

Theoretical Study of Cellulose II Nanocrystals with Different Exposed Facets

Can Leng^{1,2,3}, Kenli Li^{3,4}, Zean Tian^{4*}, Yubing Si^{5**}, Huang Huang³, Junfeng Li⁶, Jie Liu^{1,2}, Wei-Qing Huang⁷, and Keqin Li^{4,8***}

¹Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology, Changsha 410073, China

²Laboratory of Software Engineering for Complex Systems, National University of Defense Technology, Changsha 410073, China

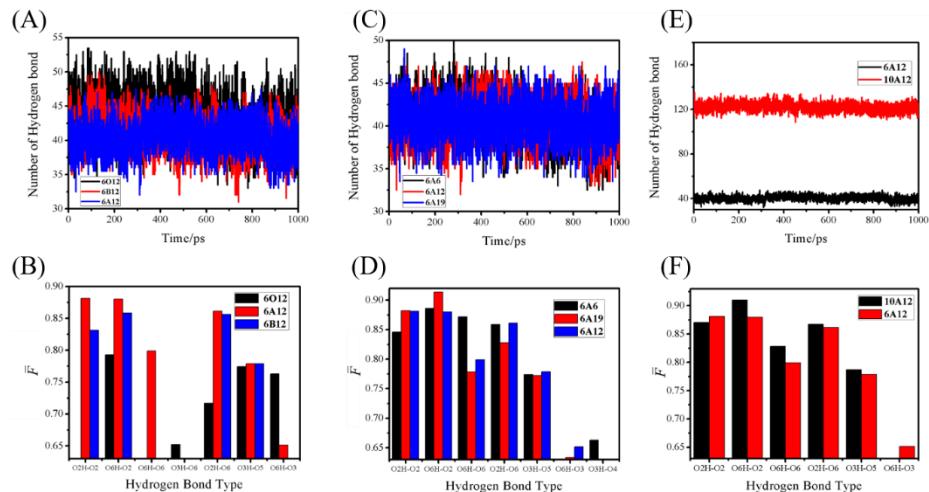
³National Supercomputer Center in Changsha, 410082, China

⁴College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China

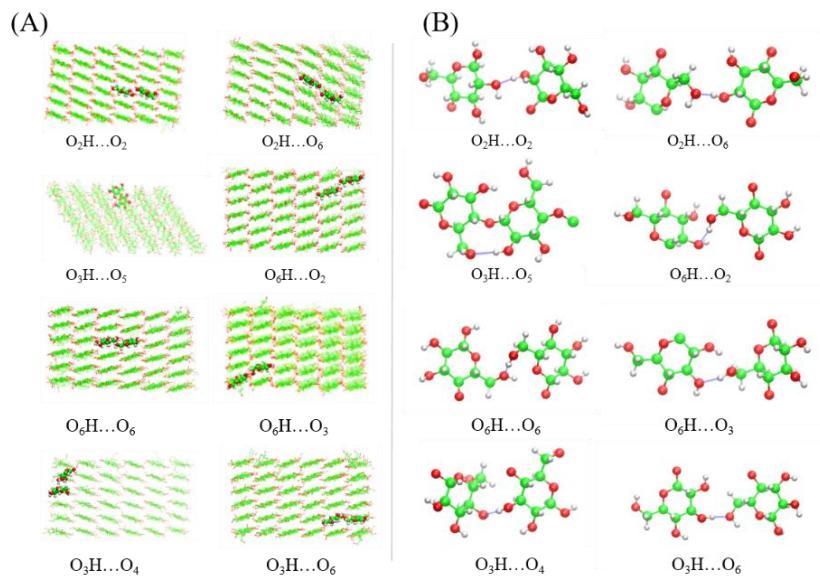
⁵College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China

⁶College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, 471934 Luoyang, China

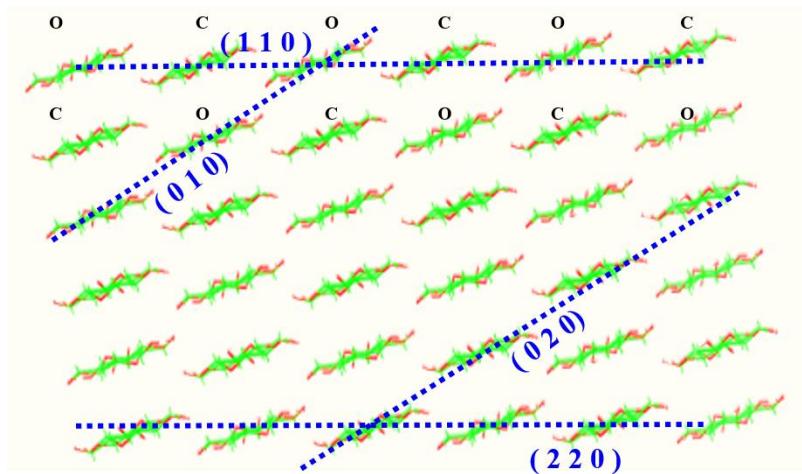
⁷Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, China


⁸Department of Computer Science, State University of New York, New Paltz, New York 12561, USA

*tianzean@hnu.edu.cn


**ybsi@zzu.edu.cn

***lik@newpaltz.edu


Supplementary Materials:

Supplementary Figure S1. The number and average fraction \bar{F} of hydrogen bonds in the cellulose II nanocrystal models at the terminal anhydroglucoside. (A) and (B) are the number and \bar{F} of hydrogen bonds in 6O12, 6A12 and 6B12 of the terminal anhydroglucoside, respectively; (C) and (D) are the number and \bar{F} of hydrogen bonds in 6A6, 6A12 and 6A19 models of the terminal anhydroglucoside, respectively; (E) and (F) are the number and \bar{F} of hydrogen bonds in 6A12 and 10A12 of the terminal anhydroglucoside, respectively.

Supplementary Figure S2. The ONIOM models and the hydrogen bonds scheme. (A) The ONIOM models in which all hydrogen bond types are in their highest fraction samples; (B) The hydrogen bonds are colored with the blue dash line in cellulose II models.

Supplementary Figure S3. The 3×cello-tetramer chain sheet models derived from the original nanocrystal models of cellulose II. O refers to the origin chain, C refers to the center chain. The $(0\ 1\ 0)$, $(0\ 2\ 0)$ and $(1\ 1\ 0)$, $(2\ 2\ 0)$ crystal plane are selected with a 3×cello-tetramer chain sheet in both O-C-O, C-O-C types.

Supplementary Table S1. The average hydrogen bond analysis in six types of cellulose II nanocrystal models. The type, average fraction \bar{F} of HBs at the terminal residues, the average O···O distance (AvgDist) and angle (AvgAng) of HB type of the six nanocrystal models.

Models	Type	\bar{F}	AvgDist/Å	AvgAng/°
6A6	O ₂ H···O ₂	0.846	2.766	162.257
	O ₆ H···O ₂	0.886	2.756	160.932
	O ₆ H···O ₆	0.872	2.777	162.457
	O ₂ H···O ₆	0.859	2.769	160.015
	O ₃ H···O ₅	0.774	2.756	156.305
	O ₃ H···O ₄	0.663	2.771	160.359
6A12	O ₂ H···O ₂	0.881	2.764	162.561
	O ₆ H···O ₂	0.880	2.755	160.982
	O ₆ H···O ₆	0.799	2.782	162.645
	O ₂ H···O ₆	0.861	2.769	159.775
	O ₃ H···O ₅	0.779	2.752	155.918
	O ₆ H···O ₃	0.652	2.761	161.520
6A19	O ₂ H···O ₂	0.882	2.763	162.709
	O ₆ H···O ₂	0.914	2.751	161.521
	O ₆ H···O ₆	0.779	2.777	162.669
	O ₂ H···O ₆	0.828	2.767	159.719
	O ₃ H···O ₅	0.772	2.746	155.479
	O ₆ H···O ₃	0.634	2.804	159.806
10A12	O ₂ H···O ₂	0.871	2.764	162.392
	O ₆ H···O ₂	0.910	2.754	161.209
	O ₆ H···O ₆	0.828	2.776	162.800
	O ₂ H···O ₆	0.867	2.765	159.811
	O ₃ H···O ₅	0.787	2.750	155.662
	O ₂ H···O ₂	0.831	2.769	162.068
6B12	O ₆ H···O ₂	0.858	2.758	160.197
	O ₂ H···O ₆	0.856	2.768	160.909
	O ₃ H···O ₅	0.779	2.763	156.275
	O ₆ H···O ₂	0.793	2.757	161.494
6O12	O ₃ H···O ₆	0.652	2.798	158.006
	O ₂ H···O ₆	0.717	2.791	157.030
	O ₃ H···O ₅	0.774	2.768	155.736
	O ₆ H···O ₃	0.763	2.740	159.833

Supplementary Table S2. Hydrogen bond type in different cellulose II nanocrystal models.

	6A6	6A12	6A19	10A12	6B12	6O12
O ₂ H...O ₂	●	●	●	●	●	
O ₂ H...O ₆	●	●	●	●	●	●
O ₃ H...O ₅	●	●	●	●	●	●
O ₆ H...O ₂	●	●	●	●	●	●
O ₆ H...O ₆	●	●	●	●		
O ₆ H...O ₃		●	●			●
O ₃ H...O ₄	●					
O ₃ H...O ₆						●