

Supplementary information for

Unconventional Fulde-Ferrell-Larkin-Ovchinnikov phase in a two-dimensional Ising superconductor

Puhua Wan¹, Oleksandr Zheliuk^{1,2}, Noah F. Q. Yuan³, Xiaoli Peng¹, Le Zhang¹, Minpeng Liang¹, Uli Zeitler², Steffen Wiedmann², Nigel Hussey², Thomas T. M. Palstra⁴, and Jianting Ye¹

¹Device Physics of Complex Materials, Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands

²*High Field Magnet Laboratory (HFML-EMFL), and Institute of Molecules and Materials,
Radboud University, Toernooiveld 7, 6525 ED Nijmegen, Netherlands*

³*School of Science, Harbin Institute of Technology, Shenzhen 518055, China*

⁴ University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands

- 1 **1. Mean-free path and clean superconductivity**
- 2 **2. Simulated effect of canting on 2D superconductors**
- 3 **3. The magnitude of six-fold anisotropy**
- 4 **4. In-plane isotropy of monolayer MoS₂**
- 5 **5. Excluding the two-gap scenario for the upturn in $B_{c2}(T)$**

1 **1. Mean-free path and clean superconductivity**

2

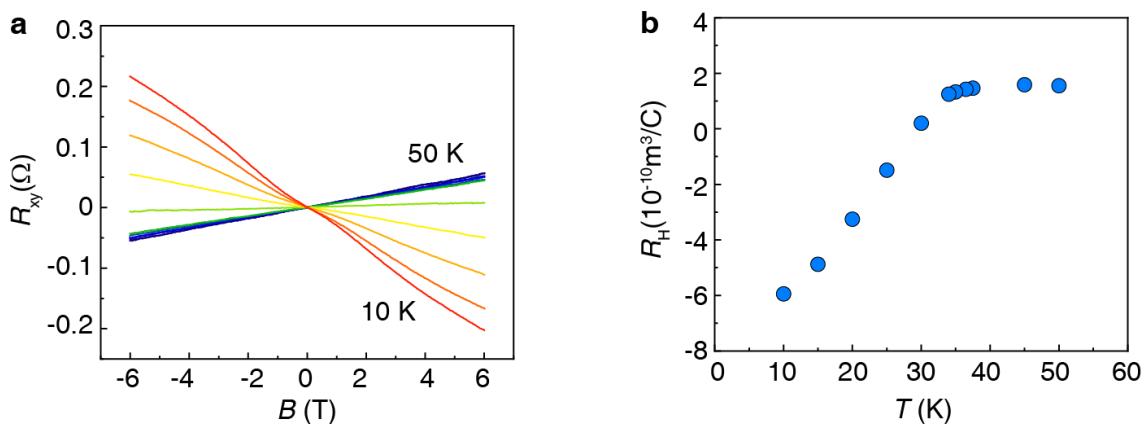
3 For semiconducting 2H-polytype transition metal dichalcogenides (TMDs such as the 2H-MoS₂
 4 and WS₂,), the low-doping metallic state can have all carriers confined in a single band. Therefore, the
 5 2D carrier density n_{2D} can be experimentally determined by measuring the Hall effect, where the n_{2D} is
 6 related to the Hall coefficient R_H as

7

$$n_{2D} = -\frac{1}{R_H e} . \quad (\text{S1})$$

8 In contrast, the metallic 2H-NbSe₂ has a complex Fermi surface composed of five pockets, having
 9 both hole and electron-like carriers. From the zone center, hole-like carriers are found in multiple pockets
 10 including a small pancake-shaped pocket closed at Γ point as well as honeycomb-shaped and triangular-
 11 shaped cylindrical pockets centered at K and Γ points, respectively. Also, two electron-like pockets have
 12 honeycomb and triangular cylindrical shapes at K and Γ points, respectively¹. The small pancake pocket
 13 at Γ point is either gapless or has a very small gap that is easily suppressed in a parallel external field due
 14 to its 3D Nature. It was reported that the small pancake pocket at Γ point is gapless even at a temperature
 15 much lower than T_{c0} ($\sim 0.003T_{c0}$) and gives rise to the quantum oscillations in the superconducting
 16 states^{1,2}. The larger superconducting gaps open on the Fermi surface at the large hole-like pockets at K
 17 and Γ points, as shown in the ARPES measurements^{2,3}.

18



19
 20 **Figure S1 | Temperature dependence of Hall coefficient.** **a.** Hall effect measurement at different
 21 temperatures. The transverse $R_{xy}(B)$ curve is shifted vertically at $B = 0$ to null the small pickup from the
 22 longitudinal R_{xx} channel. **b.** The Hall coefficient as a function of temperature.

1 Having carriers from two Fermi pockets, say contributed by both electrons and holes with carrier
 2 density n and p , then the R_H is

$$3 \quad R_H = \frac{nu_n^2 - pu_p^2}{e(nu_n + pu_p)^2}, \quad (S2)$$

4 where u_n and u_p the electron and hole mobilities, respectively. As shown in Fig. S1a, the R_H of NbSe₂
 5 flake changes the sign showing a switch from the hole- to electron-like transport at $T \sim T_{CDW}$, which is
 6 consistent with Ref. 4 of this supplementary information. In the low B field, Ong⁵ shows that the Hall
 7 transport of mixed carriers can be described as

$$8 \quad R_H = \frac{2\pi d(l_p^2 - l_n^2)}{e[(k_{F,p}l_p)^2 + (k_{F,n}l_n)^2]}. \quad (S3)$$

9 The l_n , l_p and the $k_{F,n}$, $k_{F,p}$ are the mean free paths and the wave vectors of holes and electrons,
 10 respectively. Due to the dramatic increase of electron mean-free path, the R_H changes the sign below
 11 T_{CDW} . Since the electrons are the minority above T_{CDW} , we can assume there is a single type of carrier
 12 and use the R_H measured at $T = 40$ K $> T_{CDW}$ (as shown in Fig. S1b) to estimate the carrier density of
 13 holes using Eq. S1. The estimated hole concentration is $p \approx 2.4 \times 10^{15}$ cm⁻² for a single layer, which is
 14 larger than the results from band structure calculation⁴ $p = 8.51 \times 10^{14}$ cm⁻². Using this larger p , we
 15 can estimate the lower limit of the mean-free-path using the 2D Drude's formula,

$$16 \quad l_{2D} = \frac{h}{e^2} \frac{\sigma_{2D}}{\sqrt{2\pi p}}, \quad (S4)$$

17 where $\sigma_{2D} = \frac{1}{NR_s}$ is the conductance of a single layer, where N is the total layer number. From the sheet
 18 resistance R_s measured right above T_c , we can determine the mean-free-path $l_{2D} \approx 30$ nm. The zero
 19 temperature Ginzburg-Landau (GL) coherence length ξ can be extracted from the temperature
 20 dependence of the upper critical field $B_{c2,\perp}$ in the perpendicular magnetic fields

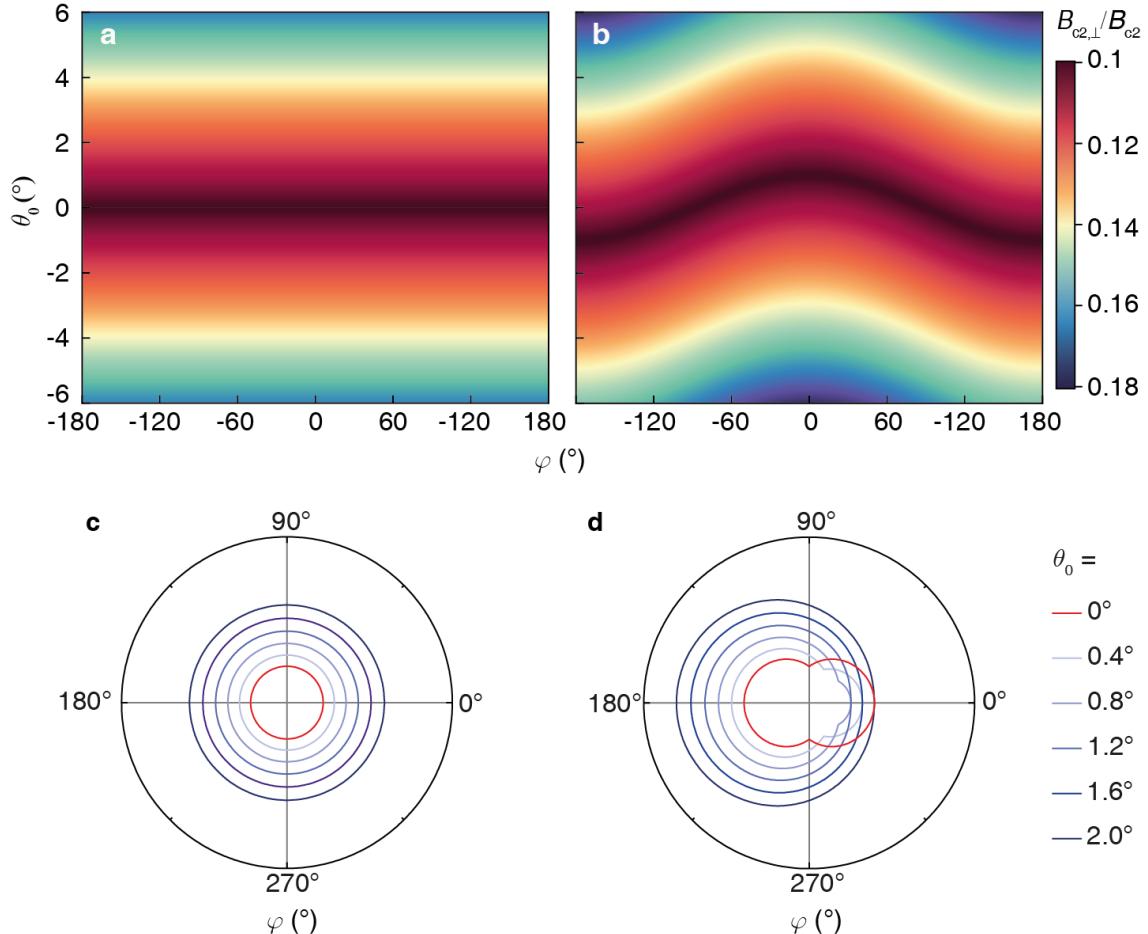
$$21 \quad B_{c2,\perp} = \frac{\Phi_0}{2\pi\xi(0)^2 \left(1 - \left(\frac{T}{T_c}\right)\right)}, \quad (S5)$$

22 where Φ_0 is the flux quantum. At $T = 0$ K, the GL $\xi(0) = 8.3$ nm. From the GL ξ , we can obtain the
 23 Pippard coherence length of a clean superconductor $\xi_0 = 1.35\xi(0) = 11.2$ nm⁶. Satisfying $\xi_0 < l_{2D}$
 24 brings our system into the clean limit.

1 As shown in Eq. S5, for a multi-gap superconductor, a smaller gap, with a smaller $B_{c2,\perp}$, has a
2 larger ξ_0 . Therefore, the larger ξ_0 , associated with the smaller gaps, may violate the clean-limit criteria
3 $\xi_0 < l_{2D}$. On the other hand, the smaller gaps are also easier to be suppressed by the external B fields.
4 Hence, in high fields where the orbital FFLO phase appears, the larger gaps, surviving at $B > B^*$, ensure
5 a clean superconductivity in the orbital FFLO regime.

6

1 **2. Simulated effect of canting on 2D superconductors**

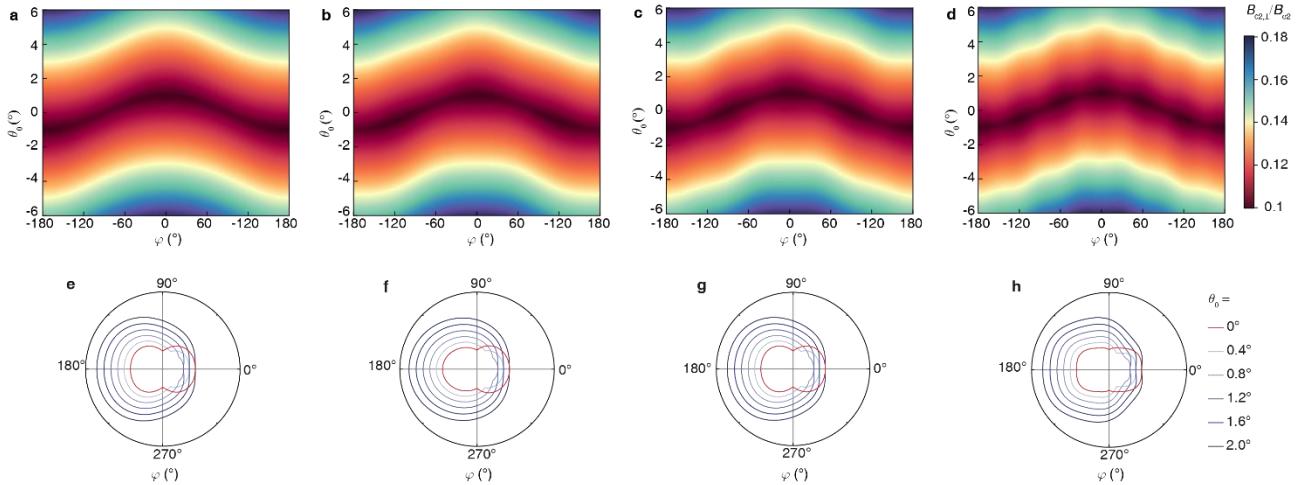


4 **Figure S2 | Simulated effect of canting on an isotropic 2D superconductor.** We simulate a
5 superconductor with an anisotropy $B_{c2}^{\parallel}/B_{c2}^{\perp} = 10$, which is typically found in Ising superconductors. The
6 canting angle is set as **a.** $\gamma = 0^\circ$ and **b.** $\gamma = 1^\circ$. The polar plots of B_{c2}^{\perp}/B_{c2} show **c.** isotropic for $\gamma = 0^\circ$,
7 whereas shows **d.** a fake two-fold anisotropy when $\gamma \neq 0$.

8

9 It is worth emphasizing that having the γ can pick up the effect of misaligned B fields, leading to
10 wrong conclusions for the anisotropy of superconductivity at in-plane B fields. In Fig. S2 we show the
11 simulated $B_{c2}(\varphi, \theta_0)$ of isotropic 2D superconductivity combining Eq. 4 and Eq. 5 in the Methods. The
12 out-of-plane anisotropy is set as $B_{c2}^{\parallel}/B_{c2}^{\perp} = 10$, mimicking a typical Ising superconductor with large
13 anisotropy. When the effect of γ is ignored (in this case, θ_0 is a constant), the $B_{c2}(\varphi)$ oscillates as a
14 function of φ , exhibiting a two-fold symmetry as shown in Fig. S2d. This erroneous two-fold anisotropy
15 originates from picking up the B_{\perp} components due to the canting.

1



2

3 **Figure S3 | Simulated effects of having a canting angle in measuring 2D superconductors with**
 4 **intrinsic in-plane anisotropies.** We set the out-of-plane anisotropy $B_{c2}^{\parallel}/B_{c2}^{\perp} = 10$ and the canting angle
 5 $\gamma = 1^\circ$. The intrinsic in-plane anisotropy of the 2D superconductor is simulated as $B_{c2}(\varphi, \theta = 0) = a +$
 6 $b\cos(\frac{n\pi\varphi}{180})$ with n denoting the folds of the intrinsic anisotropy. The amplitude of in-plane anisotropy is
 7 $\frac{B_{c2,\parallel}^{\max} - B_{c2,\parallel}^{\min}}{B_{c2,\parallel}^{\max}} = \frac{2b}{a+b} = 0.02$. The effect of canting on $B_{c2}(\varphi)$ is plotted as mapping for **a**. two-, **b**. three-, **c**.
 8 **d**. six-fold intrinsic anisotropies. **e - h**. The corresponding polar plots all show erroneous two-
 9 fold anisotropies.

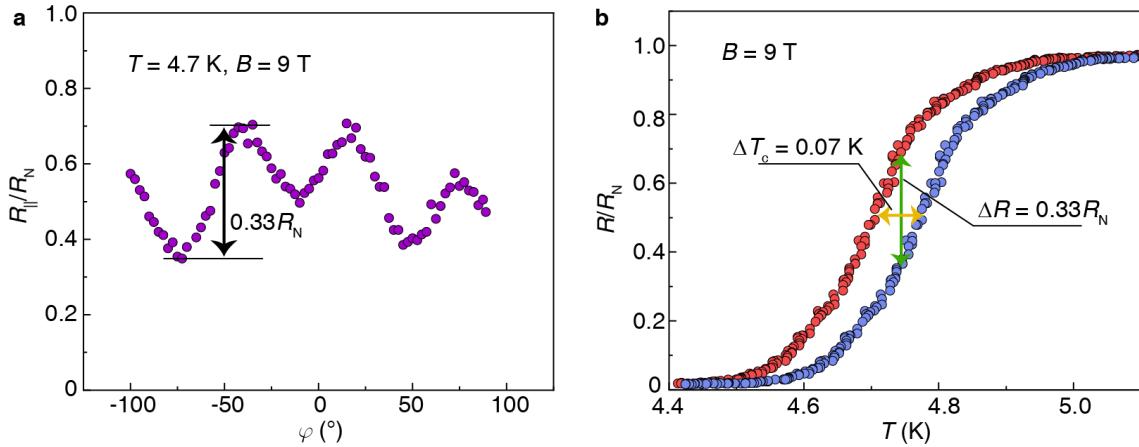
10

11 Furthermore, we simulate how the presence of γ can obscure the intrinsic anisotropy. We first
 12 introduce an intrinsic anisotropy, manifested in the upper critical field as $B_{c2}(\varphi, \theta = 0) = a +$
 13 $b\cos(\frac{n\pi\varphi}{180})$, where n denotes the number of folds of the anisotropy. We assume the amplitude of in-plane
 14 anisotropy $\frac{B_{c2,\parallel}^{\max} - B_{c2,\parallel}^{\min}}{B_{c2,\parallel}^{\max}} = \frac{2b}{a+b} = 0.02$ which is close to our present measurement. In the presence of γ , the
 15 B_{\perp} component can show a two-fold anisotropy, hence inducing “fake” two-fold anisotropies in $B_{c2}(\varphi)$.
 16 Due to the direct orbital contribution from the two-fold B_{\perp} , the contribution is much stronger than the
 17 intrinsic three-, four-, or six-fold anisotropy (Fig. S3e-h). Therefore, eliminating the influence of the
 18 canting angle γ is an essential step for the accurate determination of intrinsic in-plane anisotropies, which
 19 is indispensable for 2D superconductors with strong anisotropies.

20

1 **3. The magnitude of six-fold anisotropy**

2



3 **Figure S4 | Evaluating the amplitude of the six-fold anisotropy at $B = 9$ T.** **a.** From the same data shown in Main Text Fig. 3c at $T = 4.7$ K and $B = 9$ T (main text), the resistance oscillates as a function of φ , due to the change of T_c at different φ angles. The amplitude is determined as $R_{\parallel,\max} - R_{\parallel,\min} = 0.33R_N$ **b.** The superconducting transition at $B = 9$ T (red dots) is shifted horizontally by $\Delta T_c = 0.07$ K. The amplitude of six-fold anisotropy is quantified as $4k_B\Delta T_c = 0.02$ meV. Here, the coefficient 4 was used in the analysis of the largest gap at the K pockets reported in ARPES measurements⁷.

10

11 Although the accuracy of the angle sensor of our rotation stage is better than 0.1° , it still limits the precision in aligning the B field parallel to the 2D sample surface. We assume a limiting case in which the maximum angular error is doubled to 0.2° when we compare the T_c values at two different φ values. As shown in Fig. 2b in the main text, the deviation of 0.2° leads to an error of 0.2 T in B_{c2} when θ is close to 0° . The angular accuracy limits the determination of exact energy scales by measuring the B_{c2} as a function of φ .

17 On the other hand, as shown in Main Text Fig. 3c, the amplitude of the six-fold anisotropy grows with the increase of B field after entering the orbital FFLO phase. At a given temperature and magnetic field along the FFLO phase boundary, a state with smaller resistance corresponds to a higher T_c . Therefore, we can quantify the in-plane anisotropy of T_c by measuring the azimuthal φ dependence of $R(\varphi, \theta = 0)$. At $B_{\parallel} = 9$ T, we find the $R_{\parallel,\max} - R_{\parallel,\min} = 0.33R_N$.

22 For the maximum change of $0.33R_N$ caused by the azimuthal rotation, we can then determine the corresponding change of ΔT_c from the $R(T)$ dependences. As shown in Fig. S4a, the $R_{\parallel,\max}$ and $R_{\parallel,\min}$ appears at $0.7R_N$ and $0.37R_N$, respectively. Therefore, we shift the $R(T)$ dependence measured at $B_{\parallel} = 9$

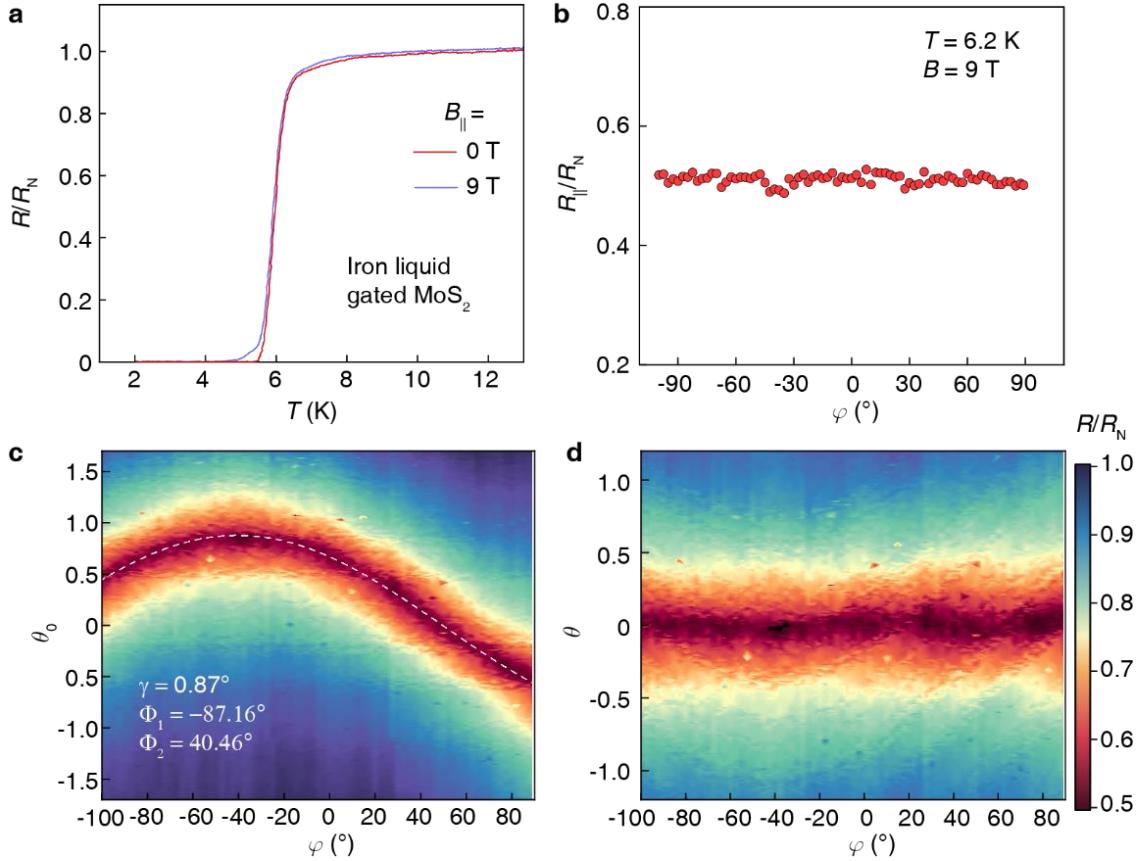
1 T to $R(T + \Delta T_c)$. As shown in Fig. S4b, the shift ensures that $\Delta R = 0.33R_N$ for the minimum T_c appears at
2 $\sim 0.7R_N$ and maximum T_c at $\sim 0.4R_N$, respectively. The corresponding ΔT_c is then determined as 0.07 K.

3 The amplitude of gap anisotropy is quantified as $xk_B\Delta T_c$, where k_B is the Boltzmann constant. As
4 indicated by the ARPES measurement⁷, the coefficient x is 4 for the larger superconducting gap at the K
5 pockets and 1.76 for the smaller one at Γ pockets. Here, we choose the largest gap at the K pockets, which
6 have a medium coupling strength (9) and remains open at $B = 9$ T. Hence the $\Delta T_c = 0.07$ K yields an
7 anisotropy of $4k_B T_c = 0.02$ meV in the orbital FFLO state, which is about 0.8% of the largest
8 superconducting gap at the K pocket (2.5 meV).

9

1 **4. In-plane isotropy of monolayer MoS₂**

2



4 **Figure S5 | In-plane isotropy of ion-gated monolayer superconductivity in a multilayer MoS₂.** **a.**
5 Superconducting transition in in-plane field $B = 0$ and 9 T. **b.** Magnetoresistance $R_{\parallel}(\varphi)$ remains constant
6 at different φ showing isotropic response. **c.** Mapping of $R(\theta_0, \varphi)$ before subtracting the effect of canting
7 angle. The white dashed line is a fit using Eq. 5 in the Methods, which yields a canting angle $\gamma = 0.87^\circ$.
8 **d.** Mapping of $R(\theta, \varphi)$ after subtracting the effect of canting angle.

9 The 2H-type MoS₂ and NbSe₂ are identical in the crystal structure, except for a shift of transition metal
10 position, which is further divided as 2H_a and 2H_b types. Since Mo has one more valence electron than
11 Nb, the 2H-MoS₂ has a fully filled band. By chemical intercalation or electrostatic gating, the
12 semiconducting MoS₂ can be doped into metallic states, where superconductivity is realized at a carrier
13 density $n_{2D} > 8 \times 10^{13} \text{ cm}^{-2}$. The ion-gated few-layer MoS₂ is superconducting only in the top first layer
14 due to the strong screening effect of the electric field⁸. Like a NbSe₂ monolayer, the broken inversion
15 symmetry induces the Ising SOC, which locks the electron spins to the out-of-plane direction, strongly
16 protecting the Cooper pairs against an in-plane field B_{\parallel} . Therefore, the $B_{c2,\parallel}$ can go well beyond the Pauli
17 limit B_p , reaching $\sim 6B_p$ ⁸.

1 Comparing the superconductivity in a multilayer NbSe₂ and a confined monolayer MoS₂ can highlight
2 the contribution of current-driven vortex motion in the out-of-plane direction, which only exists in a
3 multilayer. We perform the exact measurement to study the anisotropy of superconducting MoS₂ ($T_c = 6$
4 K) in a parallel B field. As shown in Fig. S5, after subtracting the contribution of the canting angle ($\gamma =$
5 0.87°), the superconductivity is highly isotropic. Therefore, the two-fold anisotropy induced by the
6 Lorentz force is not observed in this control experiment as the interlayer motion is completely suppressed
7 in a monolayer superconductor.

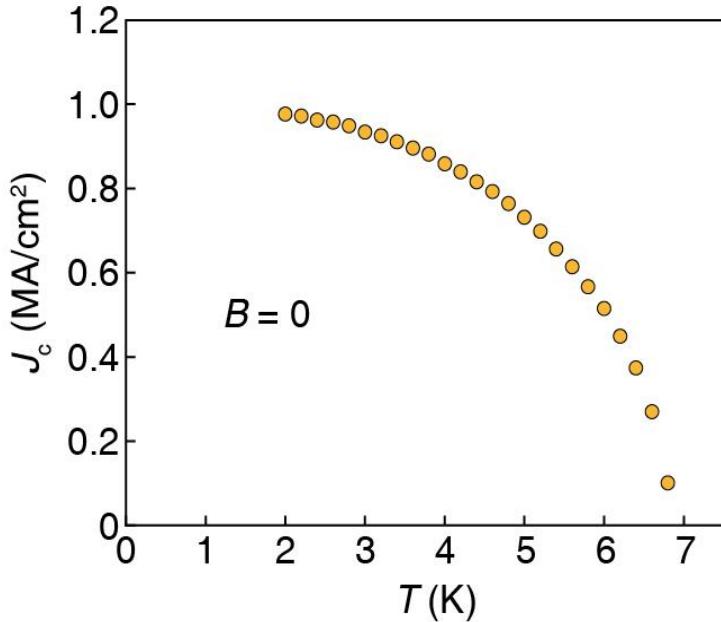
8 The absence of two-fold anisotropy confirms that the ionic gating induces superconductivity in the outer
9 first layer. More importantly, since monolayer thickness prohibits any interlayer interaction, this also
10 suppresses the FFLO state since the orbital FFLO phase observed in multilayer NbSe₂ requires an
11 interlayer orbital effect between two Ising superconducting layers with inversion symmetry. Hence, the
12 six-fold anisotropy associated with the orbital FFLO phase is also absent in the ion-gated MoS₂.

13

14

1 **5. Excluding the two-gap scenario for the upturn in $B_{c2}(T)$**

2



3

4 **Figure S6 | Critical current density as a function of temperature under a zero magnetic field.** At B
5 = 0 T, no upturn was observed in the temperature dependence of J_c . This rules out the two-gap scenario
6 as the cause of the upturns.

7 The superconducting gaps of NbSe₂ open at both K and Γ points for both hole- and electron-like
8 pockets as shown in the ARPES results^{7,9}. The multiple gaps of different gap size may lead to kinks in
9 both $B_{c2}(T)$ ¹⁰ and $J_c(T)$ ¹¹. On the other hand, in dirty two-gap superconductors, the upturn in $B_{c2}(T)$ is
10 also expected due to interband scattering¹⁰.

11 First of all, we can rule out the possibility of having the dirty two-gap scenario since our device
12 shows superconductivity in the clean regime. Furthermore, the kink observed in $|\theta| < 1^\circ$, as shown in
13 the $B_{c2}(\theta)$ in Main Text Fig. 2b, can not be described by the dirty two-gap model¹⁰. Second, the two-gap
14 scenario would expect the temperature dependence of J_c to show a kink when the second gap opens at T
15 < T_{c0} under the zero B field¹¹. As shown in Fig. S6, the $J_c(T)$ measured at $B = 0$ T has a smooth
16 dependence without showing kink as a function of temperature. Instead, the kinks in J_c appear when the
17 B field is applied crossing the uniform superconductor/orbital FFLO phase boundary as shown in Main
18 Text Fig. 4a. The phase boundary thus determined by $J_c(B)$ agrees well with the tricritical point that is
19 determined by $B_{c2}(T)$ measurements. Hence, we can also safely rule out the two-gap scenario as the cause
20 of the kinks observed in our devices.

21

1 **References**

2 1. Corcoran, R. *et al.* Quantum oscillations in the mixed state of the type II superconductor 2H-
3 NbSe₂. *J. Phys. Condens. Matter* **6**, 4479 (1994).

4 2. Yokoya, T. Fermi Surface Sheet-Dependent Superconductivity in 2H-NbSe₂. *Science* **294**, 2518–
5 2520 (2001).

6 3. Rossnagel, K. *et al.* Fermi surface of 2H-NbSe₂ and its implications on the charge-density-wave
7 mechanism. *Phys. Rev. B* **64**, 1–6 (2001).

8 4. Bel, R., Behnia, K. & Berger, H. Ambipolar Nernst Effect in NbSe₂. *Phys. Rev. Lett.* **91**, 2–5
9 (2003).

10 5. Ong, N. P. Geometric interpretation of the weak-field Hall conductivity in two-dimensional
11 metals with arbitrary Fermi surface. *Phys. Rev. B* **43**, 193–201 (1991).

12 6. Tinkham, M. *Introduction to Superconductivity* 2nd. (Dover, 1996).

13 7. Rahn, D. J. *et al.* Gaps and kinks in the electronic structure of the superconductor 2H-NbSe₂
14 from angle-resolved photoemission at 1 K. *Phys. Rev. B* **85**, 1–8 (2012).

15 8. Lu, J. M. *et al.* Evidence for two-dimensional Ising superconductivity in gated MoS₂. *Science*
16 **350**, 1353–1357 (2015).

17 9. Kiss, T. *et al.* Charge-order-maximized momentum-dependent superconductivity. *Nat. Phys.* **3**,
18 720–725 (2007).

19 10. Gurevich, A. Enhancement of the upper critical field by nonmagnetic impurities in dirty two-gap
20 superconductors. *Phys. Rev. B* **67**, 184515 (2003).

21 11. Talantsev, E. F. *et al.* On the origin of critical temperature enhancement in atomically thin
22 superconductors. *2D Mater.* **4**, 025072 (2017).

23