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Abstract
The supplementary material consists of two sections. Section [1| presents proofs of the
theorems and propositions in the main paper. Section [2| provides some additional simulation
studies under the continuous-time capture-recapture models. In Section [3| the proposed
penalized empirical likelihood (PEL) method is further extended to the capture-recapture

models with ephemeral behavioral effect.
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1 Proofs of the theorems and propositions in the main
paper

This section is divided into seven subsections, in each of which we prove one of the theorems
and propositions in the main paper. The following lemma plays an important role in these

proofs.

Lamma 1. Suppose that C = Op(NEQ), f(N)=—(N— NC)QI(N > Nc) and Nc is the
’s lower bound. Then (a) Cf'(Ny) = O,(Ny); and (b) Cf"(Ny) = Op<NO_3/2).
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Proof. 1t suffices to show that Nc = O,(Ny), which clearly holds according to the definition
of (Chao (1987)’s lower bound. O

1.1 Proof of Theorem 1

Define Zy., Z;;., and z;;, similar to z;, and define Zg, Z;1o, and z;,o similar to z, with X, X;,

and x; in substitution for x.
Theorem 1. Let (Ny, 8o, ag) be the true value of (N, 3, «) where ag € (0,1). Define
-V 0 —Vi3

0 —Vag + V24VZ41V42 —Vas + V24VZ41V43 ) (1)
—V31 =V + VayV'Vis  —Vaz + V3,V Vg

W

where Vi = 1 — aal, Vi3 =V3 = aal, and

{08(X: B0)/OBY™® = 1o ait o :
T oX A oX B ;,q(zk,ﬁo){l 9(Zy; Bo)}Z;* |
{aqs(X;,@o)/aﬁ

1 - o(X; Bo)
Var = Vaz=(1-a0)’p, Vu=(1—-a))¢—-(1-a)’, ¢=E{1-¢X;8)} "

Vi, = E

V23 - ng - -

} , Vo=V, =(1-0a0)*Va, Viz=¢—0qa;',

T

Here the expectation operator E is taken with respect to the distribution of (X", Dy, ..., D) ".
Suppose that the matriz W is positive definite. When f(N) = —(N — N,)2I(N > N,) and
C = 0,(N;?), as Ny — oo,

(a) \/No{log(]vp/]\fo), (,@p —Bo)",a, —ap}” LN N(0, W), where L5 stands for conver-

gence in distribution;

(b) R,(No,Bo, ) LN X315 and R;,(No) LN X1, where s is the size of B, and x7% is the

chi-square distribution with df degree of freedom.



Proof. Recall the profile penalized log EL function is

l,(N,B,a) = log (]Z)+(N—n log(a Zlog1+§{¢(xz, B) —a}t]+ Cf(N)

n K

+ 3 i log{g(zi: B)} + (1 — di) log{1 — g(zu: B)}],

=1 k=1

where ¢(x;; 8) = [11—,{1 — g(ziro; B)} and € = £(B, a) satisfies

i : ¢(Xi;,3? - —0 2)
— 1+ Hoxi:8) — o}

Under model M, and when C' = 0 (i.e. there is no penalty), the profile log EL reduces
to ls(N, Bs, ) in Section 3.2 of |Liu et al.| (2017). Thus, the former can be regarded as an
extension of the latter to general capture probability models. Theorem 1 can be proved with
similar arguments to those in the proof of Corollary 1 of |Liu et al. (2017). We highlight only
their differences which lie in matrices V and X.

Note that §(Bp, @) is the solution to equation (2) with (Bp, @) in substitution for (3, «v).
It can be shown that the limit value of f(Bp, ap) is & = —1/(1 — ap). Define

BN, B, o) = bg(f)+«N—4zbg E:bg-+ﬂ¢@“ B) — al] + C(N)

n K

+ Z Z [dir log{g(zik; B)} + (1 — dix) log{1 — g(zu; B) }].

i=1 k=1

It can be seen that ¢,(N, 3, a) = h(N, B, a, ), where &, is the solution to 0h/0¢ = 0. Denote
0 = (01,0, ,05,04)", where 6, = /No(N/Ny —1),0, = /No(B — Bo), 03 = v/ No(a — ag), and
0, = v/ No(§ — &). Define

H(0) = h(No + No'?01, By + Ny *05, g + Ny /%05, 6 + Ny V/%04).



According to Lemma 2 in the supplementary material of [Liu et al.| (2017)), deriving the
formula of V is equivalent to calculating the first two derivatives of H(0). By the weak law

of large numbers and the central limit theorem, we have

OH(0) N3/2<n/No_— +1>+N1/20f< )+ Op(Ny )

891 (%)
_ NO1/2 <”/N0 - > + O,(N, 1/2)’
Qg

87-[(0) o 1/2 _ ) ‘ d.)(xi; BO)

9, Z [Z{d““ A ﬂ&] |
8H<O) . —1/2 N[) —n . u 1

003 = N { Qo ; 1 — ¢(xi; Bo) } ’
87'[(0) _ —1/2 g ¢ Xuﬁo — Oy

894 N Z gb(xu /60)

where é(x; Bo) = 0¢p(x; By)/IB and the first equation is from the result in Section 2.2 of the
supplementary material of [Liu et al.|(2017). In addition,

2

OPH(0) (H(X; By) 22 |

00,00; ~ | {1- (% ﬁo)}¢Xﬂo] ZE[ (Z; Bo){1 = 9(Zi; Bo)} 257
+0,(N; %),

OHO) _ (FHONT g B o e

00,005 {89369;} =-E _¢<X;130)+O( ),

*HO)  [O*H(0) T b (X Bo) e

06,00, {69430;} =~ ) Emﬁ)( ),

atid ) ! L, OPH(0)  PHO)

8(9% - _Oégl—l—]Em—i-Op(No )7 9000, = 00,005 _aol’

PHO)  OPH(O) ., 1 i

90,00, ~ 90,00, ~ ) BT oy T O Mo ),



0?H(0)

1
= (1= ) B — (1 — ag)® + O,(N; /).
962

1 — &(X;B80)

The matrix V is the leading term of 9*H(0)/(00007). Tt follows that

Vit Oixs Vizg 0

Osx1 Va2 Va3 Vo

Va1 Vi Vig Vg
0 Vi Vg Vy

where O, is a s-dimensional zero vector and V;;’s are defined in Theorem 1.

Let 0H(0)/00 = u,, + Op(NgW), where w,, = (Un1, W)y, Un3, Ung) | With

(&7)) 802  tn3 = 893  tnd = 804

tpy = N2 (M N 1) = 2O OH(0) oH(0)

It can be verified that E(u,) = 0 and

N, 1-—
Var(uy) = 20 700000 _ ) Cov(upg, um) = —ap”, Cov(tm, ) = 0,
K : ®2 K
<Z5(X;50)
Var(uw, = E Dy — g(Zy; Zy + —— I Dy >0

_ ZE[ (Z1: Bo) {1 - 9(Z; Bo)} 2] — E

{3(X; Bo) 22
{1 —0(X;80)}0(X;B0) |

Var(u,3) = ag Lo, Cov(unz, Uun1) = Cov(tng, un3) = Cov(upg, uns) = 0,

Cov(Uns, Uns) = (1 —ap)?0 — (1 —ap), Var(um) = (1—ag)*e — (1 —ap)®.



By the central limit theorem, we have w, —— N(0, X) as Ny — oo, where

—Vii Oqxs —Vi3 0
Osx1 —Va Osx1 Osx1
s o
—Vi31 O1xs  2Vay(l —ap)™® — Va3 Viu(l — )2
0 015 V(1 — ag) ™2 Viu

Now that ¥ has the same form as that in Lemma 3 of the supplementary material of |Liu et al.
(2017), so does the matrix W. Using similar arguments to those in the proof of Theorem 1

of |Liu et al.| (2017)), we have

VNo{log(N,/No), (B, — Bo) " @, — an} " = Wt + O,(Ny /%), (3)

—1 -1
as Ng — OQ, where t = (tl, tg, t3)7 tl = Un1, t2 = Up2 —V24V44 Un4, and t3 = Up3 —V34V44 Und-

The rest of the proof is similar and omitted. This completes the proof of Theorem 1. [J

1.2 Proof of Proposition 2

Proposition 2. Under the conditions in Theorem 1, as Ny — o0,
(a) By — B = Op(Ny") and N, — N = 0,(1);
(b) VNo(B, — Bo) == N(0, =V) and v/No(B. — Bo) =+ N(0, =V,);

(¢) Ny '2(N, = No) —%5 N(0,02) and Ny (N, — No) -2 N(0,02), where 0* = ¢ — 1 —
V32V521V23, ¢ and V;;’s are defined in Theorem 1.

Proof. By definition, ,@C must be a stationary point of of £.(3) = log{L.(8)}, which implies



0= 660([/3\6) /0B. Applying the first-order Taylor expansion to this equation, we have

_ 9(Bo) | PPBo) 4
0 = =55 + 3805 (Be — Bo) + Oy(1)

= Nol/Qunz + N0V22(Bc — Bo) + 0,(1),

which implies
VNo(Be = Bo) = =V tz + Op(Ny ). (4)
Denote the inverse of W = (W,;)1<;j<3 by (W¥);<; j<3. Equation (3)) implies

N(;l/z(gp - ﬁo) = W21t1 + W22t2 + W23t3 + OP(N(;lm)
= W2y, + W2y, + W23y,
—(WEVaVi! + WV Vi s+ 0p(N; ).

By the definition of u,, it can be verified that u,, = (1 — ag)un1 + (1 — ap)*tUnz + Op(No_l/2).

Using this expression, we have

No_l/z(ép —Bo) = {W?'— (1 —a)(W?Vy, Vi + W3V, Vi b + W,
HW2 — (1 - )2 (W2Va Vi + WBV, Vi) b + O, (Ny 2)(5)

Comparing Equations and (f]), we find that proving Bp — BC = 0,(Ny ") is equivalent to

proving the following equations:

W2 — (1 — ag)( W2V V! -+ W3V Vi) = 0, (6)
W5 — (1 — o) (W2Vo, Vi + WPV, VD = 0, (7)
w2 = Vvl (8)



In fact, we can show that

Was = Va3 + Vo Vi Vig = (1 — ag) Vau Vi,
~ 1—ag)Pe—1). _
Wiz = —Viaz+ ViV Vi = ( ng = )V441‘
0

Comparing the second row of W=! - W = I, we have

W?l(aal _ 1) - aalw23 — 0’
(1 —a)(p—1)

—ap "W+ W2(1 - ag) Vo Vi + W

W (= Vay + Vo Vi Vip) + W3 (1 — )V Ve = L
Simplifying the first two equations gives

W = (1 - a)W?, W = —W?V,,

From these two equations, we immediately have Equations @ and and Equation @D

becomes —W?2Vy, = I, which is equivalent to Equaion ().

So far, we have proven ,@p —BC = O,(N;"). Since \/NO(BC —Bo) = —V2_21um+0p(N0_1/2)
and U, N N(0, —Vag,), then we conclude that both \/NO(BI, — Bp) and \/No(éc — Bo)

converge to N(0, —V5,') in distribution. This completes the proof of Result (b).
We now turn to Result (c). By the definition of N,

e R L 1
No e = o) = Z{l—qﬁ(xi;ﬁc) 1_¢(X";B°>}

Rk 1 B
- {;1—¢(xi;ﬁo) N"}



= —Vavy No(,é\c — Bo) — (Un1 + Un3) + Op(N61/2)
= V32V2_21un2 — (Unl + Ung) + Op(N(;lﬂ)

In addition, it follows from that

Ny PN, = No) = {WM = (1 — ap) (W2 Vo Vi + WPV Vil b + W',
H{W™ — (1 = o) (WP Vi Vi + WV Vil s + O, (Ng ).

Comparing the above two approximates, we find that proving ]/\\fp — ]/\\fc = 0,(1) is equivalent

to verifying the following equations:

WH — (1 — )WV, V! + WBV, V) = —1, (10)
W — (1 — o) (WBVo, Vi + WBV, VD = —1, (11)
W12 - V32V521. (12)

In fact, comparing the first row of W=1 - W = I gives

WhHag! —1) —ag'WH = 1, (13)

— 1yl 12 —1 - (-1
—ag W+ WH(1 —ag)VauVyy + W o Viu = 0, (14)
W' (= Vo + Vo Vi Vi) + WP(1 — )V Ve = 0. (15)

Then, Equation plus Equation implies Equation (10). Equation X (1 — )
minus Equation X oy gives Equation . Equation times (1 — )~ ! plus Equation
leads to

1
1—040.

W21 — ag) Vo Vi + WHB(1 — )2V} = (16)

10



Equation (16) xV4s/(1 — ap) plus Equation gives

Vi v
2 - 32,

WV = ———

which implies Equation ((12)).
Therefore Np—ﬁc = O,(1). Since Ngl/Z(ﬁc—Ng) = V32V2_21un2—(un1+un3)+0p(N(;l/2)
and u, % N(0, %), then we conclude that both \/NO(]VP — No) and v/No(N, — Ny) converge

to N(0,¢?) in distribution, where
O'2 = Var{V32V2_21’U,n2 — (unl + Ung)} = E{]_ — ¢(X, ﬂo)}_l —1- V32V2_21V23.

This completes the proof of Result (c). Result (a) has been proved in our proofs of Results
(b) and (c). O

1.3 Proof of Theorem 3

The penalized log EL function under discrete-time capture-recapture models is

LN B {p}) = log (f ) 4N ) log() + 3 los(p) + CH(N)
30 (dilog{g(zu: )} + (1 — du) log{1 — gz B))]. (17)

i=1 k=1

Theorem 3. With discrete-time capture-recapture models, the EM algorithm proposed for
the PEL method has following properties.

(a) When N is fized, the penalized log EL is nondecreasing after each EM iteration.
(b) When N is unknown, the penalized log EL is nondecreasing after each EM iteration.

(c) When N is unknown, the sequence of EM iterations (N, 3 o) converges to a local

mazximum PEL estimator (]\Afp, Bp, Q).

11



1.3.1 Proof of Result (a)

Proof. Let @ = (B7,a)” and ¥ = (87,p1,...,p,)" with 87 and ) being their values at
the rth iteration (r = 0,1,...). When N is fixed, the penalized log EL function of % is

~ N
b(y) = log( )+ —n)log(a +2:10gpz +Cf(N)

n
=1

£y

=1

[dix log{g(zix; B)} + (1 — dix) log{1 — g(zix; B)}]-

K
=1
To prove Result (a), it suffices to prove Zp(zb(”l)) "y ly(p™) >0 for any r = 0, 1,.... To this
end, we define r(v, ™) = Q(h|1h™) — £,(3p). Since QYD) > Q(ah|p ) for all 1,
we shall have Zp(’d;(’")) < Zp(@b(”l)) if we can prove k(U (M) < k(™) h™).

It can be verified that

n

. 0) = 3 [ul os{otei B} ~tog () ) = (3 = myog(a) — (V)

i=1

- {2 (2) -

-y (EI0G = x)ID; = 0.9 = 10 { L)
(M) enw
— Eyo (log [ﬁlg{wxzﬁ)pz}“xf"” D, = _DN_0>
s (%) s
— By log (kX" )} Dot = .. = Dy = 0] —log (1 ) = (),

where X* = (X[,,...,Xy)", Eym is the expectation operator with respect to k(x; ™),

12



and k(X*;4)) is the conditional probability function of X* given D, 41 =...= Dy = 0.
When N is fixed, it follows from Jensen’s inequality that

*, r+1

K:(flp(TJrl),/()b(T)) _ "i(’lﬁb(r)7¢(r)) — Ew(r> |:10g {k(i(—,"b))} ‘Dn+1 = DN = :|
* (r+1)

S log |:E¢(r){%‘ ...:DN:O}:|

= 0.

1.3.2 Proof of Result (b)

Proof. When N is unknown, we redefine @ = (N, 87, a)" and ¥ = (87, py,...,p,)" with 8
and 1) being their values at the rth iteration (r=20,1,...). Now,

k(") = Q) — L(a)

n

= >l g0t B~ log () ) = (N = m)log(e) ~ V)

i=1

n

- ;[w%og{%}]—mg(f) (N~ N©)log(a) — CF(N)

= Ew(m [log{k(X*; ¢>}’Dn+1 =...= DN<T) = O]
~tog () = (= N1 og(a) = CFN)

where X* = (X[, ,...,X},)" and k(X*;9)) is the conditional probability function of X*

given Dy, .1 =...= Dymn =0.

13



It follows from Jensen’s inequality that
k(T p™) — g (h™) 4p™)
= ]Ew(r) {log

N N+
+ log ( ) —log ( ) — (N — N log(alm 1)
n n
)

+C{f(ND) — f(NCTD)}

N
< log ( n ) + (N —n)log(a™D) + CF(N™)
N(r+1)
— {log ( ) + (N(T-l-l) _ n) log(a(r-i-l)) + C«f(N(r—f—l))}
n
< 0,

where the last inequality holds because N1 maximizes the function log (]X) + (N —

n)log(a™V) + C f(N). Then,

L) = Q™) — k(x™,4p™)
QD [9p™) — i (ap D) p(1)
0y (D).

IN

1.3.3 Proof of Result (c)

Proof. Let @ = (N,37,a)" and ¥ = (07, py,...,p,)" with 8 and ™) being their values
at the rth iteration (r =0,1,...). To prove Result (c), we first note that (9;, = (ﬁp, A;, a,)’

14



is the solution of

Si(N,n) — log(a) — 2C(N — NJI(N > N.) = o0, (18)

N —n " & B
o T e —a) 19)

S ¢ £0(xi3 B) _
U B e ey )

=1 k=1 =1

. ¢(xi;8) — a _
2o —ay - ° 21)

where S1(N,n) = dlog{T'(N + 1)}/ON — dlog{T'(N — n + 1)}/ON. Combining with
gives £ = —(N —n)/(na).

Recall the conditional expectaton of the complete-data log-likelihood Q(v|¢™) = £1(B)+
ly(p1y ..., pn), where

n

L) = (Z (dix log{g(zx; B)} + (1 — du) log{1 — g(zs; B)}] + w'” 1og{¢<xi;ﬁ>}>,

=1

n

bopr,-pa) = 3w+ Dlog(p),  w” = (N® —n)g(x;; 80)p" Jal”.

i=1

Maximizing Q(1|1p")) or £,(83) with respect to 3 gives BV, which satisfies

(r+1)
L Zz{d’k_ 9(zix; BHY) }Z’k+z o(x o IrBH ):0' (22)

=1 k=1

Under the constraint Y 7 p; = 1, maximizing Q(+p|%") or la(py, ..., p,) with respect to

15



pi’s gives the (r + 1)th iteration of p;’s, namely

ey _ 0 +1 s S (23)
el NO o
Note that a1 and NU*D satisfy
Y Z ¢ x;: 3 r+1 (r+1) (24)
S1(NUHY n) —log(al™) — 2C0(N+) — NC)I(NO"“) > N,) = 0. (25)

Without loss of generality, we assume that ¢! and (") converge to 1. After substi-

tuting w'” = (N = n)g(x;; B7)p" /o and 9+ = (™ = 4 into Equations [22)—(25),
it can be verified that

(67

23) = pi= NV mo ) i=1,2,...,n,
@5) = Si(N,n)—log(a) —2C(N — N)I(N > N,) =0,
z::p - ZaN— (N =n)o(xi:B) o
- .<Xi;/8) _
" = ;;{dzk - szwB }sz + < O[N n)gb(xz,,@') - 07

. ¢(Xi;5) _
&Y = Z_; aN—(N-noxiB)

The last four equations agree with Equations (18] ., respectively. This guarantees that

the sequence {1 :r =1,2,...,} converges to a local maximum PEL estimator. ]
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1.4 Proof of Proposition 4

Proposition 4. In the framework of Remark 2 in the main paper, the sequence of EM

iterations {(N),B")) . r = 1,2} converge to a local mazimum CL estimator (]/\\fc,ﬁc).

Proof. By definition, the maximum CL estimator 8, = (N,, 37) is the solution of

N—Zm = 0, (26)
Z{ ik — g Zlkv }sz Z% = 0. (27)

i=1 k=1
The remaining proof is similar to that of Result (¢) in Theorem 3. For the CL method, the
iterations {(N™), 8" ol )) :r=0,1,...} satisfy Equations (22), (23)), (24), and

n

(r+1) — "
N 1 -+’

(28)

Without loss of generality, we assume that ¥+ and () converge to 1. After substi-
tuting wl@ = (N — n)gb(xi;,B(’"))pl(-r)/a(” and YD = (") = 9 into Equations 22)-(24)
and , we have

1 o
@3) & @8) = pz—N{l_ ERNE i=1,2,...,n,

sz—l = Zl— =N,
@2 = ZZ{dzk_ 9(zir; B }sz—i-z ¢Xz;(“ =0.

=1 k=1

Note that the last two equations respectively agree with Equations f. This means

that the EM iterations converge to a local maximum CL estimator. ]

17



1.5 Proof of Theorem 5
Theorem 5. Let (Ny, Bo, 1m0, ) with o € (0,1) be the true value of (N, B,n,a). Define
Vi1 0 —Vis

W = 0 —Voeo+ VesVis Vse —Ves+ VesVis Vi | (29)
—Vyu  —Vye+ V45V5_51V5e —Vyy + V45V§51V54

where Vi1 = 1 —ag', Vis = Vi = a5, Vee = (Vij)a<ij<s, Vie = V&, = (Vi2,0),
Vso = Vis = (V52,0), o = E{1 — ¢(X§ﬁ0)}_l; and

726200 X (X Bo)
1 — o(X; Bo)

V22:]E

(" = {1 = 6(X; Bo)} - e MO] X,

. By X X; X
Vi = VB[ ) ] v v - { A,

Vo = Vi =(1-0ag)’Vay, Vy=E [6"0{1 — o(X;80)} — TQBJXMO} )

Vie = —oag'+¢, Vi =Vau=(1-ag)p, Vss=(1-0a)'¢—(1-ag)

Suppose that the matrix W is positive definite. When f(N) = —(N — Nc)2I(N > Nc) and
C = 0,(Ny?), as Ny — o0,

(Cl) Vv NO{lOg<Np/NO)7 (/é\p - BO)Ta ﬁp — To, 6V\p - aO}T i> N(07 W_l);'
(b) R,(No, Bo,no, ) N X31s and Ry (No) SN X3 where s is the dimension of 3.

Proof. The profile penalized log EL under continuous-time model My, is
N n
G(N.B,¢,a) = log( |+ (N—n)log(a) - > log[l + &{o(xs; 8) — a}] + Cf(N)
i=1

+ Z |:mz'/8TXi + (m; — 1)np — {re" +ta(1 —e")} eﬁTxi] ,
i=1

18



where ¢(x; 8) = exp(—7e? *) and & = £(8, a) satisfies

n

¢(Xz’§,3) -« B
; 1+ &{o(xi;8) —a} 0 (30)

It can be verified that {; = —1/(1 — ) is the limit of £ (ﬁp, @) which is the solution of
(B0) with (3,,4d,) in place of (8, a). Define

AN, Bm .8 = log (f) + (N = n)log(0) = 3 _log[1 + £{0(x; B) — a}] + CF(N)
+ Z[mi,@TXi + (m; — 1)n — {re” +t;n(1 — e”)}eﬁTxi]‘

It can be seen that ¢,(N, B, ¢,a) = h(N, B, ¢, «, &), where &, is the solution to 0h/I¢ = 0.
Denote 8 = (91, 0;, 03, 94, 05)T, where 01 =/ No(N/NQ—l), 02 =/ Ng(ﬁ—ﬁo), 03 =\ N()(T]—
M), 04 = v/ No(a — ag), and 05 = v/ No(§ — &o). Define

H(B) = h(No + Ny 201, Bo + Ny 20,10 + Ny %03, a0 + Ny /204, &0 + Ny /%05).

As clarified in the proof of Theorem 1, the proof can be done if we derive the formulae of

V and X. It follows from the law of large numbers and the central limit theorem that

801 (7))
0H(0) 12 Y09 (Xi; Bo)
- N = Ti0€™ + tip (€™ — 1)y — — P )y
90, 0 ; [ml TYi0€" + 11(6 )70 1 ¢(Xi;,30) X
OH(0) 12N 0
o = N, Zzl{mz — 1 — (7 — ti)vioe™},

8H<0) —1/2 N() —n - 1
= N, — -
00, 0 { Qo ; 1 — ¢(xi; Bo) } ’
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87—[(0) o —1/2 . ¢Xzaﬁo — Qp
695 N Z Qb Xuﬂ())

where 70 = €% % and ¢(x;; Bg) = e 7" for i = 1,...,n. Let 0H(0)/00 = u, + O,(N, Ne'3),

_ T T
where w,, = (Un1, U, 9, Un3, Ung, Ups)  and

Up1 = N() ( o + ; Un2 802 ) unj aej y J 37 75'

For the second partial derivative of H at @ = 0, we have

OPH(0) ~1/2 *H(0) 827{( ) —1
o~ LT F 0N e = om0
PPH(0O) " o e~ 0T i0(1 — Ti0)
90,00] Ny Z[ {Te™ 4+t (1 — ™) }yio — pp—
2 ,—27i0
T ’}/ e ®2
L= (1 — e m0)2 } *
9?H(0) O?H(0 "
90,00, {60360T} = —Ny Z{ T —t1)e™ X, }
82H(0) . 327-[ Z 7—710¢ X’L?IBO X
00,00, aemm - {1 —o(x:;80)
827-[(0) . 827{ - Z 7—'720¢ Xza /30 X
00,005 ae5am - {1 — o(xs;80)}*
0*H(0) _ .
062 = —N! Z{(T —ta)e™ i},
0*H(0)

o0 :N‘)l[ a3 2{1— Xz,ﬂo)}
92H(0) 521(0)

00,005 B 005004 == Z {1 = o(x; 50)}2’
0*H(0) {o( xz,ﬁo — ap}?
00z (1= a0y Z {1—0(xi;80)}%
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In the process of deriving V and X, we need to calculate the limit of 9?H(0)/00007 and

the mean and variance of u,,. The following lemma eases much of the calculation burden in

our proofs.

Lamma 2. Define vg = P X and let Ty denote the time of an individual being first captured.

Given the covariate X, the following conditional expectations hold:

E{I(N(7) > 0)|X}
E{T,I(N(r) > 0)|X}
E{N?(1)[X}

E{TWN(7)IX}

E{TYI(N(r) > 0)|X}

IL—e 0 E{N(N)|X}=1—eT0+ 7€My — P + ™70,
1o — 7™ — 77 [,

1 —e ™0 4 37qpe™ — 3e™ + 37T 724220

—27yp€%™0 4 2% — 20T

Te™ — 7770 4 77T L 1 /79 — e /g

—2e™ [y + 2™ [y,

2/78 — 2e7T0 /42 — 27€7T0 [y — TR0,

Proof. The first equation is derived from the fact that N(7) follows a Poisson distribution

Poi(7vy) given X. By the property of conditional expectation and the integration by parts,

we have

E{N(7)[X}

E{T,I(N(r) > 0)|X}

E{N?(7)X}

BEW(OITLXYX) = [ {1+ (7 = e oede

1 —e 0 4 7eMryy —e™ _E =T

E[T\E{I(N(7) > 0)|T1, X}|X] = / "

/70 —Te™ ™0 —e7 770 [y, "

E[E(N(7)[T3, X}|X]

[ NI = %) + BV = 1 X o e

/ﬁv—wmm+ﬂ+w—w%wPMawa
0
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= 1—e ™ 4 3rye™ — 3™ 4 3T 7-2,7862770
—27”)/062770 1 9e2M0 _ 26277077707

E{TN(7)X} = /0 "EAN(1)[T) = thtqoe—tdt

= / {1+ (7 — t)y0e™ Hype 'dt

0

—= 7‘6770 _ Te_T'YO _I_ 7-6770_7—'70 + 1/70 _ e_T'YO/,YO
—2e™ [ + 2670 [y,

E{T (N (1) > 0)|X} = / 2ype 0 dt = 2/98 — 277 /N5 — 2770 [y — TR0,
0

Applying Lemma [2| and the central limit theorem, it can be verified that

0?H(0) B (7’27(2)6_2”0

00,007 1—e ™0
+0,(N; %),

O*H(0) {W%m)

P = K 70 n—TY¥ _ M) X O N*l/Q
8028‘93 86389;} (T’}/oe Te € ) + p( 0 )7

+ 72736—T70 N T’Yoé’no — T 4 o 1 e—T’Yo) X

R
82?9;(»?()) = —E(7y0e™ + "0 — ™) + O,(N, %),

02;*920> = —03' + B + O ),
R
32§ieéo> = (1- ) By — (L= 00" + 0,3, ).
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The matrix V, which is the leading term of 9?H(0)/(00007), is

Vit 01xs 0 Viu 0
Osx1 Va2 Va3 Va Vg
V = 0 V3 Vi3 0 0 )
Vi Vi 0 Vy Vg
0 Vs 0 Vg Vs

where V;;’s are defined in Theorem 5. Using Lemma[2] it can be verified that E(u,) = 0 and

N, 1—op)a
Var(u,;) = a—g . % =ap' =1, Cov(tng,tn) = —ay’,
0
7242270
Var(un2) = E[1—e ™0 4 1y5e™ — ™ 4 P70 — 7’2’}/36_770 _ ﬁ ®2
— e T
= —Vy, Cov(uy,uz) = Cov(uy,us) =0,
— E{(T,yoeﬂo 4 gm0 _ eno)x} — _\[237

- (COV(un% un4) = COV(“TQ? un5) = Os><17

= Cov(ups,ups) =0, Var(uy) = ozo_l + @,

)
)
Var(u,s) = E (T'yoeno + el — e”o) = —Vsj3,
Cov(un3, Una)
)

Cov(Una, uns) = (1 —ap)®0— (1 —ap), Var(ums) = (1—ap)'e — (1 —ag)®.

By the central limit theorem, we have u,, LN N(0,X) as Ny — 0o, where

—Vi1 Oixs 0 —Viu 0
Osx1 —Va2 —Vy3 0551 0551
Y = 0 —Vs3 —Va3 0 0
—Var O1xs 0 2Vy(l—ag)? = Vi Vss(l—ag)?
0 01 xs 0 Vis(1 — )2 Vs
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Note that 3 has the same form as that in Lemma 3 of the supplementary material of |Liu

et al.| (2017), so does the matrix W. This completes the proof of Theorem 5. [

1.6 Proof of Proposition 6

Proposition 6. Define © = (8",n)", @p = (A;,ﬁp)T, and ©, = (AI,ﬁC)T. Under the

conditions in Theorem 5, as Ny — o0,
(a) ©,— 0, =0,(N;") and N, — N, = 0,(1);
(b) VNo(©, — 8y) -5 N(0,—VgL) and v/No(6, — 6,) - N(0, = Vgl);

(¢) Ny VAN, = No) & N(0,02) and Ny (N, — No) -2 N(0, 02), where 0® = ¢ — 1 —
V4@V61@V@4.

Proof. Since the matrix W defined in of Theorem 5 has the same form as (I]) in Theorem

1, the proof of this proposition is similar to that of Proposition 2 and hence omitted. O

1.7 Proof of Theorem 7

Theorem 7. Under continuous-time capture—recapture models, the EM algorithm proposed

guarantees that the penalized log EL Zp(N, B,n,a,{p;}) increases after each EM iteration.

Proof. The proof is the same as that of Theorem 3 (a) except that ¢(x; ) = exp{—7exp(x"f)}
in this case.

[

2 Simulations for continuous-time models

In this subsection, we investigate the finite-sample performance of the proposed PEL and the

EM algorithm under continuous-time capture-recapture models. This section can be seen as
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a complement to the simulation studies in the main paper. Here, we focus on the capture

intensity model My, and generate data from the following two scenarios:

(D) Set Ny = 200. Consider the covariate X = (1, X)7, where X ~ N(0,1). Let 8By =
(—0.7,1.2)" and 7y = 0.5.

(E) Same as (D) except that ny = —0.5.

In each scenario, we set the endpoint to 7 = 0.4, 0.6, and 1.0, where the corresponding
capture probability varies from 26% to 45%. For each simulated data set, we deploy the
proposed EM algorithm to implement the CL, EL, and PEL estimation methods under the
model My,. We compare their performances based on 500 simulated samples.

Table |1| presents the simulated root mean square errors (RMSEs) of the maximum CL,
EL, and PEL estimators of N. It is clear that the maximum PEL estimator ]Vp always
has the smallest RMSE, followed by the maximum EL estimator Ne, and the maximum CL
estimator ]/\\TC has the largest RMSE in most cases. This demonstrate the advantage of the
PEL method or adding penalty on EL. In Scenario E with 7 = 0.4, ]/\\7,3 has a smaller RMSE
than ﬁe, which seems controversial to the findings in |Liu et al. (2018). A possible reason for
this phenomenon is that the EM algorithm might stop far away from the “true” estimates

when the CL or EL function is large.

Table 1: Simulation results under continuous-time capture-recapture models.

Scenario D Scenario E
RMSE Level: 95% RMSE Level: 95%
r N, N. N, I, I. I, N N. N, I. I. I,
0.4 5787 4295 114.0 8.4 944 934 3677.1 4391.6 216.7 85.4 94.6 94.8
0.6 110.5 107.8 779 906 94.8 94.8 175.9 170.7 131.2 88.2 934 93.8
1.0 635 626 54.8 91.2 950 944 704 680 66.6 90.8 944 944

Next, we investigate the performance of the CL (Z.), EL (Z.) and PEL (Z,) confidence
intervals at the 95% level. Table [1| presents their coverage probabilities. We can see that the
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EL and PEL confidence intervals have comparable coverage probabilities, which are closer to
95% than those of the Wald-type confidence interval. Figure |1] displays the boxplots of the
logarithm of interval widths. There are many extremely long widths of Z. and Z, especially
in the low capture probability case. In Scenario D (E) with 7 = 0.4, 29% (32%) of the upper
limits of Z, are greater than 200 xn, which is undesirable. In contrast, there are no such case
for the proposed PEL interval Z,,. This indicates that the PEL can successfully overcome the

unstability of the EL and produce much better interval estimates.

~ | e o ! o~ , 8
— o T — M~ q ° . 8
7@ 0 - s i ;LﬁL%
© 7 nE o+ © ‘ ‘
Cesed| cldss] Cl=ss
<+ 4 4 L & -« 4 + L+ S L
T T I I T I T T I
. I. 1, . I. 1, . I. 1,
S* o . < I
_ S o :
g:s o OOAi#T Nfi‘?ﬁﬁ
+ -+ ! ©o - I ‘ !
o0 - _
== > == - |EREE
- 4 . 4 2+ < 4 L L -« 4 -
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. I. 1, . I, . . P

Figure 1: Boxplots of the logarithm of lengths of the CL (Z.), EL (Z.) and PEL (Z,,) confidence
intervals at the 95% level when 7 = 0.4 (column 1), 0.6 (column 2) and 1.0 (column 3) in
Scenarios D (row 1) and E (row 2).
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3 Extension to the ephemeral behavioral models

In the main paper, we have considered the behavioral effect with enduring (long-term) mem-
ory. That is, after an individual is captured, the individual has a long memory of its first-
capture experience and the effect lasts in the remaining period of the experiment, leading to
a higher (trap-happy) or lower (trap-shy) capture probability for all subsequent recaptures.

For individuals with short-term memory, the capture probability of an individual may be
ephemeral and depends on whether or not it was caught on the most recent occasion (Yang
and Chao, [2005). In this section, we take into account this kind of ephemeral behavioral
effect and consider a general model My, where the subscripts h, t, b, and ¢; represent
individual heterogeneity, time, enduring behavioral effect, and ephemeral behavioral effect,
respectively. Similarly, we may consider My, , Mps.,, and My, as special cases.

Under model Mpe,, Mate, s Mppe,, and My, , we assume that the conditional probability

of the individual being captured on the kth occasion is

_ exp(B'zi, + vd-1))
1+ exp(B7zr + vdk-1))

P(Duy = 11X =x,Dy =dqy, ..., D=1y = d—1))

for k=1,..., K, where the unknown parameter v measures the ephemeral behavioral effect,
B and z, are same as those under model My, My, My, and My, defined in Table 1 of the
main paper.

With similar arguments, we can show that Theorems 1 and 3 and Propositions 2 and 4
also hold under the general models involving the ephemeral behavioral effect. This means
that the PEL estimation approach and the EM algorithm proposed in Sections 2 and 3 of

the main paper are applicable to these general models.

3.1 Simulation studies

We carry out simulations to investigate the proposed method and algorithms under models

My, and Mppe,. We set Ny = 200 and K = 6, and generate the capture-recapture data from
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the following two scenarios:

(F) Let the covariate vector be X = (X, X»2)", where X; ~ N(0,1) and X, ~ Bi(1,0.5).
Consider the capture probability model My, with 3 = (0.1, —2.5, —0.15)" and v = 0.8.

(G) Same as Scenario (F) except that model My, is considered with 3 = (0.1, —2.5, —0.15,0.3)"7
and v = 0.5.

All simulation results were obtained based on 500 repetitions. Table [2] presents the root
mean square errors (RMSEs) of the point estimators and the coverage probabilities and
widths of the interval estimators for the abundance N based on the CL, EL and PEL methods.
From Table [2] we have similar findings to those in Section 5 of the main paper. When model
My, or Mpse, is correctly specified, in terms of RMSE, the PEL estimator performs the best,
the EL estimator ﬁe second best, and the CL estimator worst. For interval estimation, both
the PEL and EL interval estimators have much better coverage accuracy than the CL-based
Wald-type interval estimator, which has severe undercoverage. Although the PEL and EL
intervals have close coverage probabilities, the PEL interval has much shorter widths. In

summary, the PEL estimation method has the best overall performance among the CL, EL

and PEL methods.

Table 2: Root mean square errors (RMSEs) of the CL, EL, and PEL abundance estimators,
coverage probabilities (unit: %) and average widths of the CL, EL and PEL confidence
intervals at the 95% level.

RMSE Coverage probability Interval width
Scenario N, N, N, . 1. I, ., 1. I,
D 28 24 22 90.00 92.28 92.22 97 111 93
E 32 28 24 89.20 93.60 93.80 111 129 100
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3.2 Analysis of the Black bear data

For illustration, we reanalyze the black bear data in Section 6 of the main paper. Besides
enduring behavioral effect, we also take ephemeral behavioral effect into account and use
the proposed EM algorithm to implement the CL, EL, and PEL estimation methods for the
population size under models My, Mppe,, Mpte,, and Mpgpe,. Here, Mpie, and My, also
incorporate the time effect on the capture probability.

Table [3| reports the analysis results of the CL, EL and PEL methods under these four
models. No matter which model is assumed, the EL and PEL estimates always have smaller
standard errors than the CL estimates. Under the most general model M., , the CL and EL
intervals have extremely large upper limits and widths. The upper limit of the EL interval

is even not available. In contrast, the PEL ratio confidence interval is always desirable.

Table 3: Analysis results of the black bear data.f
Method Est. SE CI AIC  Est. SE CI AIC
Model thl Model Mhbq

CL 57 499 [48,67] 446.07 67  16.87 [34, 101] 446.79
EL 56  4.83 [49,71] 81593 63  13.18 [49, 182] 817.12
PEL 56 4.83 [49,71] 81593 63  13.18 [49, 150] 817.12

Model My, Model Mptpe,

CL 57 520 [46, 67] 446.46 139 254.87 [0, 639] 446.65
EL 55 5.00 [49,69] 816.25 73  38.41  [48,-]F 817.59
PEL 55 5.00 [49,69] 816.25 72  35.82 [48,269] 817.60

t Est.: point estimate, SE: standard error, and CI: confidence interval at the 95%
confidence level.
¥ —. A number greater than 10°.

To determine the type of behavioral effect, we conduct EL ratio tests for two hypothe-
ses, My, versus My, and My, versus Mpyy.,. The resulting p-values are 37% and 0.2%o,
respectively, indicating that the ephemeral behavioral effect is present while the enduring

behavioral effect is not at the 5% significance level. We also report the Akaive information
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criterion (AIC) values for the four models under study. Based on the EL and PEL methods,
model My, has the smallest AIC and hence can be regarded as the most suitable model for

the Black bear data.
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