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Supplementary Video (Titles and legends)

Supplementary Video S1. Spatial distributions of different quantities in the frictional in-
terface for Poy/E =0.012, L/H =4, and W/H = 1.

Left panel shows the ratio Fr/Fy against the displacement of the rigid rod U. (a) Spatial
distribution of the slip region, which is represented by the yellow area. (b) Spatial distribution
of the ratio o(fric) /p- The white area represents the region with p = 0 due to the lift at the
bottom. (c) Spatial distribution of p.

Supplementary Video S2. Spatial distributions of different quantities in the frictional in-
terface for Pexi/E = 0.012, L/H =1, and W /H = 4.

Left panel shows the ratio Fr/Fy against U. (a) Spatial distribution of the slip region, which
is represented by the yellow area. (b) Spatial distribution of the ratio ¢fric) /p- The white area
represents the region with p = 0 due to the lift at the bottom. (c¢) Spatial distribution of p.



Supplementary Note

In this supplementary note, we provide a detailed description of the analysis presented in
the main text. Section 1 describes the FEM results for the spatial distribution of quantities at
the frictional interface. Details of the analytical calculation based on the simplified models are
presented in Sec. 2. In Sec. 3, we compare our results with those of a previous study'.

1. Spatial distributions of quantities in the frictional interface

This section presents the spatial distributions of the quantities in the frictional interface for
the 3D FEM simulations, which supports the assumption used to derive the simplified models
in the main text. The spatial distributions for L/H = 4 and W/H = 1 are shown in Fig. S1,
corresponding to Supplementary Video S1. Figures S1 (a) and (b) demonstrate the spatial dis-
tributions of the slip region and the ratio o (fric) / p, respectively. Both distributions exhibit a
slight dependency on x. Therefore, in the simplified model with L/H > 1, we neglect the x
dependence. The spatial distribution of pressure p at the bottom is shown in Fig. S1 (c¢). The
pressure p is approximately equal to the pressure Pey; at the top surface of the entire bottom
plane. Based on this numerical result, we assume that the bottom pressure is uniform in the
simplified model for L/H > 1.

The spatial distributions in the frictional interface for W/H = 4 with L/H = 1 are shown
in Fig. S2, corresponding to Supplementary Video S2. Figures S2 (a) and (b) demonstrate
the spatial distributions of the slip region and the ratio o (fric) / p, respectively. The regions for

fric

precursor slip and o (fric) /p = Us propagate from the center at x/H = 2, which is different from
those for L/H > 1 shown in Fig. S1. The characteristic behavior is the extension of the slip

region along the x direction, as shown in Supplementary Video S2. Therefore, in the model for
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Figure S1. Spatial distributions of different quantities in the frictional interface for Pexi/E =
0.012, L/H =4, W/H =1, and U/L = 2.6 x 1072, The rigid rod pushes the block at
(x/H,y/H) = (0.5,0). (a) Spatial distribution of the slip region, which is represented by the
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yellow area. (b) Spatial distribution of the ratio ¢ fric) /p. (c) Spatial distribution of p.
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Figure S2. Spatial distributions of different quantities in the frictional interface for Pexi/E =
0.012, L/H =1, W/H =4, and U/L = 1.08 x 10~'. The rigid rod pushes the block at
(x/H,y/H) = (2,0). (a) Spatial distribution of the slip region, which is represented by the

fric

yellow area. (b) Spatial distribution of the ratio ¢fric) /p. (c) Spatial distribution of p.

W /H > 1, we neglect the dependence on y. The spatial distribution of pressure p at the bottom
is shown in Fig. S2 (c¢). The variation in p is not strong. Therefore, we assume a constant
pressure in the simplified model for W /H > 1.

2. Analysis based on the simplified models

This section presents details of the analytical calculations based on the simplified models.
We derive the results for L/H > 1 and W/H > 1 shown in Secs. 2.1 and 2.2.

2.1. Model for large L/H

Quasi-static solution

The quasi-static solution u,((y) of equations (2) and (3) in the main text with the local friction
coefficient 4 = ug and acceleration iy (y,t) = 0 at U = 0 is given by

2
——Ly). (S1)

The quasi-static solution u§a) (y) for U > 0 is given by

(a) uyt(y), 0<y<lI
— , S2
o) { uyo(y), I<y<L (52)

where [ is the length of the precursor slip. The slip area A is given by

A=IW. (S3)




Here, we set the local friction coefficient ut to be equal to ug for 0 <y </, and the displacement
and stress are continuous at y = [:

uyi(y=1) = uyo(y=1) (S4)
duy, duy (S5)
dy y=I dy y=I 7

which gives
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From equations (S3) and (S7), A is obtained as
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Stability analysis
We introduce the fluctuation duy(y,t) as
Sy (3,1) = y(3,1) — " (v). (89)

For y > [, we assume Ou,(y,t) = 0. Substituting equation (S9) into the equation of motion (2),

we obtain 2 8 ( )
Su ou Hs — UK ou Pext
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Because Su, =0aty =0 and /, Su,(y,?) can be expressed as
Ouy(y,t) Z uyme "sink,,& (S11)

with a positive integer m and eigenvalue A, of the time evolution operator, where k,, and & are
defined as

k=
£ =

T (S12)
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respectively. Substituting equation (S11) into equation (S10), multiplying by 2sink,& with a
positive integer n, and integrating for 0 < y < [, we obtain
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From equations (S3) and (S14), we obtain
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The second term on the left-hand side of equation (S15) corresponds to the viscosity, while the
fourth term on the same side represents the velocity-weakening friction. For A /Ay < 1, we can
neglect the fourth term and 4,, satisfies Re A,, < 0. For a larger A /Ay, the second and third terms
can be neglected, and one of the solutions satisfies ImA,, =0 and ReA,, > 0.

The fluctuation Su,(y,t) becomes unstable when Re 4,, > 0; however, the oscillatory insta-
bility with Im 4,, # 0 is suppressed by the static friction force because the oscillatory motion is
accompanied by backward motion. Bulk sliding occurs when the eigenvalue satisfies

ImA,, =0 and ReA,, >0 (S16)

with m = 1. We obtain equation (4) in the main text for the critical area A, from this condition
using equation (S15), which gives

Ao _ il (S17)
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Macroscopic friction coefficient
The loading force Fy is given by
N = Pext Ao (S18)

The driving force Fr is balanced with the total friction force, except for the duration of bulk
sliding. It should be noted that the precursor motion is quasi-static. Fr is given by the integral
of the local friction force as

L
Fr=W [ uPody. (519)
Using equations (2), (3), (S1), (S3), (S2), (S5), and (S6), we obtain
dcyy y)
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Because the macroscopic static friction coefficient pyy is the ratio of the driving force to the

loading force, Fr/Fn, at A = A., equation (6) in the main text is obtained from equations (S18)
and (S20).

2.2. Model for large W /H

Quasi-static solution

The quasi-static solution u,((x) of equations (9) and (10) in the main text at U = 0 is obtained
as

Pex
ty0(x) = 2;‘2(7;;1 (= W) (S21)




with the boundary conditions, local friction coefficient i = uk, and acceleration iiy(x,7) = 0.

For U > 0, the quasi-static solution uﬁa) (x) is given by

<x
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with the width w of the precursor slip related to A as

A=wL. (S23)
Setting p equal to g for 0 < x < w/2, the displacement and stress are continuous at x = w/2:
i (x=3%) = wo(x=1%) (524)
d d
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where we obtain uy (x) as
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Stability analysis
We introduce the fluctuation du,(x,t) as
Ouy(x,1) = uy(x,1) — uga) (x). (529)
Substituting equation (S29) into equation (9), we obtain
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Assuming Suy(x,t) = 0 for x > w/2 and x = 0, Su,(x,7) is expressed as
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Here, m is a positive integer and A,, is the eigenvalue. Substituting equation (S31) into equa-
tion (S30), multiplying by 2sink,&, and integrating for 0 < x < w/2, we obtain
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From equations (S23) and (S34), we obtain
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The second term on the left-hand side of equation (S35) represents the viscosity, while the
fourth term on the same side originates from the velocity-weakening friction.

Similar to the case for L/H > 1, bulk sliding occurs when the eigenvalue satisfies equa-
tion (S16) with increasing A/A( owing to the instability caused by the velocity-weakening fric-
tion. From this condition, we obtain equation (11) in the main text for the critical area A., which
gives

Ae _ dall . (S36)
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Macroscopic friction coefficient

The loading force Fy is given by equation (S18). The driving force Ft is balanced with the
integral of the local friction force as
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Using equations (9), (10), (S21), (S23), (S22), (S25), and (S26), we obtain
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Because the macroscopic static friction coefficient uys is the ratio of the driving force to the
loading force, Fr/Fy, at A = A, we obtain equation (6) in the main text from equations (S18)
and (S38).

3. Comparison with the analytical result from a previous study

In this section, we compare our results with those of ref. 1. A previous study discussed the
dependence of the precursor slip and friction coefficient on system size with a constant aspect




ratio L/H = 2. In the analysis, the authors considered the nonuniformity of the bottom pressure
as the origin of the precursor slip and demonstrated the breakdown of Amontons’ law. The
bottom pressure was shown to increase along the driving direction owing to the torque effect!->
and was approximated by p(y) = 2Pexy/L. The equation of motion is given by
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with the fitting parameter ¢. The boundary conditions are as
d d
Sl I (S42)
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Using the same procedure as that in Sec. 2, the equation for the critical area A is obtained as
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For A./Ap < 1, A /Ay is expressed as
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where the exponents for Py and L/H differ from those in equation (5) in the main text. The dif-

ference in the exponents results from the different assumptions for the bottom pressure adopted
in both studies, i.e., uniform pressure in the present study and non-uniform pressure in the pre-
vious study. Note that the macroscopic friction coefficient uy; in this model is also given by
equation (6) in the main text.

In Fig. S3, we show uy against Peyx; for various lengths, L/H with W/H = 1, obtained
from the FEM simulations in the present study. The analytical results in ref. 1 given by equa-
tions (S43) and (6), and in the present study given by equations (S17) and (6) are also shown.
The fitting parameter o is determined such that the analytical result matches the FEM results
for L/H =2 and Pex/E > 0.01. Figure S3 shows that the analytical results in the previous study
better reproduce the results of the FEM analysis for L/H < 2. This is because the nonunifor-
mity of the bottom pressure is significant for L/H < 2. However, the analytical results deviate
from the FEM analysis for L/H > 4, where the bottom pressure is almost uniform, as shown in
Fig. S1 (¢) and Supplementary Video S1 (c). Instead, the analytical results of the present study
agree with the FEM analysis for L/H > 4, as shown in Fig. 3 and Fig. S3.
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Figure S3. Dependence of py on Py for various L/H values with W /H = 1. The thin solid
lines represent the analytical results in ref. 1 given by equations (S43) and (6) with the fitting
parameter & = 0.05. The thin dash-dotted lines represent the analytical results in the present
study given by equations (S17) and (6) with the fitting parameter s = 0.2. The dotted and
dashed lines represent ts and Lk, respectively.
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