEL methods.

From Table 2, we have similar findings to those in Section 5 of the main paper. When model

Mhc1 or Mhbc1 is correctly specified, in terms of RMSE, the PEL estimator performs the best,

the EL estimator N̂e second best, and the CL estimator worst. For interval estimation, both

the PEL and EL interval estimators have much better coverage accuracy than the CL-based

Wald-type interval estimator, which has severe undercoverage. Although the PEL and EL

intervals have close coverage probabilities, the PEL interval has much shorter widths. In

summary, the PEL estimation method has the best overall performance among the CL, EL

and PEL methods.

Table 2: Root mean square errors (RMSEs) of the CL, EL, and PEL abundance estimators,

coverage probabilities (unit: %) and average widths of the CL, EL and PEL confidence

intervals at the 95% level.

RMSE Coverage probability Interval width

Scenario N̂c N̂e N̂p Ic Ie Ip Ic Ie Ip

D 28 24 22 90.00 92.28 92.22 97 111 93

E 32 28 24 89.20 93.60 93.80 111 129 100
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3.2 Analysis of the Black bear data

For illustration, we reanalyze the black bear data in Section 6 of the main paper. Besides

enduring behavioral effect, we also take ephemeral behavioral effect into account and use

the proposed EM algorithm to implement the CL, EL, and PEL estimation methods for the

population size under models Mhc1 , Mhbc1 , Mhtc1 , and Mhtbc1 . Here, Mhtc1 and Mhtbc1 also

incorporate the time effect on the capture probability.

Table 3 reports the analysis results of the CL, EL and PEL methods under these four

models. No matter which model is assumed, the EL and PEL estimates always have smaller

standard errors than the CL estimates. Under the most general model Mhtbc1 , the CL and EL

intervals have extremely large upper limits and widths. The upper limit of the EL interval

is even not available. In contrast, the PEL ratio confidence interval is always desirable.

Table 3: Analysis results of the black bear data.†

Method Est. SE CI AIC Est. SE CI AIC

Model Mhc1 Model Mhbc1

CL 57 4.99 [48, 67] 446.07 67 16.87 [34, 101] 446.79
EL 56 4.83 [49, 71] 815.93 63 13.18 [49, 182] 817.12

PEL 56 4.83 [49, 71] 815.93 63 13.18 [49, 150] 817.12

Model Mhtc1 Model Mhtbc1

CL 57 5.20 [46, 67] 446.46 139 254.87 [0, 639] 446.65
EL 55 5.00 [49, 69] 816.25 73 38.41 [48, –]‡ 817.59

PEL 55 5.00 [49, 69] 816.25 72 35.82 [48, 269] 817.60

† Est.: point estimate, SE: standard error, and CI: confidence interval at the 95%
confidence level.

‡ –: A number greater than 109.

To determine the type of behavioral effect, we conduct EL ratio tests for two hypothe-

ses, Mhc1 versus Mhbc1 and Mhb versus Mhbc1 . The resulting p-values are 37% and 0.2‰,

respectively, indicating that the ephemeral behavioral effect is present while the enduring

behavioral effect is not at the 5% significance level. We also report the Akaive information
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criterion (AIC) values for the four models under study. Based on the EL and PEL methods,

model Mhc1 has the smallest AIC and hence can be regarded as the most suitable model for

the Black bear data.
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