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1. Mean-free path and clean superconductivity

For semiconducting 2H-polytype transition metal dichalcogenides (TMDs such as the 2H-MoS;
and WSy, ), the low-doping metallic state can have all carriers confined in a single band. Therefore, the
2D carrier density n2p can be experimentally determined by measuring the Hall effect, where the nzp is
related to the Hall coefficient R as

nZD ES _L (Sl)

Rye

In contrast, the metallic 2H-NDbSe> has a complex Fermi surface composed of five pockets, having
both hole and electron-like carriers. From the zone center, hole-like carriers are found in multiple pockets
including a small pancake-shaped pocket closed at 7 point as well as honeycomb-shaped and triangular-
shaped cylindrical pockets centered at K and /”points, respectively. Also, two electron-like pockets have
honeycomb and triangular cylindrical shapes at K and I" points, respectively®. The small pancake pocket
at 7"point is either gapless or has a very small gap that is easily suppressed in a parallel external field due
to its 3D Nature. It was reported that the small pancake pocket at /"point is gapless even at a temperature
much lower than Tco (~ 0.003Tco) and gives rise to the quantum oscillations in the superconducting
states?. The larger superconducting gaps open on the Fermi surface at the large hole-like pockets at K

and 7"points, as shown in the ARPES measurements®*,
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Figure S1 | Temperature dependence of Hall coefficient. a. Hall effect measurement at different
temperatures. The transverse Rxy(B) curve is shifted vertically at B = 0 to null the small pickup from the
longitudinal Rxx channel. b. The Hall coefficient as a function of temperature.
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Having carriers from two Fermi pockets, say contributed by both electrons and holes with carrier
density n and p, then the Ry is

nuj—puj

Ry = (S2)

e(nup+pup)?’

where u,, and u,, the electron and hole mobilities, respectively. As shown in Fig. Sla, the Ru of NbSe;
flake changes the sign showing a switch from the hole- to electron-like transport at T ~ Tcow, which is
consistent with Ref. 4 of this supplementary information. In the low B field, Ong® shows that the Hall

transport of mixed carriers can be described as

_ 2md(l—13)
- 2 27 -
e[(kF,plp) +(kpnln) ]

Ry (S3)

The I, L, and the kg, kg ,are the mean free paths and the wave vectors of holes and electrons,
respectively. Due to the dramatic increase of electron mean-free path, the Ry changes the sign below
Tcow. Since the electrons are the minority above Tcow, We can assume there is a single type of carrier
and use the Ry measured at T = 40 K > Tcpw (as shown in Fig. S1b) to estimate the carrier density of
holes using Eqg. S1. The estimated hole concentration is p ~ 2.4 x 10> cm for a single layer, which is
larger than the results from band structure calculation* p = 8.51 x 10'* cm™. Using this larger p, we

can estimate the lower limit of the mean-free-path using the 2D Drude’s formula,

h
l,p = e—zfzzTDp ) (84)

where g, = ﬁ is the conductance of a single layer, where N is the total layer number. From the sheet

resistance Rs measured right above T¢, we can determine the mean-free-path l,, = 30 nm. The zero
temperature Ginzburg-Landau (GL) coherence length & can be extracted from the temperature

dependence of the upper critical field B, , in the perpendicular magnetic fields

Dy

2115(0)2(1—(%))

: (S5)

BCZ,J_ =

where @, is the flux quantum. At T = 0 K, the GL £(0) = 8.3 nm. From the GL &, we can obtain the
Pippard coherence length of a clean superconductor &, = 1.35£(0) = 11.2 nm®. Satisfying & <bp

brings our system into the clean limit.



As shown in Eq. S5, for a multi-gap superconductor, a smaller gap, with a smaller B, ,, has a
larger &,. Therefore, the larger &, associated with the smaller gaps, may violate the clean-limit criteria
&, < lLyp. On the other hand, the smaller gaps are also easier to be suppressed by the external B fields.

Hence, in high fields where the orbital FFLO phase appears, the larger gaps, surviving at B > B*, ensure

a clean superconductivity in the orbital FFLO regime.
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2. Simulated effect of canting on 2D superconductors
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Figure S2 | Simulated effect of canting on an isotropic 2D superconductor. We simulate a
superconductor with an anisotropy B! Z/BC2 =10, which is typically found in Ising superconductors. The
canting angle is set as a. y = 0° and b. y = 1°. The polar plots of B}, /B, show c. isotropic for y = 0°,
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whereas shows d. a fake two-fold anisotropy when y # 0.

It is worth emphasizing that having the y can pick up the effect of misaligned B fields, leading to
wrong conclusions for the anisotropy of superconductivity at in-plane B fields. In Fig. S2 we show the
simulated B, (¢, 6,,) of isotropic 2D superconductivity combining Eg. 4 and Eqg. 5 in the Methods. The
out-of-plane anisotropy is set as B"Z/BC2 = 10, mimicking a typical Ising superconductor with large
anisotropy. When the effect of y is ignored (in this case, 6, is a constant), the B.,(¢) oscillates as a

function of ¢, exhibiting a two-fold symmetry as shown in Fig. S2d. This erroneous two-fold anisotropy

originates from picking up the B, components due to the cantering.
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Figure S3 | Simulated effects of having a canting angle in measuring 2D superconductors with
intrinsic in-plane anisotropies. We set the out-of-plane anisotropy B! 2/B = 10 and the canting angle
y =1° The intrinsic in-plane anisotropy of the 2D superconductor is simulated as B.,(¢,8 = 0) = a +

bcos( ) with n denoting the folds of the intrinsic anisotropy. The amplitude of in-plane anisotropy is

max min
Beai Bcz I
max
Beai

four-, and d. six-fold intrinsic anisotropies. e - h. The corresponding polar plots all show erroneous two-
fold anisotropies.

= E = 0.02. The effect of cantering on Bc2(¢) is plotted as mapping for a. two-, b. three-, c.

Furthermore, we simulate how the presence of y can obscure the intrinsic anisotropy. We first

introduce an intrinsic anisotropy, manifested in the upper critical field as B.,(¢,0 =0) =a +

bcos(%), where n denotes the number of folds of the anisotropy. We assume the amplitude of in-plane

anisotropy By B = % = 0.02 which is close to our present measurement. In the presence of y, the

max
Bea

B, component can show a two-fold anisotropy, hence inducing “fake” two-fold anisotropies in Be2(¢).
Due to the direct orbital contribution from the two-fold B, the contribution is much stronger than the
intrinsic three-, four-, or six-fold anisotropy (Fig. S3e-h). Therefore, eliminating the influence of the
canting angle y is an essential step for the accurate determination of intrinsic in-plane anisotropies, which

is indispensable for 2D superconductors with strong anisotropies.
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3. The magnitude of six-fold anisotropy
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Figure S4 | Evaluating the amplitude of the six-fold anisotropy at B = 9 T. a. From the same data
shown in Main Text Fig. 3cat T =4.7 K and B =9 T (main text), the resistance oscillates as a function
of ¢, due to the change of T, at different ¢ angles. The amplitude is determined as Rj,max — Rj,min = 0.33Rn
b. The superconducting transition at B = 9 T (red dots) is shifted horizontally by AT. = 0.07 K. The
amplitude of six-fold anisotropy is quantified as 4ksAT. = 0.02 meV. Here, the coefficient 4 was used in
the analysis of the largest gap at the K pockets reported in ARPES measurements’.

Although the accuracy of the angle sensor of our rotation stage is better than 0.1°, it still limits the
precision in aligning the B field parallel to the 2D sample surface. We assume a limiting case in which
the maximum angular error is doubled to 0.2° when we compare the T, values at two different ¢ values.
As shown in Fig. 2b in the main text, the deviation of 0.2° leads to an error of 0.2 T in Be2 when 0 is
close to 0°. The angular accuracy limits the determination of exact energy scales by measuring the B¢ as

a function of ¢.

On the other hand, as shown in Main Text Fig. 3c, the amplitude of the six-fold anisotropy grows
with the increase of B field after entering the orbital FFLO phase. At a given temperature and magnetic
field along the FFLO phase boundary, a state with smaller resistance corresponds to a higher Te.
Therefore, we can quantify the in-plane anisotropy of T¢ by measuring the azimuthal ¢ dependence of
R(p, €=0). At B, =9 T, we find the Rmax — Ry, min = 0.33RN.

For the maximum change of 0.33Rn caused by the azimuthal rotation, we can then determine the
corresponding change of AT. from the R(T) dependences. As shown in Fig. S4a, the R|, max and Ry, min
appears at 0.7Rn and 0.37Rn, respectively. Therefore, we shift the R(T) dependence measured at By = 9



O 00 N O

T to R(T + ATc). As shown in Fig. S4b, the shift ensures that AR = 033Rn for the minimum T, appears at

~0.7Rn and maximum T at ~0.4Rn, respectively. The corresponding AT is then determined as 0.07 K.

The amplitude of gap anisotropy is quantified as xkgAT., where kg is the Boltzmann constant. As
indicated by the ARPES measurement’, the coefficient x is 4 for the larger superconducting gap at the K
pockets and 1.76 for the smaller one at /"pockets. Here, we choose the largest gap at the K pockets, which
have a medium coupling strength (9) and remains open at B = 9 T. Hence the AT. = 0.07 K yields an
anisotropy of 4kgT. = 0.02 meV in the orbital FFLO state, which is about 0.8% of the largest
superconducting gap at the K pocket (2.5 meV).
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4. In-plane isotropy of monolayer MoS;
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Figure S5 | In-plane isotropy of ion-gated monolayer superconductivity in a multilayer MoSa. a.
Superconducting transition in in-plane field B =0 and 9 T. b. Magnetoresistance R(¢) remains constant
at different ¢ showing isotropic response. c. Mapping of R(6o, ¢) before subtracting the effect of canting
angle. The white dashed line is a fit using Eq. 5 in the Methods, which yields a canting angle y = 0.87°.
d. Mapping of R(6, ¢) after subtracting the effect of canting angle.

The 2H-type MoS> and NbSe; are identical in the crystal structure, except for a shift of transition metal
position, which is further divided as 2Ha and 2Hs types. Since Mo has one more valence electron than
Nb, the 2H-MoS; has a fully filled band. By chemical intercalation or electrostatic gating, the
semiconducting MoS> can be doped into metallic states, where superconductivity is realized at a carrier
density nop > 8x10% cm2. The ion-gated few-layer MoS; is superconducting only in the top first layer
due to the strong screening effect of the electric field®. Like a NbSe2 monolayer, the broken inversion
symmetry induces the Ising SOC, which locks the electron spins to the out-of-plane direction, strongly
protecting the Cooper pairs against an in-plane field B,. Therefore, the B, ; can go well beyond the Pauli

limit By, reaching ~ 6BS.

10
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Comparing the superconductivity in a multilayer NbSe; and a confined monolayer MoS; can highlight
the contribution of current-driven vortex motion in the out-of-plane direction, which only exists in a
multilayer. We perform the exact measurement to study the anisotropy of superconducting MoS; (Tc =6
K) in a parallel B field. As shown in Fig. S5, after subtracting the contribution of the canting angle (y =
0.87°), the superconductivity is highly isotropic. Therefore, the two-fold anisotropy induced by the
Lorentz force is not observed in this control experiment as the interlayer motion is completely suppressed

in a monolayer superconductor.

The absence of two-fold anisotropy confirms that the ionic gating induces superconductivity in the outer
first layer. More importantly, since monolayer thickness prohibits any interlayer interaction, this also
suppresses the FFLO state since the orbital FFLO phase observed in multilayer NbSe> requires an
interlayer orbital effect between two Ising superconducting layers with inversion symmetry. Hence, the

six-fold anisotropy associated with the orbital FFLO phase is also absent in the ion-gated MoSo.

11
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5. Excluding the two-gap scenario for the upturn in B (T)
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Figure S6 | Critical current density as a function of temperature under a zero magnetic field. At B
=0T, no upturn was observed in the temperature dependence of Jc. This rules out the two-gap scenario
as the cause of the upturns.

The superconducting gaps of NbSe; open at both K and 7~ points for both hole- and electron-like
pockets as shown in the ARPES results’®. The multiple gaps of different gap size may lead to kinks in
both Bea(T)'® and Jo(T)!. On the other hand, in dirty two-gap superconductors, the upturn in Bez(T) is

also expected due to interband scattering®®.

First of all, we can rule out the possibility of having the dirty two-gap scenario since our device
shows superconductivity in the clean regime. Furthermore, the kink observed in |6] < 1°, as shown in
the Bc2(6) in Main Text Fig. 2b, can not be described by the dirty two-gap model*°. Second, the two-gap
scenario would expect the temperature dependence of Jc to show a kink when the second gap opens at T
< T under the zero B field'!. As shown in Fig. S6, the Jo(T) measured at B = 0 T has a smooth
dependence without showing kink as a function of temperature. Instead, the kinks in Jc appear when the
B field is applied crossing the uniform superconductor/orbital FFLO phase boundary as shown in Main
Text Fig. 4a. The phase boundary thus determined by J¢(B) agrees well with the tricritical point that is
determined by Bc2(T) measurements. Hence, we can also safely rule out the two-gap scenario as the cause

of the kinks observed in our devices.
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