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Supplementary Notes
Note S1. Nonlinearity (NL) calculation
NL can be defined as follows1–3:

	(1)

, where GP(n) and GD(n) represent the conductance values after n-th potentiating and depressing pulses, respectively. The maximum difference between GP(n) and GD(n) is then divided by the difference of Gmax and Gmin for normalization. The NL is ranged from 0 to 1. The NL = 0 implies the perfect linearity in the weight update for LTP/LTD function. 

Note S2. Calculation of ε in the flexible multi-stack layered device
Assuming a two-layered sheet consisting of a film on a substrate bent to a cylinder of radius R, the thickness of film and substrate corresponds to f and s, respectively (Fig. S3a). When the sheet is bent, the outer surface gets extended while the inner surface gets compressed. Inside the sheet, there lies a neutral plane where no strain is applied. The strain on the top surface is the same as the distance from the neutral plane divided by R. Considering Young's modulus (Yf for film, Ys for substrate) which determines the allowable radius of curvature without mechanical failure, the strain on top can be defined as follows4:

			(2)

, where η indicates the f / s and χ represents the Yf / Ys. When the s is sufficiently thicker than f, the equation (2) can be approximated as . Therefore, the thinner substrate can further reduce the applied ε. The TOAS device is composed of multiple layers with a junction structure of Al/TiO2/Al/parylene, and each layer can be numbered from 1st (Parylene) to 4th (top Al). Here, the neutral plane exists at distance b from the bottom end of the first layer, as described by the following equation5,  

		(3)

, where hi represents the thickness of the i-th layer and the Yi the Young's modulus value of the i-th layer. Each hi and Yi corresponding to the layers of the TOAS device are represented in the Fig. S3b6–10. Based on this result, the b is estimated to be ~1173 nm. By the as-obtained values, ε can be obtained as following equation:

		(4)

, where r represents the distance from bottom surface to the surface for which estimate the strain.

Note S3. The light-electrical signal transformation of the OPS for image reshaping process
The fabricated OPS device attached to the finger can generate the light-responsive Vout proportional to the DL between the OPS and light source. The change of Vout under the light sources (i.e., green (horizontal, x-axis) and red LED (vertical, y-axis)) over the time represents the real-time movement of OPS device itself. Here, two OPS devices generate each Vout at x- and y-axis respectively, and the normal vector direction of each device surface was aligned to confront each green and red light source squarely (Fig. 3g). For example, if the OPS device closely moves to the green light source at x-direction over time, the relative change in the Vout (ΔVX) can be increased at that time domain, and if the OPS device moves far away from green light source, ΔVX can be decreased. Similarly, the same goes for the red light at y-direction and its relevant OPS device. The obtained green and red OPS signals (ΔVX and ΔVY) were reshaped  into 16×16 2D image using direct point transformation with following equation for all digit classes11–15.

		(5)
		(6)

Here, α is magnification constant to determine the image size in 16×16 space considering the scale of voltage amplitude ΔVX and ΔVY, and initial location as x0 and y0 which were set to be different according to digit classes (Fig. 3j). The trajectory of gesture motion in image space was cumulatively recorded during 8,000 ms (1≤i≤8,000). After the point transformation, we reflected the trajectory boundary at the neighbourhood pixel around the black pixel, resulting in reshaped ternary image for each output signal of OPS device.

Note S4. Learning and recognition process
We evaluated the learning capability of a neuromorphic system based on the developed OPS–TOAS array and its applicability to finger-writing motion recognition in 3D free space. Because there are 10 output classes (0,1,2…9) for the 16 × 16 ternary digit image set from OPS signal data (Fig. S7, S14, S17, and S21), total synaptic weight components of 10 × 16 × 16 (Fig. 4c) were individually updated according to the conventional batch-mode backpropagation principle16,17. Here, we utilized the noise-reflected reshaped images with particular signal amplitude (σamp) and point elimination (σeli) deviation to avoid the overfitting problem in neural network training18–22. As shown in Fig. S9-S13, the randomly applied signal variation can result in variation of reshaped image of ‘8’ to extend the coverage of synaptic weight to recognize the differently deviated input images and to increase the inference accuracy (Fig. S15, S16, S18-S20, and S22-S24).
Initially, all memristor cells were maintained in the minimum conductance state and could be evolved in the batch unit where the conductance update was implemented at one time for each training epoch using randomly selected 100 training images. For the different OPS device measurement condition (Fig. 4f and g, Fig. S18-S20) or different persons (Fig. 4h and i, Fig. S21-S24), the even epoch training was performed using image set #1 (finger-writing digit patterns by person #1) and the odd epoch training was performed using image set #2 (finger-writing digit patterns by stick-bar or person #2), respectively. The weight increment at each training epoch was transferred to the number of potentiation processes for each memristor cell. Here, the individual synaptic weight is composed by pair-device structure using conductance difference between two devices to extend the range of effective weight until negative value23–25. If the weight increment is positive, positive memristor device was updated to increase the effective synaptic weight, and if it is negative, negative memristor device was updated to decrease the effective synaptic weight. In addition, the potentiation number was divided into three cases (1, 2, and 3) according to the magnitude of the weight increment, thus indicating that the individual effective synaptic weight could evolve between 7 selections (+3, +2, +1, 0, –1, –2, –3) at each training epoch until it reached conductance saturation. The recognition accuracy was evaluated by comparing the actual and recognition classes for 100 test images for each training condition. The contour plot of synaptic weight and each potentiation number are presented in Fig. 4c in main text.
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Figure S1. Analog I–V switching characteristics of TOAS device before peeling off under repetitive voltage sweeps. (a) IV plots in negative voltage regime ranging from 0 to -2 V.  (b) IV plots in positive voltage regime ranging from 0 to 1.5 V. 







[image: ]
Figure S2. The PSCs responses for LTP/LTD of the TOAS device under 6,400 repeated input pulses (100 cycles) at S of 0% and 60%. The first and last ten cycles out of 100 cycles of LTP/LTD transitions at S of (a) 10% and (b) 60%. 












[image: ]
Figure S3. Device schematics and thickness information for ε calculation. (a) Schematic image for a film on the bending surface with neutral plane, where R represents the bending radius and f and s represent the thickness of the film and the substrate, respectively. (b) Schematic image of the Al/TiO2/Al/Parylene junction structure with the information of thickness (hi) and Young’s modulus (Yi) of each layer. The total thickness is r. Neutral plane exists within the 1st Parylene layer and positions at b from its end. The ε calculation is detailed in Supplementary Note S2.  
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Figure S4. Chemical structure of the donor and acceptor material in the active layer. (a) Chemical structure of Poly([2,6′-4,8-di(5ethylhexylthienyl) benzo[1,2-b;3,3-b]dithiophene]{3-fluoro-2[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}), and (b) [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM).
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Figure S5. The electrical characteristics of OPS as a function of IL before and after peeling off. (a) J–V characteristics of OPS under different incident IL (from dark to 100 mW/cm2) before and after peeling off. (b) JSCIL characteristics of OPS before and after peeling off.
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Figure S6. IL measurement as a function of DL from the green and red LED sources using Si photodiode (PM100D). (a) Schematic of the experimental setup. (b) ILDL plots as a function of the green and red LED sources. 
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Figure S7. Time-resolved VX and VY in the x- and y-direction for the OPS-attached finger-writing digit patterns under the green (x-direction) and red (y-direction) LED illuminations.  The projected digits data on the x-y plane after drawing numbers from (a), “0” to (j), “9” by the OPS-attached finger (left figure). The VXt and VYt plots when writing digit patterns from “0” to “9” (right figures). 
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Figure S8. Electrical characteristics of integrated OPS–TOAS device. (a) Representative IV switching curves of 1st and 2nd TOAS devices in each integrated OPS–TOAS device. (b), (c) PSC responses from 1st and 2nd integrated OPS–TOAS device depending on IL for the LTP (i) and LTD (ii) of the TOAS device. 
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Figure S9. Examples of digit 8 datasets with different signal amplitude deviation (amp).  Regenerated time-resolved ΔVX (green) and ΔVY (red) data and the reshaped image of ‘8’ (right upper image) when σamp is (a) 0%, (b) 10%, (c) 20%, and (d) 30%. For example, if σamp is 20 %, all 8,000 ΔVX and ΔVY data points are multiplied by a factor of random number between 0.8 and 1.2. Here, 100 datasets were regenerated at each σamp condition (b,c, and d).
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Figure S10. Examples of digit 8 datasets with different point elimination deviations (σeli). Regenerated time-resolved ΔVX (green) and ΔVY (red) data and the reshaped image of ‘8’ (right upper image) when σeli is (a) 0%, (b) 10%, (c) 20%, and (d) 30%. For example, if σeli is 20 %, ΔVX and ΔVY data points in each time sequence can be stochastically removed at 20 % of probability. In this case, entire signal data amounts are remained at about 80 % of original value. Here, 100 datasets were regenerated at each σeli condition (b,c, and d).
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Figure S11. Examples of variation of reshaped image of ‘8’ with randomly applied amp. (a) Reshaped image of ‘8’ when is σamp is 0%. Ten different examples of variation of reshaped images of ‘8’ when σamp is (b) 10%, (c) 20%, and (d) 30%.
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Figure S12. Examples of variation of reshaped image of ‘8’ with randomly applied σeli. (a) Reshaped image of ‘8’ when is σeli is 0%. Ten different examples of variation of reshaped images of ‘8’ when σeli is (b) 10%, (c) 20%, and (d) 30%.
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Figure S13. Examples of variation of reshaped image of ‘8’ with randomly applied amp and σeli. (a) Reshaped image of ‘8’ when both σamp and σeli are 0%. Ten different examples of variation of reshaped images of ‘8’ when σamp/σeli is (b) 10%/10%, (c) 20%/20%, and (d) 30%/30%.
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Figure S14. Training image sets for each 10-digit class (0–9) for 1st5th trials acquired from the OPS-attached finger of one person.
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Figure S15. The average recognition accuracy as a result of training epochs based on five training image sets for 10-digit classes from the OPS-attached finger of one person at different σamp. The average recognition accuracy change to training epochs at σamp of (a) 0 %, (b) 10 %, (c) 20 %, (d) 30 %, and (e) 40 %. The row of inset confusion matrix indicates the number of training set and the column of it indicates the number of test sets.
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Figure S16. Variations in accuracy according to S, repeated cycles, and σamp based on five training image sets from the OPS-attached finger of one person. The average accuracy with the change of S from 0 to 60 % and up to 100 cycles at σamp of (a) 0% (black dots) and (b) 20% (red dots). The gradation regions indicate the standard deviations. The standard deviation is more concentrated for σamp = 20% than for σamp = 0%. 
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Figure 17. Training image sets for each 10-digit class (0–9) for 1st5th trials acquired from the OPS attached on a stick bar.
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Figure S18. The average recognition accuracy as a result of training epochs based on 10 training image sets for 10-digit classes from the OPS-attached finger and stick-bar with varying σamp and σeli.  The magnitude of σamp increases from the top to bottom plots (from 0 to 40%), while the σeli increases from the left to right plots (from 0 to 30%). The row of inset confusion matrix indicates the number of cross training set and the column of it indicates the number of test set (1st~5th for finger and 6th~10th for stick bar). 
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Figure S19. The average accuracy (left black line) and the standard deviation (right red line) with different σamp and σeli based on training image sets from a finger and a stick-bar. The magnitude of σamp ranges from 0 % to 40 %, and that of σeli from 0 % to 30 %. A blue dotted rectangle at σamp of 30% and σeli of 0% indicates the condition for maximum accuracy (~81.3 % in Fig. 4g). 
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Figure S20. Variations in accuracy according to S, repeated cycles, and σamp based on 10 training image sets from the OPS-attached finger and stick-bar at σeli = 0%.  The average accuracy with the change of S from 0 to 60 % and up to 100 cycles at (a) σamp of 0%, σeli of 0% (black dots), and (b) σamp of 30%, σeli of 0% (blue dots). The gradation regions indicate the standard deviations. The standard deviation is more concentrated for σamp = 30% than for σamp = 0%.
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Figure S21. Training image sets for each 10-digit class (0–9) for 1st3rd trials acquired from the OPS attached fingers of two different persons (three trials per person). Six training image sets based on three trials from each OPS-attached finger of (a) person #1 and (b) person #2.
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Figure S22. The average recognition accuracy as a result of training epochs based on six training image sets for 10-digit classes from the OPS on fingers of two persons with varying σamp and σeli. The magnitude of σamp increases from the top to bottom plots (from 0 to 40%), while the σeli increases from the left to right plots (from 0 to 30%). The row of inset confusion matrix indicates the number of cross training set and the column of it indicates the number of test set (1st~3rd for person #1 and 4th~6th for person #2).
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Figure S23. The average accuracy (left black line) and the standard deviation (right red line) with different σamp and σeli based on training image sets from fingers on two persons. The magnitude of σamp ranges from 0 % to 40 %, and that of σeli from 0 % to 30 %. A green dotted rectangle at σamp of 30% and σeli of 10% indicates the condition for maximum accuracy (~82.5 % in Fig. 4i). 









[image: ]
Figure S24. Variations in accuracy according to S, repeated cycles, σamp, and σeli based on six training image sets from the OPS on fingers of two persons. The average accuracy with the change of S from 0 to 60 % and up to 100 cycles at (a) σamp of 0%, σeli of 0% (black dots), and (b) σamp of 30%, σeli of 10% (green dots). The gradation regions indicate the standard deviations. The standard deviation is more concentrated for σamp = 30% and σeli = 10% than for σamp = 0% and σeli = 0%.
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Figure S25. Experimental setup diagram for electrical connections of TOAS device after peeling off. (a) Schematic image of experimental setup for Au wirings. (b), (c) Electrical connection tests for two cases of Au wirings. 
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