Extended discussion
Data complexity can be resolved by active learning

In studies investigating the behavior of animals in social contexts, approaches
that have been trying to disentangle the high data complexity of multiple in-
teracting individuals (unsupervised), oftentimes struggle to produce results
that align with human consensus. This is partly because many existing solu-
tions are predisposed to focus on single animal behaviors [1-6] as the within-
animal spatiotemporal dynamics are generally more conserved and less com-
plex than intra-animal dynamics.

On the other hand, most supervised solutions require a sizable ground truth
data set to reliably reproduce human expectations. One reason for this is
that most collected data sets are inherently unbalanced. They consist of high-
frequency behaviors (e.g., investigation) accompanied by low-frequency be-
haviors (e.g., attack). Behaviors that are underrepresented in the data set are
then underrepresented in training and will result in poor performance levels.
In both cases, therefore, the complexity of the expected outcome and the com-
position of the data inhibit the reproduction of the human reference frame.
A-SOiD solves this challenge by employing an active learning regime. By ex-
plicitly refining low-confidence predictions, the algorithm focuses on unclear
decision boundaries between classes and continuously learns to reproduce the
expert’s definitions with high consistency (Fig. 1h-i bottom). By starting with
an absolute minimum number of annotations (yet still maintaining the size
differences), we let A-SOiD determine which features are to be annotated.
This approach effectively sparsifies data means, while focusing on the outliers.
Over iterations, the training data is therefore auto-balanced across classes.
This capacity eradicates the need for additional data augmentation or filter-
ing steps to balance the underlying data (see Suppl. Table 2). Additionally,
this approach reduces necessary ground truth annotation for uncommon, low-
frequency behaviors (Fig. 1h-i bottom) and the cost required to implement
such a solution in a dynamic analysis pipeline.

However, a general challenge of behavioral analysis is the temporal scale at
which behavior forms and changes in observed animals. Specifically, behav-
ioral expressions can be subject to changes through previous experiences and
different contexts. The possible range of observable behavior is further limited
by the context and duration of each recording session. Therefore, it is unre-
alistic for most projects to collect an extensive ground truth encompassing
the entire behavioral repertoire. Insufficient ground truth data may lead to
inaccurate predictions at different times in the animal’s life or across a wide
range of behavioral assays. Here, an optimal solution would be able to con-
tinuously build upon the observed repertoire and retrain the algorithm with
novel variations. Unfortunately, many approaches, especially unsupervised,
would require a complete restart and realignment to human reference frames,
increasing the cost to employ such methods drastically. In contrast, iterative
approaches such as A-SOiD have the potential to be continuously updated



with new observations using the active learning scheme.

Utility of creating a equally emphasized network

Further explanation of a behavioral classifier can provide insight into differ-
ence in predictive performance, which subsequently can be used to under-
stand behavioral differences between experimental conditions. A classifier
can be predict at a similar overall performance with a wide variety of train-
ing regime. It is then required to dissect the model independently. Recent
work on explainable AT [7, 8] has allowed machine learning engineers to rank
features given the labels. In addition to better performing small classes, the
benefit of having a balanced representation is for explanatory approaches like
SHAP to independently identify behavioral differences without being subject
to overprioritizing one class over the other. In our results, we have demon-
strated a albeit similar performing models, our iterative learning schemes
provided a precise separation between feature value and it’s impact on model
(SHAP value). If we used an imbalanced dataset to fit a classifier, the feature
value impact on model output will be intermixed since all the original model
had to do was overclassifying this large class.

Strategies to increase transparency of behavioral classification To quickly
asses the differences between discovered patterns (e.g., behavioral sub-types),
we previously employed motion energy (see Methods) [2, 9]. Motion energy
is an intuitive and informative way to generate visual summary of the action
within a found cluster (Fig. 3b-c). In our hands, we utilized motion energy
images to quickly differentiate sub-types of anogenital investigation (Fig. 3).
Note, that also further analysis can be done by comparing variability within
and across groups providing a valuable statistic for cluster quality [2]. An-
other approach is using SHAP-based reporting of the underlying feature im-
portance which can help to share and compare conserved patterns across stud-
ies (for a review see [10]). The feature value impact and ranking not only de-
scribe the refinement process but also provide an insight into the intuitive
human definition once the classifier reaches high performance (Fig. 2b and
Fig. 4b). Here, SHAP-based reporting can serve as a looking glass into the
underlying intuitive human reference frames by translating reproductions of
human annotations into transparent, operationalized definitions. In this study,
we employed SHAP-analysis to investigate the learning process across mul-
tiple iterations during active learning and could identify that specific sets of
features accounted for the increased performance of our classifiers (compare
TOP-5 features across iterations in Fig. 2c and Fig. 4c). Moreover, the fea-
ture importance did not change after the classifier’s performance plateaued,
indicating that this ranking was able to reproduce human annotations with
high reliability. Consequently, the final set can be used to explain and com-
pare the intuitive reference frame in the context of extracted features.



Active learning framework for user-defined data

To allow the integration of our developed approach into already existing be-
havior analysis pipelines, we created a streamlit-based application that in-
tegrates the core features of A-SOiID into a user-friendly, no-coding required
GUI solution that can be downloaded and used on custom data. For this

we developed a multi-step pipeline that guides users, independent of their
previous machine learning abilities through the process of generating a well-
trained, semi-supervised classifier for their own use-case. While the underlying
code is based on the open-source language python and available on GitHub
(https://github.com/YttriLab/A-SOID), the use of A-SOiD’s core feature
(active learning) to reduce the amount of necessary ground truth data con-
siderably can be directly used by installing the app on a local computer. In
general, users are required to provide a small labeled data set (ground truth)
with behavioral categories of their choice using one of the many available la-
beling tools (e.g. BORIS; [11]) or import their previous supervised machine
learning data sets. Following the upload of data (see Supp. Fig. Sla), a A-
SOiD project is created, including several parameters that further enable
users to select individual animals (in social data) and exclude body parts
from the feature extraction. Based on the configuration, the feature extraction
(Supp. Fig. S1b top) can be further customized by defining a ”bout length”
referring to the temporal resolution in which single motifs are expected to
appear (e.g. the shortest duration a definable component of the designated
behavior is expected to last; see also Fig. 1). The extracted features are then
used in combination with the labeled ground truth to train a baseline model.
Here, an initial evaluation will give users insight into the performance on their
base data set (Supp. Fig. S1b bottom). Note, that different splits are used to
allow for a more thorough analysis (see Methods for further details).

The baseline classification will then be used as a basis for the first active learn-
ing iteration, where users are prompted by the app to view and refine bouts
that were classified with low confidence by the baseline model (Supp. Fig. Slc
left). Bouts are visualized by showing an animated sequence of the provided
pose information and designated body parts and the viewer can be utilized

to show the bouts in several different options, including increased/decreased
speed, reverse view and frame-by-frame view. After submission of a refined
bout, a new bout is shown at its place and the refinement continues for a
user-defined amount of low confidence bouts. Following refinement, a new it-
eration of the model is trained and its performance can be viewed (Supp. Fig.
Slc right) in comparison to previous iterations. This process is then repeated
until the user is satisfied with the model’s performance or until a plateau has
been reached (see Fig. 2).

Finally, users can upload and classify new data using the app and the pre-
viously trained classifier (Supp. Fig. S1d). To gain further insight into the
results of the classification, the app offers a reporting tab that allows users

to view and export a selected set of analysis reports, including the common
ethogram and statistics (Supp. Fig. S1d).
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Figure S1: Active learning framework on user-defined data. a) The A-SOiD GUI
offers a step-by-step navigation to run A-SOiD on your own data. b) First users can
select the origin/type of their pose estimation data (SLEAP, DLC or CALMS21)
and uploads their data set including a previously labeled ground truth. Using a
user-defined working directory and prefix, previous sessions can be continued at later
stages by uploading the corresponding config file (not shown). Right, the user is
able to enter basic parameters (framerate, resolution), behavioral categories of in-
terest that are contained in the ground truth data set as well as sub-select individ-
uals/animals and key points/body parts as a basis for feature extraction. c¢) After
input of a temporal reference frame (aka. bout length) for feature extraction us-

ing a histogram as shown in Fig. 1 (top), features are extracted and a number of
splits is provided to evaluate later classification training. d) In the active learning
segment, a classifier is trained as described previously by iterative addition of low-
confidence predictions. Here, refinement is directly taken from the remaining ground
truth. During each iteration the model’s performance is evaluated on a held out test
data for multiple splits. This process can be viewed live for each iteration. e) Fi-
nally, once the training is complete, users can use the app to upload new unlabeled
data and use the previously trained model for classification. f) After classification,
the app allows users to go through the results and view a brief report. g) Users are
also able to discover conserved patterns in their ground truth data, by selectively
clustering annotation classes with unsupervised classification. Sub-types that are

of interest can then be exported to create a new training set and be used to train a
classifier.
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Figure S2: More candidates for active learning refinement appear at behavior tran-
sitions. a) Transition matrix for the frame annotation that happens before refine-
ment candidates throughout A-SOiD (left), when compared to a random frame se-
lection of these behaviors (right). b) Adjusted mutual information score as a metric
to quantify similarity between prior frame (t-1) and refinement candidate/random
selection (t). ¢) Transition matrix for the frame annotation that happens after re-
finement candidates throughout A-SOiD (left), in contrast to a random frame selec-
tion of these behaviors (right). d) Adjusted mutual information score as a metric to
quantify similarity between next frame (t41) and refinement candidate/random se-
lection. *** = p < 0.001.
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Figure S3: SHAP analysis to replicate model predictions for the CALMS21 social
mice data set. a) Ranked order of the top five features (descending order) across it-
erations for the ”investigation” class, including individual feature impact (x-axis)
separated by relative feature value (High: red, Low: blue). b) Ranked order of

the top five features for the "mount” class. Features (inter-animal distance: black,
speed: gray) are denoted by their corresponding animal (R: resident, I: intruder)

and body part (e.g., nose).
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Figure S4: SHAP analysis to replicate model predictions for the single housed
monkey data set. a) Ranked order of the top five features (descending order) across
iterations for the ”ceiling climb” class, including individual feature impact (x-axis)
separated by relative feature value (High: red, Low: blue). b) Ranked order of the
top five features for the ”sidewall climb” class. ¢) Ranked order of the top five fea-
tures for the ”rear” class, including individual feature impact (x-axis) separated by
relative feature value (High: red, Low: blue). d) Ranked order of the top five fea-
tures for the "walk” class. Features (inter-animal distance: black, speed: gray) are
denoted by body part (e.g., tail).
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Figure S5: Unsupervised embedding of the investigation class can be explored using
heuristic approach a) Annotation of all data points within the investigation class in which
the distance between the resident’s snout and the intruder’s tail base was lower than a man-
ually set threshold (15 pixels). A comparison revealed an extensive overlap between the
unsupervised clusters of sub-class 2 and sub-class 5 overlap with the top-down, manually
selected feature space (compare with Fig. 3a).
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Table 1: Detailed description of the extracted features

Type

Feature

Body part(s)

Description

Intra-animal

Distance

all

distance in pixels between
two body parts of the
same animal, e.g., resi-
dent snout and resident
tail base

Angular change

all

angular change within a
bout of two body parts
of the same animal, e.g.,
snout and tail base

Speed

all

speed in pizels/second
of an animal measured
within a bout

Inter-animal

Distance

all

distance in pixels between
two body parts of different
animals, e.g., resident
snout and intruder snout

Angular change

all

angular change within a
bout of two body parts of
different animals, e.g.,
resident snout and in-
truder tail base
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Table 2: Average number of labels during active learning iterations for CalMS21 in Fig.
2b. Averaged across evaluations (20-fold). Total number of available labels (n = 15866); per
class: Attack = 1188, Investigation = 12300, Mount = 2378.

iteration | attack | investigation | mount | total
1 914 165.2 97.55 354.15
2 112.85 | 316.5 127.65 | 557.
3 180.35 | 395.65 181. 757.
4 230.85 | 470.4 255.75 | 957.
5 290.55 | 566.7 299.75 | 1157.
6 353.15 | 646.75 357.1 1357.
7 410.45 | 727. 400.55 | 1538.
8 462.25 | 734.65 435.1 1632.
9 490.75 | 740.85 457.4 1689.
10 509.85 | 770.1 481.05 | 1761.
11 525.45 | 798. 504.55 | 1828.
12 537.3 | 813.7 515. 1866.
13 544.65 | 824.35 524. 1893.
14 552.75 | 832.1 527.15 | 1912.
15 557.9 | 840.9 531.2 1930.
16 561.1 849.75 532.15 | 1943.
17 567.25 | 856.3 534.45 | 1958.
18 569.35 | 860. 537.65 | 1967.
19 570.5 | 874.6 539.9 1985.
20 576.7 | 875. 541.3 1993.
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Table 3: Average number of labels during active learning iterations for single housed
monkey in Fig. 4b. b) per class. Averaged across evaluations (20-fold). Total number of
available labels (n = 1181); per class: Climb (C) = 64, Climb (S) = 177, Jump = 50, Rear
= 214, Walk = 676.

iteration | Climb (C) | Climb (S) | Jump | Rear | Walk | total
1 5.9 13.85 3.05 14.55 | 33.65 | 71

2 9.05 19 4.45 18.35 | 35.15 | 86

3 11.7 24.1 6.45 21.45 | 37.3 101

4 14.45 27.8 8.8 24.55 | 404 116

5 15.9 31.7 11.4 28.8 43.2 131

6 17.5 35.55 14.35 | 31.95 | 46.65 | 146

7 194 38.6 16.5 35.1 51.4 161

8 20.75 41.35 19.3 39.35 | 55.25 | 176

9 22.2 45.45 22.15 | 41.6 59.6 191

10 24 48.2 25.65 | 44.45 | 63.7 206

11 25.35 50.55 29.15 | 47.7 68.25 | 221

12 26.15 53.25 32.15 | 50.3 | 73.8 | 235.65
13 27 55.1 35.05 | 52.15 | 79.55 | 248.85
14 27.35 57.2 36.3 54.35 | 83.3 | 258.5
15 27.8 58.55 37.1 55.6 | 85.35 | 264.4

Supplementary Movie 1: Video examples of two sub-classes segmented from
investigation that reflect anogenital investigation. On the left, one mouse di-
rectly approaches the anogenital area of another mouse, irrespective of incom-
ing angle (”anogenital approach”). On the right, one mouse investigates the
anogential area of another mouse while already being in close proximity to be-
gin with (”anogenital investigation”).

References

1. Luxem, K. et al. Identifying Behavioral Structure from Deep Variational
Embeddings of Animal Motion. bioRziv, 2020.05.14.095430. https://
www.biorxiv.org/content/10.1101/2020.05.14.095430v3%20https:
//www .biorxiv.org/content/10.1101/2020.05. 14 .095430v3.
abstract (Jan. 2022).

2. Hsu, A. L. & Yttri, E. A. B-SOiD, an open-source unsupervised algo-
rithm for identification and fast prediction of behaviors. Nature Commu-
nications 2021 12:1 12, 1-13. 1SSN: 2041-1723. https://www.nature.
com/articles/s41467-021-25420-x (Aug. 2021).

13



10.

11.

Graving, J. M. et al. DeepPoseKit, a software toolkit for fast and robust
animal pose estimation using deep learning. eLife 8. 1SSN: 2050084 X.
/pmc/articles/PMC6897514/%20/pmc/articles/PMC6897514/?report=
abstract%20https : //www.ncbi.nlm.nih. gov/pmc/articles/
PMC6897514/ (Oct. 2019).

Berman, G. J., Choi, D. M., Bialek, W. & Shaevitz, J. W. Mapping the
stereotyped behaviour of freely moving fruit flies. Journal of the Royal
Society, Interface 11. 1SSN: 1742-5662. https://pubmed.ncbi.nlm.nih.
gov/25142523/ (Oct. 2014).

Marshall, J. D. et al. Continuous Whole-Body 3D Kinematic Recordings
across the Rodent Behavioral Repertoire. Neuron 109, 420-437. ISSN:
0896-6273 (Feb. 2021).

Wiltschko, A. B. et al. Mapping Sub-Second Structure in Mouse Behav-
ior. Neuron 88, 1121-1135. 1SSN: 1097-4199. https : //pubmed . ncbi .
nlm.nih.gov/26687221/ (2015).

Lundberg, S. M., Allen, P. G. & Lee, S.-I. A Unified Approach to Inter-
preting Model Predictions. Advances in Neural Information Processing
Systems 30. https://github.com/slundberg/shap (2017).

Lundberg, S. M. et al. From local explanations to global understanding
with explainable Al for trees. Nature Machine Intelligence 2020 2:1 2,
56-67. 1SSN: 2522-5839. https://www.nature.com/articles/s42256-
019-0138-9 (Jan. 2020).

Stringer, C. et al. Spontaneous behaviors drive multidimensional, brain-
wide activity. Science 364. 1SSN: 10959203. https://www.science.org/
doi/10.1126/science.aav7893 (Apr. 2019).

Goodwin, N. L., Nilsson, S. R., Choong, J. J. & Golden, S. A. Toward
the explainability, transparency, and universality of machine learning for
behavioral classification in neuroscience. Current Opinion in Neurobiol-
ogy 73, 102544. 1sSN: 0959-4388 (Apr. 2022).

Friard, O. & Gamba, M. BORIS: a free, versatile open-source event-
logging software for video/audio coding and live observations. Meth-

ods in Ecology and Evolution 7, 1325-1330. 1SSN: 2041-210X. https :
//onlinelibrary.wiley.com/doi/full/10.1111/2041-210X. 125847
20https://onlinelibrary.wiley.com/doi/abs/10.1111/2041-
210X.125847,20https://besjournals.onlinelibrary.wiley.com/doi/
10.1111/2041-210X.12584 (Nov. 2016).

14



