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Supplementary Video (Titles and legends)

Supplementary Video S1. Spatial distributions of different quantities in the frictional in-
terface for Pext/E = 0.012, L/H = 4, and W/H = 1.

Left panel shows the ratio FT/FN against the displacement of the rigid rod U . (a) Spatial
distribution of the slip region, which is represented by the yellow area. (b) Spatial distribution
of the ratio σ (fric)/p. The white area represents the region with p = 0 due to the lift at the
bottom. (c) Spatial distribution of p.

Supplementary Video S2. Spatial distributions of different quantities in the frictional in-
terface for Pext/E = 0.012, L/H = 1, and W/H = 4.

Left panel shows the ratio FT/FN against U . (a) Spatial distribution of the slip region, which
is represented by the yellow area. (b) Spatial distribution of the ratio σ (fric)/p. The white area
represents the region with p = 0 due to the lift at the bottom. (c) Spatial distribution of p.



Supplementary Note

In this supplementary note, we provide a detailed description of the analysis presented in
the main text. Section 1 describes the FEM results for the spatial distribution of quantities at
the frictional interface. Details of the analytical calculation based on the simplified models are
presented in Sec. 2. In Sec. 3, we compare our results with those of a previous study1.

1. Spatial distributions of quantities in the frictional interface

This section presents the spatial distributions of the quantities in the frictional interface for
the 3D FEM simulations, which supports the assumption used to derive the simplified models
in the main text. The spatial distributions for L/H = 4 and W/H = 1 are shown in Fig. S1,
corresponding to Supplementary Video S1. Figures S1 (a) and (b) demonstrate the spatial dis-
tributions of the slip region and the ratio σ (fric)/p, respectively. Both distributions exhibit a
slight dependency on x. Therefore, in the simplified model with L/H ≫ 1, we neglect the x
dependence. The spatial distribution of pressure p at the bottom is shown in Fig. S1 (c). The
pressure p is approximately equal to the pressure Pext at the top surface of the entire bottom
plane. Based on this numerical result, we assume that the bottom pressure is uniform in the
simplified model for L/H ≫ 1.

The spatial distributions in the frictional interface for W/H = 4 with L/H = 1 are shown
in Fig. S2, corresponding to Supplementary Video S2. Figures S2 (a) and (b) demonstrate
the spatial distributions of the slip region and the ratio σ (fric)/p, respectively. The regions for
precursor slip and σ (fric)/p ≈ µS propagate from the center at x/H = 2, which is different from
those for L/H ≫ 1 shown in Fig. S1. The characteristic behavior is the extension of the slip
region along the x direction, as shown in Supplementary Video S2. Therefore, in the model for
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Figure S1. Spatial distributions of different quantities in the frictional interface for Pext/E =

0.012, L/H = 4, W/H = 1, and U/L = 2.6 × 10−2. The rigid rod pushes the block at
(x/H,y/H) = (0.5,0). (a) Spatial distribution of the slip region, which is represented by the
yellow area. (b) Spatial distribution of the ratio σ (fric)/p. (c) Spatial distribution of p.
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Figure S2. Spatial distributions of different quantities in the frictional interface for Pext/E =

0.012, L/H = 1, W/H = 4, and U/L = 1.08 × 10−1. The rigid rod pushes the block at
(x/H,y/H) = (2,0). (a) Spatial distribution of the slip region, which is represented by the
yellow area. (b) Spatial distribution of the ratio σ (fric)/p. (c) Spatial distribution of p.

W/H ≫ 1, we neglect the dependence on y. The spatial distribution of pressure p at the bottom
is shown in Fig. S2 (c). The variation in p is not strong. Therefore, we assume a constant
pressure in the simplified model for W/H ≫ 1.

2. Analysis based on the simplified models

This section presents details of the analytical calculations based on the simplified models.
We derive the results for L/H ≫ 1 and W/H ≫ 1 shown in Secs. 2.1 and 2.2.

2.1. Model for large L/H

Quasi-static solution

The quasi-static solution uy0(y) of equations (2) and (3) in the main text with the local friction
coefficient µ = µK and acceleration üy(y, t) = 0 at U = 0 is given by

uy0(y) =
µKPext

E1αAH

(
y2

2
−Ly

)
. (S1)

The quasi-static solution u(a)y (y) for U > 0 is given by

u(a)y (y) =

{
uy1(y), 0 ≤ y ≤ l
uy0(y), l < y ≤ L

, (S2)

where l is the length of the precursor slip. The slip area A is given by

A = lW. (S3)
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Here, we set the local friction coefficient µ to be equal to µS for 0 ≤ y ≤ l, and the displacement
and stress are continuous at y = l:

uy1(y = l) = uy0(y = l) (S4)
duy1

dy

∣∣∣∣
y=l

=
duy0

dy

∣∣∣∣
y=l

, (S5)

which gives

uy1(y) = uy0(y)+
(µS −µK)Pext

2E1αAH

(
y2 −2ly+ l2) (S6)

and

l =
{

2E1αAH U
(µS −µK)Pext

} 1
2

. (S7)

From equations (S3) and (S7), A is obtained as

A
W

=

{
2E1αAH U
(µS −µK)Pext

} 1
2

. (S8)

Stability analysis

We introduce the fluctuation δuy(y, t) as

δuy(y, t) = uy(y, t)−u(a)y (y). (S9)

For y > l, we assume δuy(y, t) = 0. Substituting equation (S9) into the equation of motion (2),
we obtain

ρδ üy = E1
∂ 2δuy

∂y2 +η t
∂ 2δ u̇y

∂y2 +
(µS −µK)δ u̇y Pext

vcαAH
. (S10)

Because δuy = 0 at y = 0 and l, δuy(y, t) can be expressed as

δuy(y, t) = ∑
m=1

uymeλmt sinkmξ (S11)

with a positive integer m and eigenvalue λm of the time evolution operator, where km and ξ are
defined as

km = mπ (S12)

ξ =
y
l
, (S13)

respectively. Substituting equation (S11) into equation (S10), multiplying by 2sinknξ with a
positive integer n, and integrating for 0 < y < l, we obtain{

ρλ 2
m +η t

k2
m

l2 λm +E1
k2

m
l2 − (µS −µK)Pext

vcαAH
λm

}
uneλmt = 0. (S14)

From equations (S3) and (S14), we obtain

ρL2λ 2
m + k2

mη t

(
A
A0

)−2

λm + k2
mE1

(
A
A0

)−2

− (µS −µK)PextL2

vcαAH
λm = 0. (S15)
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The second term on the left-hand side of equation (S15) corresponds to the viscosity, while the
fourth term on the same side represents the velocity-weakening friction. For A/A0 ≪ 1, we can
neglect the fourth term and λm satisfies Reλm < 0. For a larger A/A0, the second and third terms
can be neglected, and one of the solutions satisfies Imλm = 0 and Reλm > 0.

The fluctuation δuy(y, t) becomes unstable when Reλm > 0; however, the oscillatory insta-
bility with Imλm ̸= 0 is suppressed by the static friction force because the oscillatory motion is
accompanied by backward motion. Bulk sliding occurs when the eigenvalue satisfies

Imλm = 0 and Reλm > 0 (S16)

with m = 1. We obtain equation (4) in the main text for the critical area Ac from this condition
using equation (S15), which gives

Ac

A0
=

πη t

L
(
−
√

ρE1 +

√
ρE1 +

(µS −µK)Pextη t

vcαAH

) . (S17)

Macroscopic friction coefficient

The loading force FN is given by
FN = Pext A0. (S18)

The driving force FT is balanced with the total friction force, except for the duration of bulk
sliding. It should be noted that the precursor motion is quasi-static. FT is given by the integral
of the local friction force as

FT =W
∫ L

0
µPextdy. (S19)

Using equations (2), (3), (S1), (S3), (S2), (S5), and (S6), we obtain

FT = αAHW
∫ L

0

dσyy(y)
dy

dy

= E1αAHW
{∫ l

0

d2uy1

dy2 dy+
∫ L

l

d2uy0

dy2 dy
}

= −E1αAHW
duy1

dy

∣∣∣∣
y=0

= Pext A0

{
µK +(µS −µK)

A
A0

}
. (S20)

Because the macroscopic static friction coefficient µM is the ratio of the driving force to the
loading force, FT/FN, at A = Ac, equation (6) in the main text is obtained from equations (S18)
and (S20).

2.2. Model for large W/H

Quasi-static solution

The quasi-static solution uy0(x) of equations (9) and (10) in the main text at U = 0 is obtained
as

uy0(x) =
µKPext

2E2αBH

(
x2 −Wx

)
(S21)
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with the boundary conditions, local friction coefficient µ = µK, and acceleration üy(x, t) = 0.
For U > 0, the quasi-static solution u(a)y (x) is given by

u(a)y (x) =

{
uy1(x), 0 ≤ x ≤ w

2
uy0(x), w

2 < x ≤ W
2

(S22)

with the width w of the precursor slip related to A as

A = wL. (S23)

Setting µ equal to µS for 0 ≤ x ≤ w/2, the displacement and stress are continuous at x = w/2:

uy1
(
x = w

2

)
= uy0

(
x = w

2

)
(S24)

duy1

dx

∣∣∣∣
x=w

2

=
duy0

dx

∣∣∣∣
x=w

2

, (S25)

where we obtain uy1(x) as

uy1(x) = uy0(x)+
(µS −µK)Pext

2E2αBH

(
x2 −wx+

w2

4

)
(S26)

with

w = 2
{

2E2αBHU
(µS −µK)Pext

} 1
2

. (S27)

From equation (S23), A can be expressed as

A
L
= 2

{
2E2αBHU

(µS −µK)Pext

} 1
2

. (S28)

Stability analysis

We introduce the fluctuation δuy(x, t) as

δuy(x, t) = uy(x, t)−u(a)y (x). (S29)

Substituting equation (S29) into equation (9), we obtain

ρδ üy = E2
∂ 2δuy

∂x2 +
η1

2
∂ 2δ u̇y

∂x2 +
(µS −µK)Pextδ u̇y

vcαBH
. (S30)

Assuming δuy(x, t) = 0 for x > w/2 and x = 0, δuy(x, t) is expressed as

δuy(x, t) = ∑
m=1

uymeλmt sinkmξ , (S31)

where km and ξ are given by

km = mπ (S32)

ξ =
2x
w
. (S33)
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Here, m is a positive integer and λm is the eigenvalue. Substituting equation (S31) into equa-
tion (S30), multiplying by 2sinknξ , and integrating for 0 < x < w/2, we obtain{

ρλ 2
m +2η1

k2
m

w2 λm +4E2
k2

m
w2 −

(µS −µK)Pext

vcαBH
λm

}
uneλmt = 0. (S34)

From equations (S23) and (S34), we obtain

ρW 2λ 2
m +2k2

mη1

(
A
A0

)−2

λm +4k2
mE2

(
A
A0

)−2

− (µS −µK)PextW 2

vcαBH
λm = 0. (S35)

The second term on the left-hand side of equation (S35) represents the viscosity, while the
fourth term on the same side originates from the velocity-weakening friction.

Similar to the case for L/H ≫ 1, bulk sliding occurs when the eigenvalue satisfies equa-
tion (S16) with increasing A/A0 owing to the instability caused by the velocity-weakening fric-
tion. From this condition, we obtain equation (11) in the main text for the critical area Ac, which
gives

Ac

A0
=

πη1

W
(
−
√

ρE2 +

√
ρE2 +

(µS −µK)Pextη1

2vcαBH

) . (S36)

Macroscopic friction coefficient

The loading force FN is given by equation (S18). The driving force FT is balanced with the
integral of the local friction force as

FT = L
∫ W

2

−W
2

µPextdx = 2L
∫ W

2

0
µPextdx. (S37)

Using equations (9), (10), (S21), (S23), (S22), (S25), and (S26), we obtain

FT = 2αBHL
∫ W

2

0

dσxy(x)
dx

dx

= 2E2αBHL

{∫ w
2

0

d2uy1

dx2 dx+
∫ W

2

w
2

d2uy0

dx2 dx

}

= −2E2αBHL
duy1

dx

∣∣∣∣
x=0

= Pext A0

{
µK +(µS −µK)

A
A0

}
. (S38)

Because the macroscopic static friction coefficient µM is the ratio of the driving force to the
loading force, FT/FN, at A = Ac, we obtain equation (6) in the main text from equations (S18)
and (S38).

3. Comparison with the analytical result from a previous study

In this section, we compare our results with those of ref. 1. A previous study discussed the
dependence of the precursor slip and friction coefficient on system size with a constant aspect
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ratio L/H = 2. In the analysis, the authors considered the nonuniformity of the bottom pressure
as the origin of the precursor slip and demonstrated the breakdown of Amontons’ law. The
bottom pressure was shown to increase along the driving direction owing to the torque effect1,2

and was approximated by p(y) = 2Pext y/L. The equation of motion is given by

ρ üy(y, t) =
∂σyy(y, t)

∂y
+

σzy(y, t)−µ(u̇y)p(y)
αH

, (S39)

where the stresses σyy and σzy are expressed as

σyy = E1
∂uy

∂y
+η t

∂ u̇y

∂y
(S40)

σzy = E2
U −uy

H/2
+

η1

2
Vrod − u̇y

H/2
(S41)

with the fitting parameter α . The boundary conditions are as

∂uy

∂y

∣∣∣∣
y=0

=
∂uy

∂y

∣∣∣∣
y=L

= 0. (S42)

Using the same procedure as that in Sec. 2, the equation for the critical area Ac is obtained as

π2η t

4

(
Ac

A0

)−2

+
η1

α

(
L
H

)2

+2L

√√√√ρ

{
π2E1

4

(
Ac

A0

)−2

+
2E2

α

(
L
H

)2
}

=
(π2 −4)

π2
(µS −µK)PextL2

αvcH
Ac

A0
. (S43)

For Ac/A0 ≪ 1, Ac/A0 is expressed as

Ac

A0
≃ π2

π2 −4

(
µS −µK

α

)− 1
3
(

PextH
η tvc

)− 1
3
(

L
H

)− 2
3

, (S44)

where the exponents for Pext and L/H differ from those in equation (5) in the main text. The dif-
ference in the exponents results from the different assumptions for the bottom pressure adopted
in both studies, i.e., uniform pressure in the present study and non-uniform pressure in the pre-
vious study. Note that the macroscopic friction coefficient µM in this model is also given by
equation (6) in the main text.

In Fig. S3, we show µM against Pext for various lengths, L/H with W/H = 1, obtained
from the FEM simulations in the present study. The analytical results in ref. 1 given by equa-
tions (S43) and (6), and in the present study given by equations (S17) and (6) are also shown.
The fitting parameter α is determined such that the analytical result matches the FEM results
for L/H = 2 and Pext/E > 0.01. Figure S3 shows that the analytical results in the previous study
better reproduce the results of the FEM analysis for L/H ≤ 2. This is because the nonunifor-
mity of the bottom pressure is significant for L/H ≤ 2. However, the analytical results deviate
from the FEM analysis for L/H ≥ 4, where the bottom pressure is almost uniform, as shown in
Fig. S1 (c) and Supplementary Video S1 (c). Instead, the analytical results of the present study
agree with the FEM analysis for L/H ≥ 4, as shown in Fig. 3 and Fig. S3.
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Figure S3. Dependence of µM on Pext for various L/H values with W/H = 1. The thin solid
lines represent the analytical results in ref. 1 given by equations (S43) and (6) with the fitting
parameter α = 0.05. The thin dash-dotted lines represent the analytical results in the present
study given by equations (S17) and (6) with the fitting parameter αA = 0.2. The dotted and
dashed lines represent µS and µK, respectively.
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