
Simulating single-photon detector array

sensors for depth imaging :

supplemental document

1 Derivation of photons detected per-pulse-per-
pixel

The number of photons returned from a target is described by a photon chan-
nel which models the loss of signal photons as a series of sequential processes.
Consider a laser pulse of initial energy E0 having a divergence θ projected over
a range R, through an atmosphere of attenuation length Catm. The energy
density ρE at the target is,

ρE =
E0e

−R
Catm

πR2 tan2(θ)
. (1)

For an imaging sensor with pixels of effective size Wp ×Hp at the focal plane of
a collecting lens of focal length f and f-number fno, the energy E1 available to
each pixel is,

E1 = ρE

(
R2WpHp

f2

)
. (2)

Assuming Lambertian reflection, for a target of reflectively Γ the scattered en-
ergy E2 which arrives at the aperture of the lens for each pixel is,

E2 =
ΓE1e

−R
Catm

2πR2
. (3)

Each pixel then captures a fraction of this scattered energy according to the
aperture of the lens and the quantum efficiency q of the detector,

E3 = qE2π

(
f

2fno

)2

. (4)

Combining Eqs. 1-4 and dividing by hc
λ where λ is the wavelength of the illu-

minating light, the number of photons-per-pulse Ppp captured by the detector
is,

Ppp =
λE0

hc

qΓe
−2R
Catm

8

WpHp

f2
noπR

2 tan2(θ)
. (5)
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2 Experimental parameters used in simulating
the resolution test target

Symbol Parameter Value Unit

E0 Energy per pulse 1 nJ
ν Repetition rate 2.25 MHz
λ Wavelength 671 nm
σ′ Pulse FWHM 600 ps

R Range 14.73 m
Catm Attenuation 6.2 km
θ Divergence 0.02 radians

Γ Reflectivity 0.09 −
Cbckg Solar background 0 W

fno f-number 2.0 -
Cdc Dark counts 126 Hz
η Exposure time 1000 µs
q Quantum efficiency 0.26 −

Wp/Hp Pixel size (width/height) 9.2 µm
ω Bin width 50 ps
j Jitter 200 ps

Table 1: The parameters used to model the resolution test target. Note that
the target was effectively normal to all pixels and so a constant reflectivity value
was used.

3 Match filtering as an unbiased estimator

Consider a single Gaussian signal on top of a uniform background g(t) match
filtered with a Gaussian kernel f(t). The depth estimate µ̂ is then given by,

µ̂ = argmax[f(t) ∗ g(t)], (6)

where

f(t) =
1

σ′
√
2π

exp

[
−1

2

(
t− µ

σ′

)2
]
,

g(t) =
1

σ′
√
2π

exp

[
−1

2

(
t− µ′

σ′

)2
]
+Arect

[
t− µ′

T

]
,

(7)

Formally, the background is treated as a uniform value of amplitude A over the
time domain T centered upon the true depth value µ′. Under the conditions
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that the signal g(t) contains only a single peak that is situated sufficiently far
(i.e. ¿¿ 3σ′) from the boundaries of the domain of t, then Eq. 6 is equivalent to,

max[f(t) ∗ g(t)]. (8)

Thus,

max[f(t) ∗ g(t)] = max

[∫ ∞

−∞
f(t)g(t)dt

]
,

max[f(t) ∗ g(t)] = max

{
B exp

[
−1

2

(
µ− µ′

σ′

)2
]
+

∫ ∞

−∞
f(t)rect

[
t− µ′

T

]
dt

}
.

(9)
Here B is a normalization constant. Equation 9 implies that under the prior
stated conditions,∫ ∞

−∞
f(t)rect

[
t− µ′

T

]
dt = C =⇒ max[f(t) ∗ g(t)] ⇐⇒ µ = µ′

µ̂ = µ = µ′
(10)

where C is an integration constant. Hence, Eq. 10 implies that match filtering
by a Gaussian kernel is an unbaised estimator for the case of a single Gaussian
signal on a uniform background.

Further, in the case of a Gaussian signal, in the absence of background (A = 0),
the minimum variance unbiased estimator (i.e. the estimator which saturates
the Cramér-Rao bound) is given by the maximum likelyhood [1]. This operation
is equivalent to Eq. 6 with a kernel h(t) = log[f(t)]. However, for A ̸= 0, h(t) is
biased towards the center of the domain T and as such is no longer consistent
with the conditions for the Cramér-Rao bound. Consider the kernel f(t) then,

log[A+ f(t)] = log(A) +
f(t)

A
+ o

(
f(t)

A

)
(11)

Here o() represents the higher order terms in the Taylor series. Hence, as A
(i.e. the amplitude of background) increase, the contribution of these terms
diminishes. Hence

log[A+ f(t)] ∝ D +
f(t)

A
(12)

Specifically, D is a constant only tied to the amplitude of the background while
the form of the kernel f(t) remains unchanged. Consequently, f(t) represents
an operation analogous to the maximum likelyhood for cases with A ̸= 0.
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4 Experimental parameters used in simulating
the landrover

Symbol Parameter Value Unit

E0 Energy per pulse 14 µJ
ν Repetition rate 33 kHz
λ Wavelength 532 nm
σ′ Pulse FWHM 3.5 ns

R Range 1.4 km
Catm Attenuation 6.2 km
θ Divergence 1.07 milliradian

Γ Body reflectivity 0.065 −
Tyres and trim reflectivity 0.029 −

Wall reflectivity 0.081 −
Ground reflectivity 0.066 −
Seats reflectivity 0.04 −

Heatlights reflectivity 0.25 −
Numberplate reflectivity 0.8 −

Cbckg Solar background 0.5 W

fno f-number 10.0 -
Cdc Dark counts 126 Hz
η Exposure time 83 µs
q Quantum efficiency 0.26 −

Wp/Hp Pixel size 9.2 µm
ω Bin width 50 ps
j Jitter 1.5 ns

Table 2: The parameters used to model the Landrover. Note that the reflectivi-
ties represent the base values prior to their modification based on the orientation
of the surface relative to the camera.
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