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1. Mean-free path and clean superconductivity 1 

 2 

For semiconducting 2H-polytype transition metal dichalcogenides (TMDs such as the 2H-MoS2 3 

and WS2, ), the low-doping metallic state can have all carriers confined in a single band. Therefore, the 4 

2D carrier density n2D can be experimentally determined by measuring the Hall effect, where the n2D is 5 

related to the Hall coefficient RH as 6 

 𝑛2𝐷 = −
1

𝑅H𝑒
 . (S1) 7 

In contrast, the metallic 2H-NbSe2 has a complex Fermi surface composed of five pockets, having 8 

both hole and electron-like carriers. From the zone center, hole-like carriers are found in multiple pockets 9 

including a small pancake-shaped pocket closed at  point as well as honeycomb-shaped and triangular-10 

shaped cylindrical pockets centered at K and  points, respectively. Also, two electron-like pockets have 11 

honeycomb and triangular cylindrical shapes at K and  points, respectively1. The small pancake pocket 12 

at  point is either gapless or has a very small gap that is easily suppressed in a parallel external field due 13 

to its 3D Nature. It was reported that the small pancake pocket at  point is gapless even at a temperature 14 

much lower than Tc0 (~ 0.003Tc0) and gives rise to the quantum oscillations in the superconducting 15 

states1,2. The larger superconducting gaps open on the Fermi surface at the large hole-like pockets at K 16 

and  points, as shown in the ARPES measurements2,3. 17 

 18 

 19 

Figure S1 | Temperature dependence of Hall coefficient. a. Hall effect measurement at different 20 

temperatures. The transverse Rxy(B) curve is shifted vertically at B = 0 to null the small pickup from the 21 

longitudinal Rxx channel. b. The Hall coefficient as a function of temperature. 22 
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Having carriers from two Fermi pockets, say contributed by both electrons and holes with carrier 1 

density n and p, then the RH is 2 

 𝑅𝐻 =
𝑛𝑢𝑛

2 −𝑝𝑢𝑝
2

𝑒(𝑛𝑢𝑛+𝑝𝑢𝑝)2 , (S2) 3 

where 𝑢𝑛 and 𝑢𝑝 the electron and hole mobilities, respectively. As shown in Fig. S1a, the RH of NbSe2 4 

flake changes the sign showing a switch from the hole- to electron-like transport at T ~ TCDW, which is 5 

consistent with Ref. 4 of this supplementary information. In the low B field, Ong5 shows that the Hall 6 

transport of mixed carriers can be described as 7 

 𝑅𝐻 =
2𝜋𝑑(𝑙𝑝

2−𝑙𝑛
2 )

𝑒[(𝑘𝐹,𝑝𝑙𝑝)
2

+(𝑘𝐹,𝑛𝑙𝑛)
2

]
 . (S3) 8 

The 𝑙𝑛 , 𝑙𝑝  and the 𝑘𝐹,𝑛 , 𝑘𝐹,𝑝 are the mean free paths and the wave vectors of holes and electrons, 9 

respectively. Due to the dramatic increase of electron mean-free path, the RH changes the sign below 10 

TCDW. Since the electrons are the minority above TCDW, we can assume there is a single type of carrier 11 

and use the RH measured at T = 40 K > TCDW (as shown in Fig. S1b) to estimate the carrier density of 12 

holes using Eq. S1. The estimated hole concentration is 𝑝 ≈ 2.4 × 1015 cm-2 for a single layer, which is 13 

larger than the results from band structure calculation4  𝑝 = 8.51 × 1014 cm-2. Using this larger p, we 14 

can estimate the lower limit of the mean-free-path using the 2D Drude’s formula, 15 

 𝑙2𝐷 =
ℎ

𝑒2

𝜎2𝐷

√2𝜋𝑝
 , (S4) 16 

where 𝜎2𝐷 =
1

𝑁𝑅𝑠
 is the conductance of a single layer, where N is the total layer number. From the sheet 17 

resistance Rs measured right above Tc, we can determine the mean-free-path 𝑙2𝐷 ≈ 30 nm. The zero 18 

temperature Ginzburg-Landau (GL) coherence length  can be extracted from the temperature 19 

dependence of the upper critical field 𝐵𝑐2,⊥ in the perpendicular magnetic fields 20 

 𝐵𝑐2,⊥ =
𝛷0

2𝜋(0)2(1−(
𝑇

𝑇𝑐
))

 , (S5) 21 

where  𝛷0 is the flux quantum. At T = 0 K, the GL (0) = 8.3 nm. From the GL , we can obtain the 22 

Pippard coherence length of a clean superconductor 
0

= 1.35(0) = 11.2 nm6. Satisfying 
0

< 𝑙2𝐷 23 

brings our system into the clean limit. 24 
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As shown in Eq. S5, for a multi-gap superconductor, a smaller gap, with a smaller 𝐵𝑐2,⊥, has a 1 

larger 
0
. Therefore, the larger 

0
, associated with the smaller gaps, may violate the clean-limit criteria 2 


0

< 𝑙2𝐷. On the other hand, the smaller gaps are also easier to be suppressed by the external B fields. 3 

Hence, in high fields where the orbital FFLO phase appears, the larger gaps, surviving at B > B*, ensure 4 

a clean superconductivity in the orbital FFLO regime. 5 

  6 
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2. Simulated effect of canting on 2D superconductors 1 

 2 

 3 

Figure S2 | Simulated effect of canting on an isotropic 2D superconductor. We simulate a 4 

superconductor with an anisotropy 𝐵𝑐2
∥ /𝐵𝑐2

⊥  = 10, which is typically found in Ising superconductors. The 5 

canting angle is set as a. 𝛾 = 0° and b. 𝛾 = 1°. The polar plots of 𝐵𝑐2
⊥ /𝐵𝑐2 show c. isotropic for 𝛾 = 0°, 6 

whereas shows d. a fake two-fold anisotropy when 𝛾 ≠ 0. 7 

 8 

It is worth emphasizing that having the 𝛾 can pick up the effect of misaligned B fields, leading to 9 

wrong conclusions for the anisotropy of superconductivity at in-plane B fields. In Fig. S2 we show the 10 

simulated 𝐵𝑐2(𝜑, 𝜃0) of isotropic 2D superconductivity combining Eq. 4 and Eq. 5 in the Methods. The 11 

out-of-plane anisotropy is set as 𝐵c2
∥ /𝐵c2

⊥ = 10, mimicking a typical Ising superconductor with large 12 

anisotropy. When the effect of 𝛾 is ignored (in this case, 𝜃0 is a constant), the 𝐵c2(𝜑) oscillates as a 13 

function of 𝜑, exhibiting a two-fold symmetry as shown in Fig. S2d. This erroneous two-fold anisotropy 14 

originates from picking up the 𝐵⊥ components due to the cantering. 15 
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 1 

 2 

Figure S3 | Simulated effects of having a canting angle in measuring 2D superconductors with 3 

intrinsic in-plane anisotropies. We set the out-of-plane anisotropy 𝐵𝑐2
∥ /𝐵𝑐2

⊥  = 10 and the canting angle 4 

𝛾 = 1°. The intrinsic in-plane anisotropy of the 2D superconductor is simulated as 𝐵𝑐2(𝜑, 𝜃 = 0) = 𝑎 +5 

𝑏𝑐𝑜𝑠(
𝑛𝜋𝜑

180
) with n denoting the folds of the intrinsic anisotropy. The amplitude of in-plane anisotropy is 6 

𝐵𝑐2,∥
𝑚𝑎𝑥−𝐵𝑐2,∥

𝑚𝑖𝑛

𝐵𝑐2,∥
𝑚𝑎𝑥 =

2𝑏

𝑎+𝑏
 = 0.02. The effect of cantering on Bc2(φ) is plotted as mapping for a. two-, b. three-, c. 7 

four-, and d. six-fold intrinsic anisotropies. e - h. The corresponding polar plots all show erroneous two-8 

fold anisotropies. 9 

 10 

Furthermore, we simulate how the presence of 𝛾 can obscure the intrinsic anisotropy. We first 11 

introduce an intrinsic anisotropy, manifested in the upper critical field as 𝐵𝑐2(𝜑, 𝜃 = 0) = 𝑎 +12 

𝑏cos(
𝑛𝜋𝜑

180
), where n denotes the number of folds of the anisotropy. We assume the amplitude of in-plane 13 

anisotropy 
𝐵𝑐2,∥

𝑚𝑎𝑥−𝐵𝑐2,∥
𝑚𝑖𝑛

𝐵𝑐2,∥
𝑚𝑎𝑥 =

2𝑏

𝑎+𝑏
 = 0.02 which is close to our present measurement. In the presence of 𝛾, the 14 

𝐵⊥ component can show a two-fold anisotropy, hence inducing “fake” two-fold anisotropies in Bc2(φ). 15 

Due to the direct orbital contribution from the two-fold 𝐵⊥, the contribution is much stronger than the 16 

intrinsic three-, four-, or six-fold anisotropy (Fig. S3e-h). Therefore, eliminating the influence of the 17 

canting angle 𝛾 is an essential step for the accurate determination of intrinsic in-plane anisotropies, which 18 

is indispensable for 2D superconductors with strong anisotropies. 19 

  20 
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3. The magnitude of six-fold anisotropy 1 

 2 

 3 

Figure S4 | Evaluating the amplitude of the six-fold anisotropy at B = 9 T. a. From the same data 4 

shown in Main Text Fig. 3c at T = 4.7 K and B = 9 T (main text), the resistance oscillates as a function 5 

of φ, due to the change of Tc at different φ angles. The amplitude is determined as R||,max – R||,min = 0.33RN 6 

b. The superconducting transition at B = 9 T (red dots) is shifted horizontally by Tc = 0.07 K. The 7 

amplitude of six-fold anisotropy is quantified as 4kBTc = 0.02 meV. Here, the coefficient 4 was used in 8 

the analysis of the largest gap at the K pockets reported in ARPES measurements7. 9 

 10 

Although the accuracy of the angle sensor of our rotation stage is better than 0.1°, it still limits the 11 

precision in aligning the B field parallel to the 2D sample surface. We assume a limiting case in which 12 

the maximum angular error is doubled to 0.2° when we compare the Tc values at two different φ values. 13 

As shown in Fig. 2b in the main text, the deviation of 0.2° leads to an error of 0.2 T in Bc2 when θ is 14 

close to 0°. The angular accuracy limits the determination of exact energy scales by measuring the Bc2 as 15 

a function of φ. 16 

On the other hand, as shown in Main Text Fig. 3c, the amplitude of the six-fold anisotropy grows 17 

with the increase of B field after entering the orbital FFLO phase. At a given temperature and magnetic 18 

field along the FFLO phase boundary, a state with smaller resistance corresponds to a higher Tc. 19 

Therefore, we can quantify the in-plane anisotropy of Tc by measuring the azimuthal φ dependence of 20 

R(φ,  = 0). At 𝐵∥ = 9 T, we find the R||,max – R||, min = 0.33RN.  21 

For the maximum change of 0.33RN caused by the azimuthal rotation, we can then determine the 22 

corresponding change of Tc from the R(T) dependences. As shown in Fig. S4a, the R||, max and R||, min 23 

appears at 0.7RN and 0.37RN, respectively. Therefore, we shift the R(T) dependence measured at B|| = 9 24 
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T to R(T + Tc). As shown in Fig. S4b, the shift ensures that R = 033RN for the minimum Tc appears at 1 

~0.7RN and maximum Tc at ~0.4RN, respectively. The corresponding Tc is then determined as 0.07 K. 2 

The amplitude of gap anisotropy is quantified as 𝑥𝑘B∆𝑇c, where 𝑘𝐵 is the Boltzmann constant. As 3 

indicated by the ARPES measurement7, the coefficient 𝑥 is 4 for the larger superconducting gap at the K 4 

pockets and 1.76 for the smaller one at  pockets. Here, we choose the largest gap at the K pockets, which 5 

have a medium coupling strength (9) and remains open at B = 9 T. Hence the Tc = 0.07 K yields an 6 

anisotropy of 4kBTc = 0.02 meV in the orbital FFLO state, which is about 0.8% of the largest 7 

superconducting gap at the K pocket (2.5 meV). 8 

  9 
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4. In-plane isotropy of monolayer MoS2 1 

 2 

 3 

Figure S5 | In-plane isotropy of ion-gated monolayer superconductivity in a multilayer MoS2. a. 4 

Superconducting transition in in-plane field B = 0 and 9 T. b. Magnetoresistance R||(φ) remains constant 5 

at different φ showing isotropic response. c. Mapping of R(θ0, φ) before subtracting the effect of canting 6 

angle. The white dashed line is a fit using Eq. 5 in the Methods, which yields a canting angle 𝛾 = 0.87°. 7 

d. Mapping of R(θ, φ) after subtracting the effect of canting angle.  8 

The 2H-type MoS2 and NbSe2 are identical in the crystal structure, except for a shift of transition metal 9 

position, which is further divided as 2Ha and 2Hb types. Since Mo has one more valence electron than 10 

Nb, the 2H-MoS2 has a fully filled band. By chemical intercalation or electrostatic gating, the 11 

semiconducting MoS2 can be doped into metallic states, where superconductivity is realized at a carrier 12 

density n2D > 81013 cm-2. The ion-gated few-layer MoS2 is superconducting only in the top first layer 13 

due to the strong screening effect of the electric field8. Like a NbSe2 monolayer, the broken inversion 14 

symmetry induces the Ising SOC, which locks the electron spins to the out-of-plane direction, strongly 15 

protecting the Cooper pairs against an in-plane field 𝐵∥. Therefore, the 𝐵𝑐2,∥ can go well beyond the Pauli 16 

limit Bp, reaching ~ 6Bp
8. 17 
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Comparing the superconductivity in a multilayer NbSe2 and a confined monolayer MoS2 can highlight 1 

the contribution of current-driven vortex motion in the out-of-plane direction, which only exists in a 2 

multilayer. We perform the exact measurement to study the anisotropy of superconducting MoS2 (Tc = 6 3 

K) in a parallel B field. As shown in Fig. S5, after subtracting the contribution of the canting angle (𝛾 = 4 

0.87°), the superconductivity is highly isotropic. Therefore, the two-fold anisotropy induced by the 5 

Lorentz force is not observed in this control experiment as the interlayer motion is completely suppressed 6 

in a monolayer superconductor. 7 

The absence of two-fold anisotropy confirms that the ionic gating induces superconductivity in the outer 8 

first layer. More importantly, since monolayer thickness prohibits any interlayer interaction, this also 9 

suppresses the FFLO state since the orbital FFLO phase observed in multilayer NbSe2 requires an 10 

interlayer orbital effect between two Ising superconducting layers with inversion symmetry. Hence, the 11 

six-fold anisotropy associated with the orbital FFLO phase is also absent in the ion-gated MoS2. 12 

 13 

  14 
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5. Excluding the two-gap scenario for the upturn in Bc2 (T) 1 

 2 

 3 

Figure S6 | Critical current density as a function of temperature under a zero magnetic field. At B 4 

= 0 T, no upturn was observed in the temperature dependence of Jc. This rules out the two-gap scenario 5 

as the cause of the upturns. 6 

The superconducting gaps of NbSe2 open at both K and   points for both hole- and electron-like 7 

pockets as shown in the ARPES results7,9. The multiple gaps of different gap size may lead to kinks in 8 

both Bc2(T)10 and Jc(T)11. On the other hand, in dirty two-gap superconductors, the upturn in Bc2(T) is 9 

also expected due to interband scattering10. 10 

First of all, we can rule out the possibility of having the dirty two-gap scenario since our device 11 

shows superconductivity in the clean regime. Furthermore, the kink observed in |𝜃|  <  1, as shown in 12 

the Bc2() in Main Text Fig. 2b, can not be described by the dirty two-gap model10. Second, the two-gap 13 

scenario would expect the temperature dependence of Jc to show a kink when the second gap opens at T 14 

< Tc0 under the zero B field11. As shown in Fig. S6, the Jc(T) measured at B = 0 T has a smooth 15 

dependence without showing kink as a function of temperature. Instead, the kinks in Jc appear when the 16 

B field is applied crossing the uniform superconductor/orbital FFLO phase boundary as shown in Main 17 

Text Fig. 4a. The phase boundary thus determined by Jc(B) agrees well with the tricritical point that is 18 

determined by Bc2(T) measurements. Hence, we can also safely rule out the two-gap scenario as the cause 19 

of the kinks observed in our devices. 20 

  21 
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