

Supplemental Information

Creating Measurement-Based Oil and Gas Sector Methane Inventories using Source-Resolved Aerial Surveys

Matthew R. Johnson*, Bradley M. Conrad, David R. Tyner

*Energy & Emissions Research Laboratory,
Department of Mechanical and Aerospace Engineering,
Carleton University, Ottawa, ON, Canada, K1S 5B6*

*To whom correspondence and material requests should be addressed: Matthew.Johnson@carleton.ca; +1-613-520-2600 ext.4039.

File contains 32 pages, 3 figures, 10 tables

13	S1	Survey Design and Planning	2
14	S1.1	Determination of Active Facilities	2
15	S1.2	Sampling Region and Strata	3
16	S2	Inventory Development	8
17	S2.1	Stratum-Level Measured Source Inventories	8
18	S2.1.1	Successfully Detected Emissions	10
19	S2.1.2	Bayesian Analysis of Sources with “Missed” Detections During One or More Passes	11
20	S2.1.3	Procedure for Averaging Source Measurements During Different Passes and Flights	13
21	S2.2	Unmeasured Sources – Site-Level Emission Factor Development	14
22	S2.2.1	Non-pneumatic Equipment	15
23	S2.2.2	Pneumatic Equipment	18
24	S2.3	Inventory Summary	21
25	S3	Calculation of Methane Intensity / Leakage Rates	25
26	S4	Statistical Testing of Emissions Variability	28
27	S5	References	30

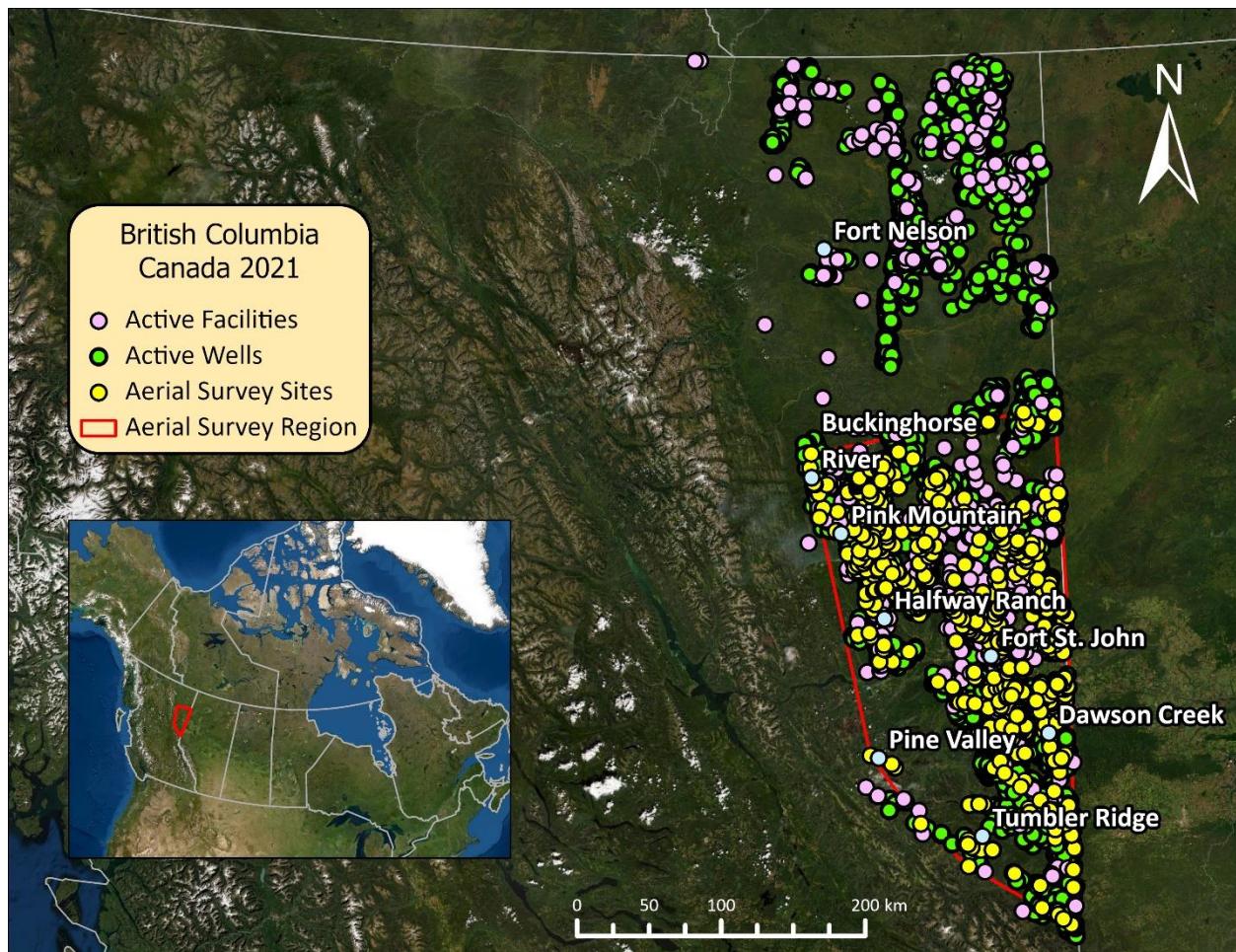
28 **S1 Survey Design and Planning**

29 ***S1.1 Determination of Active Facilities***

30 The aerial survey was planned using available activity and production data from the British
31 Columbia Oil and Gas Commission (BCOGC) and the PETRINEX reporting system website
32 (Petrinex, 2022a) with the simultaneous objectives of maximizing survey coverage and
33 minimizing sample size uncertainties in the derived emissions inventory. A set of active oil and
34 gas facilities and wells were first identified using Petrinex volumetric monthly production data
35 obtained from BCOGC and supplemental active and suspended facility lists from the Petrinex
36 website. Because publicly available active facility lists are not always accurate or up to date,
37 facilities and wells required to report under the Petrinex system were instead deemed active or
38 inactive based on the existence of reported activity data during the month of the survey. For
39 compressor stations, which do not directly report monthly activity via Petrinex, an initial active
40 count was derived from public activity lists and subsequently checked and updated where
41 necessary based on review of aerial imagery of survey sites (e.g., in cases where images showed
42 all compressors had been removed from the site) and provincial leak detection and repair (LDAR)
43 reporting. As detailed in Table S1, 1,006 facilities within the province of British Columbia (BC)
44 were identified as active during the aerial survey of which 601 (60%) were measured.

45 The active status of individual wells was also gleaned from Petrinex data where well
46 production volumes are found under one or more unique well identifiers (UWI) linked to facilities
47 reporting to Petrinex. These UWI represent segments of a well and were aggregated to shared
48 surface-holes (wells) using well authorizations (WA) assigned by BCOGC in BIL-194. As
49 detailed in Table S1, this analysis identified 8,995 active wells within the province, of which 904
50 (10%) were captured in the aerial survey. Wells and associated production equipment (e.g.,
51 separators, line heaters, pump buildings, etc.) maybe co-located with facilities on common pad
52 (“on-site wells”) or reside at completely separate well-site location (“off-site wells”, OSW). Since
53 equipment associated with on-site wells may not be distinguishable from that associated with the
54 facility, aerial measured equipment sources at these locations were assigned to the facility. Within
55 the inventory a well was deemed to be off-site if the wellhead surface location was located in a
56 different land grid location (i.e., legal subdivision or NTS quarter unit) than the facility where it

57 reported production. The majority of wells in British Columbia, 97% (8,729 of 8,995), were
58 considered to be off-site; these constituted ~78% (705 of 904) of surveyed wells.


59 For facilities and wells appearing in Petrinex there were 22 associated activity codes (Petrinex,
60 2022b) in the monthly volumetric data which track production, flaring, venting, transfers (receipts
61 and dispositions), storage (injection), and losses (shrinkage and metering differences) of produced
62 and processed fluid volumes, as well as a “shut-in” status. Shut-in facilities and wells in the
63 monthly data are sites that are capable of processing, producing, or injecting but were inactive
64 during an entire reporting month. Shut-in sites may have been active in months prior to the survey
65 and may become active again or may ultimately be moved to a suspended status and abandoned.
66 For all results presented in the manuscript, shut-in facilities and wells were conservatively assumed
67 to be non-emitting. However, it is possible that some shut-in sites could remain fully or partially
68 pressurized thus having a potential to emit. Reviewing Table S1, at the time of the survey there
69 were an additional 95 “active” but shut-in facilities (9% increase over the 1006 non-shut-in
70 facilities) and 9978 “active” but shut-in wells (11% increase over the 8995 non-shut-in wells).

71 To bound the potential impact of these shut-in facilities/wells, the entire inventory analysis
72 was repeated including these facilities as active. As shown below in Table S4 and Table S5,
73 including these sites results in a small increase of 4.1 kt (2.8%) in the total inventory. Most of this
74 difference is a 2.7 kt increase in pneumatic equipment emissions, which could be expected if the
75 pneumatic equipment at these shut-in facilities and wells remains pressurized and emitting at
76 expected steady bleed rates. For this reason, regulatory clarification of what qualifies as shut-in,
77 and if possible, differentiating between pressurized and ready to produce versus sealed at the
78 wellhead, is highly recommended. By contrast, including shut-in facilities and wells in the analysis
79 made little difference in the measured source portion of the inventory (112.9 kt including shut-ins,
80 or a 0.6% increase over the 112.2 kt measured source total presented in the manuscript).

81 ***S1.2 Sampling Region and Strata***

82 During the initial survey planning phase, candidate survey location were identified by geo-locating
83 all active facilities and wells in ArcGIS Pro using BCOGC permit data (BCOGC, 2022a, 2022b),
84 land grid locations (Dominion Land Survey legal subdivisions and National Topographic Systems
85 quarter units), and BCOCG surface-hole locations for wells (BCOGC, 2022c). A review of these

86 candidate sites identified a significantly lower facility density in the northern region centered
87 around Fort Nelson, Figure S1. Given the sparseness of facilities and budgetary constraints, the
88 initial set of candidate sites was constrained to a smaller survey region of approximately
89 46,000 km² south of approximately 58°N. Limiting the area covered by the aerial survey was also
90 essential for the feasibility of conducting parallel on-site follow-up investigations of detected
91 sources (Johnson et al., 2022).

92
93 **Figure S1: Geographic locations of 508 aerial survey sites in British Columbia, Canada overlaid on the**
94 **identified locations of 1006 active facilities and 8995 active wells at the time of the survey. The approximately**
95 **46,000 km² red bounding box is the convex hull of areas of interest (polygons) measured during the present**
96 **aerial survey. The inset map shows the aerial survey region within the province of BC and Canada.**

97 An initial set of polygons bounding sites for aerial study were manually specified for facility
98 and well locations in this sub-region. These initial polygons were chosen considering the density
99 of sites (to maximize the economics of the survey and the sample size) and the underlying
100 distribution of sites across the sampling strata (to maximize the relative sample size within each

101 stratum). In the final sample, all verifiably active facilities that could be reliably located and had
102 adequate/current satellite imagery within the survey region were included. Initial polygons were
103 provided to Bridger Photonics for flight planning and cost estimation; the remaining budget was
104 leveraged to measure as many well sites within the survey region as feasible. Aerial measurements
105 were ultimately performed over 508 geographically unique sites (polygons) during September 11
106 to October 8, 2021. Figure S1 maps the geographic distribution of active and measured sites
107 (facilities and wells) during the measurement survey.

108 As introduced in the manuscript, the developed inventory protocol uses stratified sampling, in
109 which common facility and well types are aggregated into separate strata. Given the complex
110 diversity of methane sources in the UOG industry, parsing sources into strata has some significant
111 benefits supporting the broad objectives of this survey. First, aggregation of like sources tends to
112 reduce the variance of desired statistics describing each sufficiently large stratum; this corresponds
113 to improved precision in a stratum's calculated mean emission rate and total emissions (i.e.,
114 emissions inventory). Second, stratification can be used to combine similar but uniquely different
115 entities with limited sample and/or population sizes; this artificial enhancement of
116 sample/population sizes may come at the cost of increased variance but can enable consideration
117 of these entities using robust analytical methods that need sufficiently large sample sizes. Finally,
118 if strata are defined such that each potential source across the province is contained within one and
119 only one stratum (i.e., the strata do not overlap and provide comprehensive coverage), then the
120 provincial emissions inventory is simply the sum of each stratum's inventory. This allows
121 independent analysis of each stratum, permitting stratum-dependent methodologies that may
122 leverage prior information about the strata. Moreover, this approach provides the *relative*
123 contribution of each stratum to the whole, which may be informative for regulatory efforts to
124 mitigate emissions.

125 Within the Petrinex production data, inventory strata for oil and gas facilities (e.g., batteries,
126 gas gathering systems, gas plants, meter stations, etc.) were naturally defined by existing industry
127 assigned facility subtype codes. For British Columbia there are 53 possible subtypes that group
128 production, process, metering, storage, disposal/waste, and treating facilities into specific
129 categories based on characteristics of the underlying site operations (e.g., single or multi-well
130 batteries, oil or gas production, handling sweet or sour gas, etc.). Active facilities gleaned from

131 the above analysis of monthly production data included 33 unique facility subtypes, which are
132 listed alongside population and sample sizes of the survey in Table S1. Six of these subtypes were
133 combined into two larger categories (meter stations and tank farms) to bolster strata size and
134 simplify analysis; thus, the present inventory analysis considered 29 unique facility-related strata.

135 Strata for wells considered three well types – gas, oil, and water. Gas well and Oil well strata
136 were derived by combining BCOGC defined wellbore fluid types i) Acid Gas (AGAS), Gas
137 (GAS), and Multiple Gas (MGAS) to Gas; and ii) Oil (OIL), Multiple Oil (MOIL), Multiple Oil
138 and Gas (MOG) to Oil. Wellbore fluid for each surface-hole WA was assigned from the publicly
139 available “Well Surface Hole Locations (Permitted)” file. (BCOGC, 2022c)

Table S1: Summary of facility and off-site well strata in the present aerial survey. Population and sample sizes are shown for 29 facility and three well strata defined for emission inventory development. Excl. = Excluding shut-in facilities/wells; Incl. = Including shut-in facilities/wells.

Facility Description ^a	Facility Type ^b	Combined Type ^c	Well/Battery Type ^d	Population Size		Sample Size (% of Population)		Entities With Sources (% of Sample)			
				Excl.	Incl.	Excl.	Incl.	Excl.	Incl.		
Gas Transporter	204	—	Other	3	3	1 (33%)	1 (33%)	1 (100%)	1 (100%)		
Crude Oil Single-Well Battery	311	—	SWB	52	58	46 (88%)	48 (83%)	5 (11%)	5 (10%)		
Crude Oil Multi-Well Group Battery	321	—	MWB	3	5	3 (100%)	3 (60%)	1 (33%)	1 (33%)		
Crude Oil Multi-Well Proration Battery	322	—	MWB	35	35	29 (83%)	31 (89%)	12 (41%)	12 (39%)		
Gas Single-Well Battery	351	—	SWB	22	28	20 (91%)	21 (75%)	1 (5%)	1 (5%)		
Gas Multi-Well Group Battery	361	—	MWB	68	79	50 (74%)	54 (68%)	18 (36%)	18 (33%)		
Gas Multi-Well Effluent Measurement Battery	362	—	MWB	135	140	111 (82%)	113 (81%)	55 (50%)	55 (49%)		
Mixed Oil and Gas Battery	393	—	MWB	16	16	16 (100%)	16 (100%)	4 (25%)	4 (25%)		
Water Hub Battery	395	—	Other	33	34	22 (67%)	22 (65%)	2 (9%)	2 (9%)		
Gas Plant Sweet	401	—	MWB	25	25	21 (84%)	21 (84%)	16 (76%)	16 (76%)		
Gas Plant; Acid Gas Flaring (<1 t/d Sulphur)	402	—	MWB	22	23	18 (82%)	19 (83%)	14 (78%)	14 (74%)		
Gas Plant; Acid Gas Flaring (>1 t/d Sulphur)	403	—	MWB	4	4	2 (50%)	2 (50%)	1 (50%)	1 (50%)		
Gas Plant; Acid Gas Injection	404	—	MWB	4	4	3 (75%)	3 (75%)	3 (100%)	3 (100%)		
Gas Plant; Sulphur Recovery	405	—	MWB	4	4	3 (75%)	3 (75%)	3 (100%)	3 (100%)		
Gas Plant; Fractionation	407	—	MWB	1	1	0	0	—	—		
Liquefied Natural Gas (LNG) Plant	451	—	MWB	5	5	1 (20%)	1 (20%)	1 (100%)	1 (100%)		
Enhanced Recovery Scheme	501	—	MWB	21	27	17 (81%)	23 (85%)	0	0		
Disposal	503	—	Other	57	68	35 (61%)	40 (59%)	2 (6%)	2 (5%)		
Acid Gas Disposal	504	—	Other	7	7	6 (86%)	6 (86%)	0	0		
Underground Gas Storage	505	—	Other	1	2	1 (100%)	2 (100%)	0	0		
Compressor Station	601	—	MWB	254	254	45 (18%)	45 (18%)	25 (56%)	25 (56%)		
Custom Treating Facility	611	—	MWB	4	5	4 (100%)	5 (100%)	0	0		
Gas Gathering System	621	—	Other	105	139	73 (70%)	92 (66%)	3 (4%)	3 (3%)		
Field Receipt Meter Station (MS)	631	MS	Other	91	91	51 (56%)	51 (56%)	5 (10%)	5 (10%)		
Interconnect Receipt MS	632										
NEB-Regulated Field Receipt MS	637										
NEB-Regulated Interconnect Receipt MS	638										
Tank Farm (TF); Loading and Unloading Terminal	671	TF	MWB	14	23	9 (64%)	12 (52%)	1 (11%)	1 (8%)		
Third Party TF; Loading and Unloading Terminal	673										
Natural Gas Liquids (NGL) Hub Terminal	676	—	MWB	1	1	1 (100%)	1 (100%)	0	0		
Surface Waste Facility	701	—	MWB	10	10	8 (80%)	8 (80%)	0	0		
Water Source	901	—	SWB	3	3	1 (33%)	1 (33%)	0	0		
Water Source Battery	902	—	SWB	6	7	4 (67%)	4 (57%)	0	0		
				Total:	1006	1101	601 (60%)	648 (59%)	173 (29%)	173 (27%)	
				Well Bore Fluid	"	"	"	"	"	"	
				Gas ^e	OSW	7772	8629	669 (9%)	744 (9%)	267 (40%)	267 (36%)
				Oil ^e	OSW	673	726	28 (4%)	28 (4%)	4 (14%)	4 (14%)
				Water	OSW	281	322	5 (2%)	6 (2%)	0	0
				Undefined Fluid	OSW	3	3	3 (100%)	3 (100%)	0	0
				Total:	8729	9680	705 (8%)	781 (8%)	271 (38%)	271 (35%)	

OSW = off site wells; SWB = single well battery; MWB = multi-well battery;

^a Facility description as per Petrinex database.^b 3-digit facility "subtype" used to identify facility type/description in Petrinex.^c Combined strata defined as a union of unique facility types.^d Strata type for analysis of unmeasured non-pneumatic equipment (see Section S2.2.1).^e Excluding shut-in (but including on-site wells), there were 7940 gas, 736 oil, 316 water, and 3 undefined active wellheads. Including shut-in (and including on-site wells) there were 8815 gas, 795 oil, 365 water, and 3 undefined active wellheads at the time of the survey.

143 **S2 Inventory Development**

144 ***S2.1 Stratum-Level Measured Source Inventories***

145 Beginning with flight pass-level data provided by Bridger, measured emission inventories (within
146 quantified uncertainties) for each stratum were computed in a statistical framework considering
147 measurement quantification accuracy, detection sensitivity, and finite sample size effects. This is
148 possible via the nested algorithms described in this section and summarized at a high-level in
149 Figure 1 of the manuscript.

150 For each iteration of the analysis, probabilistic average emission rates for each detected and
151 quantified source within each stratum are first computed from pass-by-pass aerial data via the
152 algorithm detailed in Sections S2.1.1 to S2.1.3. Briefly, for each source that is detected one or
153 more times during the aerial survey, Bridger-quantified emission rates are randomly perturbed
154 according to the recently developed quantification error model for Bridger’s GML by Conrad et
155 al. (2022). As discussed in Sections S2.1.1 to S2.1.3, it is possible that a source detected during
156 one or more pass of the aircraft may not be detected during one or more of the other passes; this
157 could be due to variability/intermittency of the source and/or the finite detection sensitivity of
158 GML. Given the prior knowledge of an existing source, these “missed detections” are randomly
159 perturbed from zero via a Bayesian analysis according to GML’s probability of detection function
160 (Conrad et al., 2022), estimated 3-m wind speed at the time of the flight pass, aircraft altitude, and
161 the quantified emissions data during other flight passes over the source. This provides a
162 randomized, *true* emission rate for each flight pass on each measurement day for the source.
163 Recognizing that variability of the source rate between observations can be expected to increase
164 with the time between observations, a randomized, true, *average* emission rate for the source is
165 obtained by first averaging over all flight passes on each unique measurement day, then averaging
166 over measurement days.

167 For each facility or well site, the average emission rate(s) of all source(s) are then summed to
168 yield a randomized, true, total emission rate for that surveyed facility or well pad – which could
169 be zero if no emissions are detected. For aerial survey sites containing only wells, total emissions
170 from shared equipment (e.g., a common separator fed by multiple wells) are equally distributed
171 among the unique wells. Aggregating these facility- and well-level data yields a set of

172 facility/well-level aerial survey emissions (randomly perturbed to consider GML quantification
173 accuracy and detection sensitivity and specifically including measured zeros) for each stratum.

174 Emissions for sampled sites in each stratum were then scaled to the stratum population to yield
175 the stratum's measured inventory. Except in a few special cases as noted below, this scaling was
176 done using Sitter's mirror-match bootstrap algorithm (Sitter, 1992), which provides a robust
177 probabilistic estimate of the stratum's measured inventory considering the actual (non-smooth,
178 typically skewed) distribution of emissions from sites in the sample as well as finite population
179 effects. The latter is particularly important given that in most cases, the sample represents a
180 significant fraction of the population.

181 For six strata where the entire populations were sampled (i.e., subtypes 321 – Crude Oil Multi-
182 Well Group Battery, 393 – Mixed Oil and Gas Battery, 505 – Underground Gas Storage, 611 –
183 Custom Treating Facility, 676 – Natural Gas Liquids Hub Terminal, and wells of undefined fluid;
184 see Table S1), the measured inventory was directly quantified and no further scaling was required.
185 Similarly, for six strata where no emissions were detected (i.e., subtypes 501 - Enhanced Recovery
186 Scheme, 504 - Acid Gas Disposal, 701 - Surface Waste Facility, 901 - Water Source, 902 – Water
187 Source Battery, and water wells; see Table S1) the measured inventory was conservatively
188 assumed to be zero despite the potential for emitters at entities that were not surveyed. For three
189 subtypes (204 – Gas Transporter, 403 – Gas Plant with Acid Gas Flaring ($> 1 \text{ t/d Sulphur}$), and
190 451 – Liquefied Natural Gas Plant; see Table S1) with small populations (3–5 facilities) and only
191 one facility each with detected emissions, the measured inventory was assumed to probabilistically
192 follow a uniform distribution bounded by two simple cases: a) all unsurveyed entities had zero
193 emissions and b) all unsurveyed entities had emissions equal to the single surveyed entity. Lastly,
194 for a single facility subtype (407 – Gas Plant; Fractionation) that was not surveyed, emissions were
195 estimated by computing the population size-weighted average of facility-level emissions for 47
196 other gas plants (subtypes 401-405).

197 Finally, the measured inventory for the province was computed by summing the measured
198 inventories of the 33 unique strata. To fully resolve the effects of GML's quantification error and
199 detection sensitivity, flight pass-level emissions were randomly perturbed as described above
200 $B_{MC} = 10^4$ times (where the subscript “MC” represents the Monte Carlo considering effects
201 related to the performance of the GML technology). For each of the B_{MC} sets of randomly

202 perturbed flight pass-level emissions, the measured inventory of each stratum and, hence, the
203 province was computed $B_{\text{BS}} = 10^4$ times (where “BS” implies that this analysis considers effects
204 related to sample sizes via the bootstrapping or alternate approaches noted above). Ultimately,
205 this provided $B_{\text{MC}} \times B_{\text{BS}} = 10^8$ estimates of the provincial measured inventory for which statistics
206 could be obtained. Final measured provincial and stratum inventory statistics are summarized in
207 Table S4 and Table S5. Reference mean population emission factors for each facility and well
208 stratum would be obtainable by dividing each stratum inventory by the corresponding population
209 from Table S1.

210 *S2.1.1 Successfully Detected Emissions*

211 During the aerial survey, all sites with detected sources were re-flown at least once, 1–10 days
212 after the initial flight, where each flight contained up to 5 passes over each source. Given finite
213 detection sensitivities coupled with the potential for source variability and intermittency, it is
214 possible that any source may be detected and quantified during some flight passes but missed
215 during others. When a source is successfully detected, a randomized true value of the
216 instantaneous emission rate for that flight pass can be computed from the measured emission rate
217 using a quantification error model for Bridger’s GML.

218 Recently, Conrad et al. (2022) analyzed data from fully and semi-blinded controlled release
219 experiments to derive a quantification error model for Bridger’s GML technology. The error
220 model defines the probability of the true source emission rate (Q) given Bridger’s estimate (\tilde{Q}) for
221 each measurement pass of the airplane; the error model is in the form of a conditional probability
222 distribution denoted by $\pi(Q|\tilde{Q})$. The inverse cumulative distribution function of $\pi(Q|\tilde{Q})$ provides
223 an efficient means to randomly draw a true pass-level emission rate from Bridger’s estimated
224 value. From Table S3 of Conrad et al. (2022):

$$Q = \alpha d(\xi^{-1} - 1)^{-1/\beta} \tilde{Q} \quad (\text{S1})$$

225 where the unitless coefficients α , β , and d are 0.891, 3.82, and 0.918, respectively, and ξ is a
226 randomly drawn number from the standard uniform distribution.

227 *S2.1.2 Bayesian Analysis of Sources with “Missed” Detections During One or More Passes*
 228 For any detected methane source, the pass-by-pass aerial measurement data may include one or
 229 more passes in which the source was not detected (“missed”). This may be due to the probabilistic
 230 nature of detection success by the airplane, finite detection sensitivities for the GML technology,
 231 source variability considering these first two factors, or source intermittency. This section
 232 describes a robust Bayesian approach to analyze sources that have been both quantified and
 233 “missed” during different measurement passes. The method derives a probability distribution for
 234 the *true* emission rate of a known source that is missed during an individual pass, leveraging pass-
 235 specific POD data (based on airplane altitude and wind speed for each pass) as well as quantified
 236 source rate(s) from all other passes.

237 Let \tilde{Q} and Q represent the Bridger-estimated and true source rate and \tilde{u} and u represent the
 238 Bridger-estimated and (unknown) true 3-m wind speed during a flight pass. Similarly let \tilde{h}
 239 represent the aircraft altitude above ground level during the pass. Finally, define a unitless binary
 240 variable D to signify a successful detection ($D = 1$) or a missed detection ($D = 0$; denoted as $\neg D$,
 241 “not D ”). With these definitions, the objective is to derive the conditional probability distribution:

$$\pi(Q|\tilde{u}, \tilde{h}, \neg D) \quad (S2)$$

242 That is, the probability of the source’s true instantaneous emission rate conditional on the Bridger-
 243 estimated 3-m wind speed and aircraft altitude for the missed detection.

244 Using the Bayesian perspective, which treats all variables as probabilistic random variates, the
 245 conditional probability of Eq. (S2) is proportional to the joint distribution of all variables:

$$\pi(Q|\tilde{u}, \tilde{h}, \neg D) \propto \pi(Q, \tilde{u}, \tilde{h}, \neg D) \quad (S3)$$

246 The righthand side of Eq. (S3) can be re-stated as

$$\pi(Q|\tilde{u}, \tilde{h}, \neg D) \propto \int_0^{\infty} \pi(Q, \tilde{u}, u, \tilde{h}, \neg D) du \quad (S4)$$

247 by introducing the true 3-m wind speed to the joint distribution and subsequently marginalizing it
 248 out via integration over the positive real numbers. By assuming that the true source rate and wind
 249 speed are statistically independent and the uncertainty on aircraft altitude is negligible, the chain
 250 rule can be used to expand the joint distribution in Eq. (S4) to give

$$\pi(Q|\tilde{u}, \tilde{h}, \neg D) \propto \int_0^{\infty} \pi(\neg D|Q, u, \tilde{h}) \pi(u|\tilde{u}) \pi_{pri}(Q) du \quad (S5)$$

251 where $\pi(u|\tilde{u})$ is a probabilistic error model for the 3-m wind speed (i.e., the conditional probability
 252 of the true 3-m wind speed given the Bridger-estimated 3-m wind speed) and $\pi_{pri}(Q)$ represents
 253 a prior distribution for the true emission rate of the source. The conditional probability
 254 $\pi(\neg D|Q, u, \tilde{h})$ is the likelihood of a missed detection given a true emission rate, 3-m wind speed,
 255 and aircraft altitude; this is the complement of the probability of detection function (*POD*)

$$\pi(Q|\tilde{u}, \tilde{h}, \neg D) \propto \int_0^{\infty} (1 - POD(Q, u, \tilde{h})) \pi(u|\tilde{u}) \pi_{pri}(Q) du \quad (S6)$$

256 As is typical in Bayesian analyses, the normalizing constant of proportionality (necessary to satisfy
 257 the law of total probability) can be obtained by integrating the righthand side of Eq. (S6) over Q
 258 such that

$$\pi(Q|\tilde{u}, \tilde{h}, \neg D) = \frac{\int_0^{\infty} (1 - POD(Q, u, \tilde{h})) \pi(u|\tilde{u}) \pi_{pri}(Q) du}{\int_0^{\infty} \int_0^{\infty} (1 - POD(Q, u, \tilde{h})) \pi(u|\tilde{u}) \pi_{pri}(Q) du dQ} \quad (S7)$$

259 Two of three elements on the righthand side of Eq. (S7), the probability of detection function
 260 $(POD(Q, u, \tilde{h}))$ and the error model for the 3-m wind speed $(\pi(u|\tilde{u}))$, are available in the
 261 literature (Conrad et al., 2022). Thus, the presented analysis only requires a choice of prior
 262 distribution for the true source rate. Theoretically an “uninformed”/non-negative prior, which
 263 fixes $\pi_{pri}(Q)$ to a constant value for all positive values of Q could be used. However, this is overly
 264 simplistic since it ignores measurement data from other passes where the same source was detected
 265 and quantified. Additionally, the “uninformed” prior does not impose an upper-bound on a missed

266 detection rate. To address this latter point, in the present work missed detection rates are upper
 267 bounded by the largest measured emission rate for that source during the measurement survey.
 268 Thus, by defining $\pi_{pri}(Q)$ as the uniform distribution from 0 to \hat{Q} , where \hat{Q} is the largest detected
 269 and quantified true emission rate of the source (obtained from data calculated using Eq. (S1)), Eq.
 270 (S7) simplifies to

$$\pi(Q|\tilde{u}, \tilde{h}, \neg D) = \frac{\int_0^\infty (1 - POD(Q, u, \tilde{h})) \pi(u|\tilde{u}) du}{\int_0^{\hat{Q}} \int_0^\infty (1 - POD(Q, u, \tilde{h})) \pi(u|\tilde{u}) du dQ} \quad (S8)$$

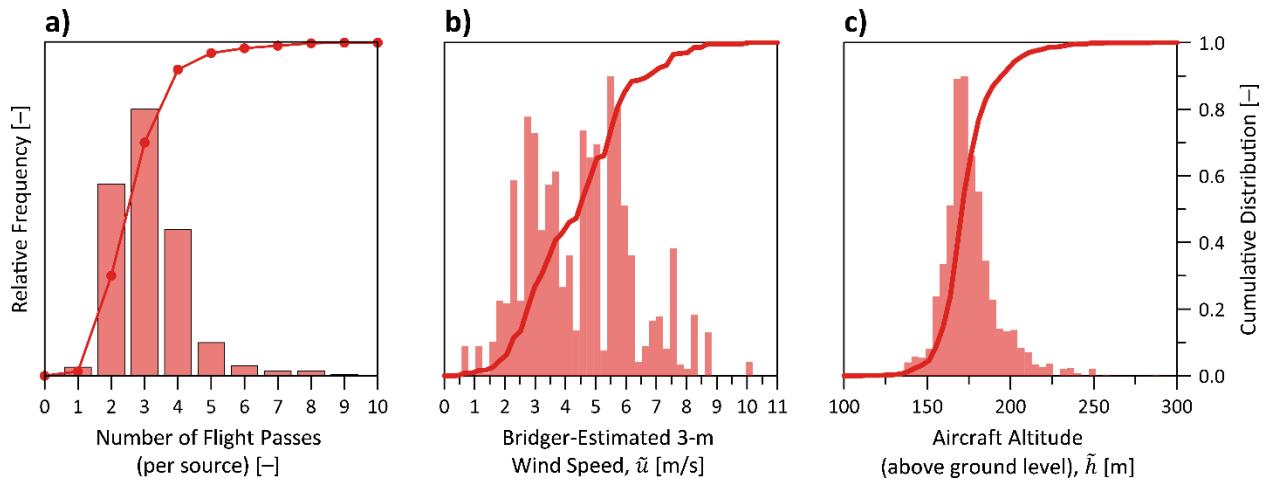
271 Finally, as in Section S2.1.1, if ξ is a randomly drawn number from the standard uniform
 272 distribution, then a randomized value of the emission rate during a missed detection given an
 273 estimated 3-m wind speed and aircraft altitude can be obtained by integrating the conditional
 274 distribution of Eq. (S8) and solving for Q :

$$Q: \xi = \frac{\int_0^Q \int_0^\infty (1 - POD(Q', u, \tilde{h})) \pi(u|\tilde{u}) du dQ'}{\int_0^{\hat{Q}} \int_0^\infty (1 - POD(Q', u, \tilde{h})) \pi(u|\tilde{u}) du dQ'} \quad (S9)$$

275 which, for the published forms of the probability of detection function and wind speed error model,
 276 requires numerical integration and root-finding methods.

277 *S2.1.3 Procedure for Averaging Source Measurements During Different Passes and Flights*
 278 Flight pass-level emission rates for each source are averaged as described by Tyner and Johnson
 279 (2021) after randomization of flight pass level emission rates as described above. Firstly,
 280 randomized flight pass-level emission rates are averaged over each measurement date and these
 281 are then averaged over the measurement dates in the survey. Let Q_{mn} be the *randomized* true
 282 emission rate during the n^{th} flight pass on the m^{th} measurement date. Furthermore, define M as the
 283 total number of measurement dates and N_m as the total number of flight passes on the m^{th}
 284 measurement day for which the source lies within the GML sensor's field of view. With these
 285 definitions, a randomized, true, average source rate during the measurement campaign (\bar{Q}) for the
 286 source is:

$$\bar{Q} = \frac{1}{M} \sum_{m=1}^M \frac{1}{N_m} \sum_{n=1}^{N_m} Q_{mn} \quad (\text{S10})$$


287 **S2.2 Unmeasured Sources – Site-Level Emission Factor Development**

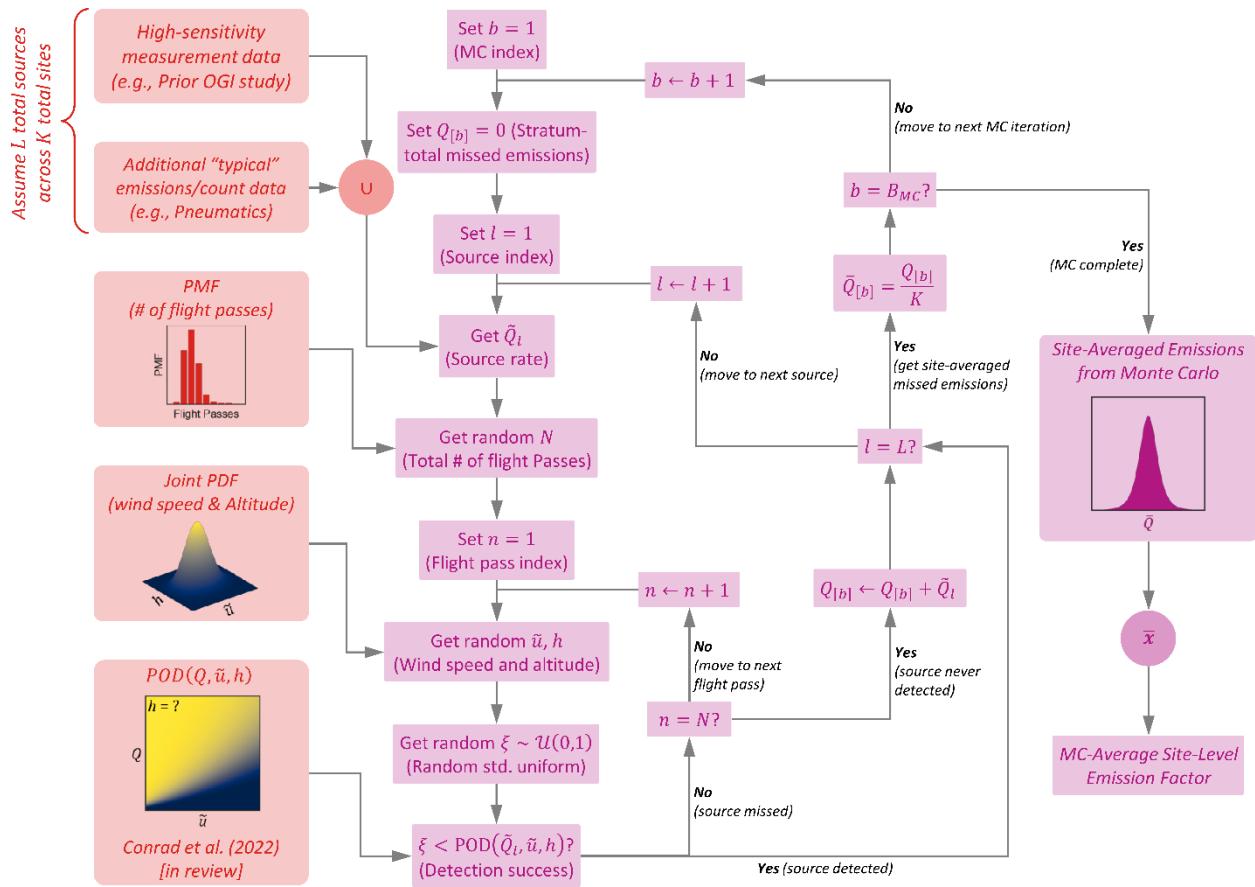
288 As detailed in the main text, unmeasured sources are those that are not detected during *any* flight
 289 pass of the measurement survey. Depending on the underlying source distribution, measurement
 290 conditions, and sensitivity of the aerial measurement technology, these sources can represent a
 291 significant portion of the total inventory and must be considered. The present methodology
 292 calculates the unmeasured inventory by combining site counts with site-level emission factors that
 293 are estimated via a Monte Carlo (MC) simulation of aerial survey over sources near and below the
 294 aerial technology's sensitivity limit. This procedure is summarized in Figure 1b of the main text
 295 and detailed in this section.

296 Given the inherent lack of emission rate data for sources not detected aerially, the first
 297 requirement for this analysis is a representative feedstock dataset that provides a source rate
 298 distribution near and below the aerial technology's sensitivity limit. In the current work, high-
 299 sensitivity measurement data of site/stratum- and source-resolved emissions were available from
 300 a 2018 ground survey in British Columbia of 267 facilities and wells (Robinson et al., 2018).
 301 These data include quantified emissions from non-pneumatic equipment and abnormally operating
 302 pneumatic equipment detected by optical gas imaging and measured where possible using Hi-Flow
 303 sampling. Robinson et al. (2018) also counted and identified (manufacturer and model) pneumatic
 304 equipment and estimated expected emissions under normal operation based on prior field
 305 measurements and manufacturer-specific bleed rates.

306 To accurately infer the unmeasured inventory, the simulated aerial survey of the feedstock data
 307 must be performed similarly to the actual survey. Recalling that unmeasured sources are defined
 308 as *never* being detected during the potentially many flight passes over the source, it is imperative
 309 to simulate an appropriate number of flight passes and assume representative measurement
 310 conditions, which inform the probability of detecting any one source during a single pass. To this
 311 end, for the present study, an empirical probability mass function (PMF) of the number of flight
 312 passes over a source was obtained from the aerial survey data (see Figure S2a). Likewise,

313 recognizing that the best-available continuous probability of detection (POD) function for
 314 Bridger's GML technology is sensitive to the estimated local wind speed (\tilde{u} [m/s]; at 3 m
 315 elevation) and aircraft altitude above ground level (AGL; \tilde{h} [m]) (Conrad et al., 2022), empirical
 316 probability density functions (PDFs) for these parameters were similarly derived from flight pass-
 317 level data during the aerial survey and are shown in Figure S2b and c, respectively. For a single
 318 steady methane source, these distributions enable representative simulation of the probability that
 319 the source would be detected during a multi-pass aerial survey using Bridger's GML.

320
 321 **Figure S2: Empirical probability mass (a) and density (b, c) functions for the number of flight passes per**
 322 **source (a), estimated 3-m wind speed (b; \tilde{u}), and aircraft altitude (c; \tilde{h}).**


323 *S2.2.1 Non-pneumatic Equipment*

324 With the feedstock data, empirical PMF for number of flight passes (see Figure S2a), empirical
 325 PDFs for measurement conditions (see Figure S2b and c), and the continuous POD function for
 326 the aerial technology, the MC simulation can proceed. Consider an example MC simulation of a
 327 specific equipment type (here, non-pneumatic equipment) within a single stratum and refer to the
 328 flowchart of the MC procedure shown in Figure S3. Let the index $l \in \{1, \dots, L\}$ represent the
 329 relevant sources in the feedstock data and let \tilde{Q}_l represent the corresponding estimated source rate.
 330 Denote the total number of relevant ground-surveyed sites as K .

331 Each b of B_{MC} total MC iterations begins by initializing the *total* unmeasured emissions within
 332 the stratum to zero ($Q_{[b]} = 0$). The simulation proceeds by considering the first detected source
 333 ($l = 1$). A randomized number of flight passes (N) is obtained by random sampling of the
 334 empirical PMF. For each $n \in \{1, \dots, N\}$ flight pass, a random estimated 3-m wind speed (\tilde{u}) and

335 aircraft altitude (h) is obtained from the respective empirical PDF. These are combined with the
336 source rate (\tilde{Q}_l) through Eq. (10) of Conrad et al. (2022) to yield the probability of detecting the
337 source during that single flight pass ($POD(\tilde{Q}_l, \tilde{u}, h)$). If the POD exceeds a random number (ξ)
338 drawn from the standard uniform distribution, then the source is *detected/measured* and the source
339 does not contribute to the unmeasured inventory; the simulation moves to the next source ($l \leftarrow l +$
340 1) without further action. Alternatively, if $\xi > POD(\tilde{Q}_l, \tilde{u}, h)$, the source is *missed/unmeasured*
341 during the n^{th} flight pass and the next flight pass is simulated by drawing a new \tilde{u} , h , and ξ and
342 repeating the process. If the source is missed during all N flight passes, then it contributes to the
343 unmeasured inventory and the total unmeasured emissions are updated ($Q_{[b]} \leftarrow Q_{[b]} + \tilde{Q}_l$).

344 After iterating through all L sources, $Q_{[b]}$ contains the MC-simulated total unmeasured
345 emissions for the equipment type and stratum. This is divided by the total number of ground-
346 surveyed sites (K) to give one MC-simulated, site-averaged emission factor ($\bar{Q}_{[b]} = Q_{[b]}/K$) for
347 the equipment type and stratum, which marks the end of the MC iteration. After B_{MC} (10^5 in this
348 study) iterations, the mean of the MC estimates is taken as the average site-level emission factor
349 for unmeasured sources of the specific equipment type in the stratum – i.e., $\bar{Q} = \sum_b \bar{Q}_{[b]} / B_{MC}$.

350

351 **Figure S3: Monte Carlo analysis procedure for quantifying unmeasured sources (i.e., sources that are not**

352 detected during any pass of the aerial survey).

353 Non-pneumatic sources in the feedstock data were parsed into four facility/well categories
 354 prior to analysis using the presented method. Each stratum in the provincial inventory (refer to
 355 Table S1) was captured by one of these categories: off-site wells (OSW), single-well batteries
 356 (SWB; facilities with one linked well), multi-well batteries (MWB; facilities with multiple linked
 357 wells), and other (facilities with no associated wells). Strata in the "other" category had no
 358 feedstock data and were conservatively assumed to have zero unmeasured non-pneumatic
 359 emissions. Average site-level emission factors for the OSW, SWB, and MWB categories were
 360 computed using the described methodology and are summarized in Table S2.

Table S2: Derived emission factors for unmeasured methane sources.

Category	Assigned Strata	Average Site-Level Emission Factor [kg/h/facility or well]
Off-Site Wells (OSW)	Well types of all bore fluids (gas, oil, water, undefined)	0.069
Single-Well Batteries (SWB)	Facility types 311, 351, 901, and 902	0.213
Multi-Well Batteries (MWB)	Facility types 321, 322, 361, 362, 393, 401, 402, 403, 404, 405, 407, 451, 501, 601, 611, 676, and 701 and tank farms	0.383
Other	Facility types 204, 395, 503, 504, 505, 621, and meter stations	0 ^a

^a Unmeasured, non-pneumatic emissions assumed to be zero.

363 *S2.2.2 Pneumatic Equipment*

364 Pneumatic instruments (e.g., level controllers, pressure controllers, transducers, positioners, etc.)
 365 and pumps are ubiquitous in process equipment buildings (e.g., separators, line heaters,
 366 compressor buildings, etc.) across production sites in the upstream oil and gas sector. In bottom-
 367 up component-based inventories, pneumatic emissions are generally estimated by multiplying
 368 average device emission factors by the corresponding device counts aggregated over well and
 369 facility population strata (Clearstone Engineering Ltd., 2018; Robinson et al., 2018). In the present
 370 inventory, average site-level emission factors for pneumatic equipment were derived using the
 371 same method described for unmeasured non-pneumatics (see Section S2.2.1). For pneumatic
 372 equipment, however, this approach simplifies the method of Figure S3 because normally operating
 373 pneumatic devices generally vent at sufficiently low rates to preclude detection by aerial
 374 technologies; this is supported by the present aerial survey and follow-up ground survey (Johnson
 375 et al., 2022). Firstly, average vent rates for the pneumatic instruments and pumps in BC derived
 376 by (Robinson et al., 2018) using data from (AER, 2018; D'Antoni, 2018; Government of Alberta,
 377 2020; Prasino Group, 2013; Western Climate Initiative, 2013) were less than 0.4 and 0.6 kg/h of
 378 methane, respectively, which correspond to a negligible POD even when using Bridger's highly
 379 sensitive GML technology. Indeed, at the median wind speed and typical aircraft altitude of the
 380 survey (4.5 m/s and 175 m AGL, respectively), the predicted single-pass PODs at these rates are
 381 less than 10^{-5} . This low POD is evidenced by the present survey data itself, where methane was
 382 not detected using Bridger's GML at 603 active surveyed sites (177 facilities and 426 off-site
 383 wells) where pneumatic equipment would be expected. Moreover, follow-up ground survey of

384 195 arially detected sources at 75 locations (Johnson et al., 2022) implicated pneumatic
385 instruments and pumps as a *potential* contributor to just 24 sources. However, make and model
386 data from pneumatic devices suggest that, if pneumatics were the cause of these 24 arially
387 detected sources, the identified pneumatics would need to be emitting approximately an order of
388 magnitude greater than published/manufacturer-rated vent rates. However, this is also unlikely
389 given the field data from the 2018 ground survey in BC (Robinson et al., 2018), where pneumatics
390 deemed to be operating abnormally emitted at rates near the published/manufacturer-rated vent
391 rates. These observations permit the reasonable assumption that normally operating pneumatics
392 were not detected during the present aerial survey using Bridger Photonics GML.

393 Since probabilistic detection of normally operating pneumatic sources can justifiably be
394 ignored, average site-level unmeasured pneumatic emission factors were derived using the same
395 methodology as unmeasured non-pneumatic equipment (Section S2.2.1 and Figure S3). This
396 procedure is thus greatly simplified as it does not require MC analysis of detection sensitivity; all
397 pneumatic equipment contribute to the site-level emission factor, which is simply the average site-
398 total vent rate of pneumatic equipment. In this case, the contribution of unmeasured pneumatic
399 equipment to the provincial inventory reduces to the classic bottom-up approach that combines
400 individual pneumatic counts and typical vent rates (emission factors) to yield site-level emissions.
401 It should be noted that this calculation is likely conservatively low, since the preceding discussion
402 also suggests abnormally operating pneumatics (at least at the magnitudes observed in the field
403 measurements of Robinson et al. (2018) are likely missed by the aerial survey and are excluded in
404 this bottom-up estimate.

405 Measurement-based, average emission factors were derived by Robinson et al. (2018) from
406 pneumatic counts of individual makes and models, collected during the 2018 ground-based OGI
407 survey of production sites in BC, and combined with measured venting data from pneumatic
408 studies in BC and Alberta (AER, 2018; D'Antoni, 2018; Government of Alberta, 2020; Prasino
409 Group, 2013; Western Climate Initiative, 2013). Strata-specific average emission factors for
410 pneumatic equipment are summarized in Table S3; emission factors for well strata are on a per-
411 wellhead basis and applied to all surface wells in the province (see Table S1, footnote e) while
412 emission factors for facility strata are on a per-site basis. Originally reported in units of m^3/h of
413 natural gas in Table 15 of Robinson et al. (2018), these were converted to kg/h of methane

414 assuming a methane content of 88% by volume and a methane density of 0.6785 kg/m³ at standard
415 conditions (1 atm and 15°C). For gas well and gas facility strata, venting rates reported for
416 conventional and tight gas production types were averaged and weighted by site type. Finally, a
417 venting rate for mixed oil and gas batteries – multi-well facilities that report both gas and oil
418 production – was estimated using the weighted average of all oil and gas multi-well batteries. As
419 in Tyner and Johnson (2021) emissions from pneumatics at facility strata not covered by the 2018
420 OGI survey (e.g., gas plants, custom treaters, LNG Plant, custom treaters, etc.) were conservatively
421 assumed to be zero under the assumption that pneumatics at the majority of these larger facilities
422 are instrument air-driven. Likewise, methane emissions from pneumatic chemical injection pumps
423 were estimated using a seasonal operation factor of 50%, an average vent rate of 0.973 m³ gas/h
424 (Clearstone Engineering Ltd., 2018) – corresponding to 0.5807 kg/h of methane at the standard
425 conditions noted above and again assuming a methane content of 88% by volume – and mean
426 chemical injection pump counts for well and facility strata derived from the 2018 OGI survey,
427 weighted by site type, for natural gas driven pumps (Robinson et al., 2018, Table 16). Consistent
428 with pneumatic instrument emission factor estimates, the mean number of chemical injection
429 pumps at mixed oil and gas batteries were estimated by averaging pump counts across all oil and
430 gas multi-well battery strata weighted by site type. A seasonal operation factor of 50%, based on
431 an assumed six months of operation per year consistent with the national inventory, discounts the
432 contribution of pneumatic pumps to the unmeasured inventory as it inherently ignores pumps that
433 may operate throughout the year. Importantly, this seasonal operation discount factor is likely to
434 underestimate annual-averaged pneumatic pump emissions as some implementations are designed
435 to operate more frequently – e.g., corrosion inhibitor pumps effectively operate constantly.

436
437 **Table S3: Average site-level emission factors for pneumatic equipment and relevant strata. Emission factors**
438 **are in units of vent rate [kg/h] per entity, where “entity” corresponds to “wellheads” for the Gas/Oil Well**
rows and “sites” otherwise.

Facility/Well Description	Facility Type	Pneumatic Devices	Pneumatic Pumps		Total
		Average EF [kg/h/entity]	Average EF [kg/h/entity]	Seasonal Operation	Average EF [kg/h/entity]
Gas Well	—	0.190	0.270	×0.5	0.325
Oil Well	—	0.131	0.110	×0.5	0.187
Crude Oil Single-Well Battery	311	0.239	0.412	×0.5	0.445
Crude Oil Multi-Well Group Battery	321	0.179	0.726	×0.5	0.542
Crude Oil Multi-Well Proration Battery	322	0.382	—	—	0.382
Gas Single-Well Battery	351	0.156	0.499	×0.5	0.405
Gas Multi-Well Group Battery	361	0.142	0.548	×0.5	0.416
Gas Multi-Well Effluent Measurement Battery	362	0.181	0.216	×0.5	0.289
Mixed Oil and Gas Battery	393	0.197	0.347	×0.5	0.370

439

440 **S2.3 Inventory Summary**

441

Table S4: British Columbia 2021 upstream oil and gas methane inventory excluding “shut-in” facilities.

Strata Description	Facility/Combined Type or Well Bore Fluid	Measured Inventory [kt/y]	Unmeasured Inventory [kt/y]			Total Inventory [kt/y]
			Non-pneumatic Equipment	Pneumatic Instruments	Pneumatic Pumps	
Gas Transporter	204	0.82 (0.10, 1.60)	0	0	0	0.82 (0.10, 1.60)
Crude Oil Single-Well Battery	311	0.16 (0.09, 0.24)	0.10	0.11	0.09	0.46 (0.39, 0.54)
Crude Oil Multi-Well Group Battery	321	0.02 (0.01, 0.05)	0.01	0.00	0.01	0.05 (0.03, 0.08)
Crude Oil Multi-Well Proration Battery	322	0.78 (0.44, 1.17)	0.12	0.12	0	1.02 (0.67, 1.41)
Gas Single-Well Battery	351	0.19 (0, 0.37)	0.04	0.03	0.05	0.31 (0.12, 0.49)
Gas Multi-Well Group Battery	361	4.63 (2.47, 6.97)	0.23	0.08	0.16	5.11 (2.94, 7.45)
Gas Multi-Well Effluent Measurement Battery	362	14.50 (11.23, 17.09)	0.45	0.21	0.13	15.29 (12.02, 17.88)
Mixed Oil and Gas Battery	393	0.40 (0.29, 0.57)	0.05	0.03	0.02	0.51 (0.40, 0.67)
Water Hub Battery	395	0.04 (0, 0.09)	0	0	0	0.04 (0, 0.09)
Gas Plant Sweet	401	17.18 (12.02, 22.39)	0.08	0	0	17.27 (12.11, 22.48)
Gas Plant; Acid Gas Flaring (<1 t/d Sulphur)	402	3.93 (2.56, 5.08)	0.07	0	0	4.00 (2.64, 5.16)
Gas Plant; Acid Gas Flaring (>1 t/d Sulphur)	403	2.11 (0.26, 3.71)	0.01	0	0	2.12 (0.28, 3.72)
Gas Plant; Acid Gas Injection	404	1.74 (1.22, 2.69)	0.01	0	0	1.75 (1.23, 2.71)
Gas Plant; Sulphur Recovery	405	1.56 (1.05, 2.31)	0.01	0	0	1.58 (1.07, 2.32)
Gas Plant; Fractionation	407	0.45 (0.35, 0.55)	0.00	0	0	0.45 (0.36, 0.55)
LNG Plant	451	1.03 (0.12, 2.21)	0.02	0	0	1.05 (0.14, 2.23)
Enhanced Recovery Scheme	501	0	0.07	0	0	0.07
Disposal	503	0.45 (0, 0.94)	0	0	0	0.45 (0, 0.94)
Acid Gas Disposal	504	0	0	0	0	0
Underground Gas Storage	505	0	0	0	0	0
Compressor Station	601	45.72 (27.03, 67.96)	0.85	0	0	46.57 (27.88, 68.81)
Custom Treating Facility	611	0	0.01	0	0	0.01
Gas Gathering System	621	0.73 (0.06, 1.36)	0	0	0	0.73 (0.06, 1.36)
Meter Stations	MS	0.16 (0.05, 0.30)	0	0	0	0.16 (0.05, 0.30)
Tank Farms	TF	0.03 (0, 0.08)	0.05	0	0	0.07 (0.05, 0.12)
NGL Hub Terminal	676	0	0.00	0	0	0.00
Surface Waste Facility	701	0	0.03	0	0	0.03
Water Source	901	0	0.01	0	0	0.01
Water Source Battery	902	0	0.01	0	0	0.01
Wells	Gas	14.83 (11.24, 19.67)	4.70	13.21	9.40	42.14 (38.54, 46.98)
Wells	Oil	0.73 (0.14, 1.76)	0.41	0.85	0.36	2.34 (1.75, 3.37)
Wells	Water	0	0.17	0	0	0.17
Wells	Undefined	0	0.002	0	0	0.00
	Total:	112.2 (91.7, 135.9)	7.54	14.64	10.23	144.6 (124.1, 168.3)

Table S5: British Columbia 2021 upstream oil and gas methane inventory including “shut-in” facilities.

Strata Description	Facility/Combined Type or Well Bore Fluid	Measured Inventory [kt/y]	Unmeasured Inventory [kt/y]			Total Inventory [kt/y]
			Non-pneumatic Equipment	Pneumatic Instruments	Pneumatic Pumps	
Gas Transporter	204	0.82 (0.10, 1.60)	0	0	0	0.82 (0.10, 1.60)
Crude Oil Single-Well Battery	311	0.17 (0.08, 0.27)	0.11	0.12	0.10	0.50 (0.42, 0.60)
Crude Oil Multi-Well Group Battery	321	0.04 (0, 0.13)	0.02	0.01	0.02	0.08 (0.04, 0.17)
Crude Oil Multi-Well Proration Battery	322	0.73 (0.44, 1.07)	0.12	0.12	0	0.97 (0.67, 1.31)
Gas Single-Well Battery	351	0.23 (0, 0.52)	0.05	0.04	0.06	0.39 (0.15, 0.67)
Gas Multi-Well Group Battery	361	4.98 (2.54, 7.72)	0.27	0.10	0.19	5.53 (3.09, 8.27)
Gas Multi-Well Effluent Measurement Battery	362	14.76 (11.37, 17.50)	0.47	0.22	0.13	15.59 (12.19, 18.32)
Mixed Oil and Gas Battery	393	0.40 (0.29, 0.57)	0.05	0.03	0.02	0.51 (0.40, 0.67)
Water Hub Battery	395	0.04 (0, 0.10)	0	0	0	0.04 (0, 0.10)
Gas Plant Sweet	401	17.18 (12.02, 22.40)	0.08	0	0	17.27 (12.10, 22.48)
Gas Plant; Acid Gas Flaring (<1 t/d Sulphur)	402	3.89 (2.54, 5.01)	0.08	0	0	3.97 (2.61, 5.09)
Gas Plant; Acid Gas Flaring (>1 t/d Sulphur)	403	2.11 (0.26, 3.71)	0.01	0	0	2.12 (0.28, 3.72)
Gas Plant; Acid Gas Injection	404	1.74 (1.22, 2.69)	0.01	0	0	1.75 (1.23, 2.71)
Gas Plant; Sulphur Recovery	405	1.56 (1.05, 2.31)	0.01	0	0	1.58 (1.07, 2.32)
Gas Plant; Fractionation	407	0.44 (0.35, 0.54)	0.00	0	0	0.44 (0.35, 0.54)
LNG Plant	451	1.03 (0.12, 2.21)	0.02	0	0	1.05 (0.14, 2.23)
Enhanced Recovery Scheme	501	0	0.09	0	0	0.09
Disposal	503	0.47 (0, 1.01)	0	0	0	0.47 (0, 1.01)
Acid Gas Disposal	504	0	0	0	0	0
Underground Gas Storage	505	0	0	0	0	0
Compressor Station	601	45.72 (27.03, 67.97)	0.85	0	0	46.57 (27.89, 68.82)
Custom Treating Facility	611	0	0.02	0	0	0.02
Gas Gathering System	621	0.76 (0.05, 1.47)	0	0	0	0.76 (0.05, 1.47)
Meter Stations	MS	0.16 (0.05, 0.30)	0	0	0	0.16 (0.05, 0.30)
Tank Farms	TF	0.03 (0, 0.11)	0.08	0	0	0.11 (0.08, 0.19)
NGL Hub Terminal	676	0	0.00	0	0	0.00
Surface Waste Facility	701	0	0.03	0	0	0.03
Water Source	901	0	0.01	0	0	0.01
Water Source Battery	902	0	0.01	0	0	0.01
Wells	Gas	14.81 (11.20, 19.65)	5.22	14.66	10.44	45.13 (41.52, 49.97)
Wells	Oil	0.79 (0.15, 1.90)	0.44	0.92	0.38	2.53 (1.89, 3.64)
Wells	Water	0	0.19	0	0	0.19
Wells	Undefined	0	0.002	0	0	0.00
	Total:	112.9 (92.3, 136.7)	8.26	16.21	11.35	148.7 (128.1, 172.5)

Table S6: British Columbia 2021 upstream oil and gas methane inventory by stratum and source (derived for the case excluding “shut-in” facilities).

Strata Description	Facility/ Combined Type or Well Bore Fluid	Sources												Total		
		Compressor Buildings	Dehydrators	Flares (Lit)	Flares (Unit)	Line Heater	Other	Piping	Power Generators	Separators	Tanks	Wellhead	Unknown	Pneumatic Instruments	Pneumatic Pumps	
Gas Transporter	204	0	0	0	0	0	0	0	0	0	0	0.817	0	0	0.817	
Crude Oil Single-Well Battery	311	0.053	0.009	0	0	0.002	0	0.024	0	0.089	0.072	0.006	0	0.109	0.094	0.458
Crude Oil Multi-Well Group Battery	321	0.005	0.001	0	0.024	0.000	0.000	0.000	0.000	0.002	0.002	0.000	0	0.005	0.010	0.048
Crude Oil Multi-Well Proration Battery	322	0.110	0.079	0	0.291	0.000	0.004	0.005	0.001	0.035	0.373	0.003	0	0.117	0	1.018
Gas Single-Well Battery	351	0.006	0.054	0	0	0.001	0	0.010	0	0.014	0.147	0.003	0	0.030	0.048	0.313
Gas Multi-Well Group Battery	361	1.337	0.246	0	1.874	0.036	0.320	0.057	0.002	0.261	0.693	0.005	0.026	0.085	0.163	5.107
Gas Multi-Well Effluent Measurement Battery	362	10.56	1.046	0	0.222	0.018	0.097	0.034	0.365	0.711	1.501	0.011	0.384	0.214	0.128	15.29
Mixed Oil and Gas Battery	393	0.276	0.085	0	0	0.000	0.002	0.002	0.001	0.011	0.076	0.001	0	0.028	0.024	0.506
Water Hub Battery	395	0	0	0	0	0	0	0	0	0	0.016	0	0.022	0	0	0.038
Gas Plant Sweet	401	10.27	0.155	0	0.767	0.240	0.033	0.241	0.771	0.039	4.524	0.002	0.227	0	0	17.27
Gas Plant; Acid Gas Flaring (<1 t/d Sulphur)	402	2.049	0.113	0.038	0.094	0.034	0.235	0.097	0.606	0.046	0.584	0.002	0.105	0	0	4.002
Gas Plant; Acid Gas Flaring (>1 t/d Sulphur)	403	1.485	0.001	0	0	0.000	0.175	0.001	0.000	0.003	0.456	0.000	0	0	0	2.121
Gas Plant; Acid Gas Injection	404	0.363	0.001	0	0	0.000	0.000	0.001	0.815	0.003	0.500	0.000	0.066	0	0	1.748
Gas Plant; Sulphur Recovery	405	0.631	0.001	0.042	0	0.000	0.000	0.001	0.000	0.003	0.338	0.000	0.561	0	0	1.577
Gas Plant; Fractionation	407	0.241	0.006	0.002	0.013	0.004	0.013	0.007	0.049	0.002	0.097	0.000	0.019	0	0	0.453
LNG Plant	451	0.972	0.001	0	0	0.000	0.069	0.001	0.000	0.003	0.003	0.000	0	0	0	1.049
Enhanced Recovery Scheme	501	0.032	0.005	0	0	0.000	0.002	0.003	0.001	0.014	0.011	0.002	0	0	0	0.070
Disposal	503	0	0.085	0	0.124	0	0.043	0	0	0	0.054	0	0.142	0	0	0.448
Acid Gas Disposal	504	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Underground Gas Storage	505	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Compressor Station	601	25.27	4.073	0	5.109	0.393	0.651	1.497	0.008	1.303	7.685	0.020	0.562	0	0	46.57
Custom Treating Facility	611	0.006	0.001	0	0	0.000	0.000	0.001	0.000	0.003	0.002	0.000	0	0	0	0.013
Gas Gathering System	621	0.726	0	0	0	0	0	0	0	0	0	0	0	0	0	0.726
Meter Stations	MS	0	0	0	0	0	0.164	0	0	0	0	0	0	0	0	0.164
Tank Farms	TF	0.021	0.004	0	0	0.000	0.002	0.002	0.000	0.009	0.034	0.001	0	0	0	0.074
NGL Hub Terminal	676	0.002	0.000	0	0	0.000	0.000	0.000	0.000	0.001	0.001	0.000	0	0	0	0.003
Surface Waste Facility	701	0.015	0.003	0	0	0.000	0.001	0.002	0.000	0.007	0.005	0.001	0	0	0	0.034
Water Source	901	0.003	0.000	0	0	0.000	0.000	0.000	0.000	0.001	0.001	0.000	0	0	0	0.006
Water Source Battery	902	0.005	0.001	0	0	0.000	0.000	0.001	0.000	0.002	0.002	0.000	0	0	0	0.011
Wells	Gas	0.170	0.025	0	0	1.419	4.523	0.280	1.022	9.718	0.497	1.679	0.197	13.21	9.404	42.14
Wells	Oil	0.015	0.002	0	0	0.033	0.218	0.010	0.002	0.138	0.616	0.106	0	0.848	0.356	2.343
Wells	Water	0.006	0.001	0	0	0.014	0.024	0.004	0.001	0.058	0.018	0.044	0	0	0	0.170
Wells	Undefined	0.000	0.000	0	0	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0	0	0	0.002
	Total	54.63	6.00	0.08	8.52	2.20	6.58	2.28	3.64	12.47	18.31	1.89	3.13	14.64	10.23	144.6

449 **S3 Calculation of Methane Intensity / Leakage Rates**

450 The methane intensities (“leakage rates”) of marketed natural gas quoted in the manuscript were
 451 calculated by attributing emitted methane emissions to produced natural gas or oil on a per energy
 452 basis consistent with the Natural Gas Sustainability Initiative protocol (NGSI, 2021) and
 453 (Schneising et al., 2020). To facilitate fair comparisons among different sources, reported data
 454 were (re)calculated using a consistent set of assumptions as detailed in Table S7. Table S8
 455 provides details of the methane intensity calculation for British Columbia based on the presently
 456 derived measurement-based inventory. Table S9 shows details of calculations for comparable
 457 intensities based on other cited methane measurements/estimates in the literature.

458 **Table S7: Assumptions used to calculate methane intensities of produced gas.**

Parameter	Assumed Value	Notes / Source
Energy Densities		
<i>Canadian Products</i>		
Natural Gas	0.03724 GJ/m ³	
Light Crude Oil	38.51 GJ/m ³	
Heavy Crude Oil	40.9 GJ/m ³	
Condensate (Pentanes+)	35.17 GJ/m ³	
Non-Upgraded Bitumen	42.8 GJ/m ³	
Upgraded Bitumen (Synthetic Crude)	39.4 GJ/m ³	
<i>U.S. Products</i>		
Oil	6004.3229 MJ/barrel	
Natural Gas	1,096,200 MJ/MMscf	
Unit Conversions		
Simple volume	0.028317 m ³ /cu.ft.	
U.S. oil and gas “standard” cubic feet (scf) to SI standard m ³	0.028327 SI m ³ / scf	Note U.S. “standard” oil and gas volume units are 60°F (288.71 K), 14.73 psia (101.5598 kPa) whereas SI standard conditions are 15°C (288.15 K) 101.325 kPa
Methane Density		
Density	0.678499 kg/m ³	Ideal gas law at SI standard conditions (288.15 K, 101.325 kPa) with molecular mass = 16.043 kg/kmol
Methane Fraction		
British Columbia Natural Gas	85.2%	Chosen same as below for consistency
Methane fraction in U.S. Natural Gas	85.2%	Emission weighted fraction of NGSI defaults based on emissions breakdown in Table 1 of Alvarez et al. (2018)
U.S. Onshore Production	83.3%	(NGSI, 2021) Default Values
U.S. Gathering/Boosting	83.3%	
U.S. Processing	87.0%	
U.S. Transmission/Storage	93.4%	
U.S. Distribution	93.4%	

Table S8: Calculation of methane intensity of British Columbia marketed natural gas in 2021.

British Columbia 2021 Natural Gas Methane Intensity		0.42% (0.37–0.48%)
<i>British Columbia 2021 Oil and Natural Gas Production</i>		
BC 2021 Marketable Gas Production ¹	59,139,255,000 m ³	2,202,345,860 GJ
BC 2021 Oil Production ²	676,614 m ³	26,056,421 GJ
BC 2021 Condensate Production (Pentanes+) ²	5,889,278 m ³	207,125,918 GJ
Fraction of Produced Energy Attributed to Natural Gas Production		0.904
Assumed Methane Content of Produced Gas		85%
Produced Methane		34,107 kt CH₄
2021 Upstream Methane Inventory (Present Study)		144.6 (124–168) kt CH ₄
Portion of Upstream Methane Emissions Attributable to Natural Gas		130.7 (112–152) kt CH ₄
Natural Gas Methane Intensity (Upstream Sources Only)		0.38 (0.33–0.45) %
2020 Downstream Methane Inventory from ECCC (ECCC, 2022)		14.4 kt CH ₄
<i>Natural Gas Distribution</i>		3.8 kt CH ₄
<i>Natural Gas Transmission & Storage</i>		10.2 kt CH ₄
<i>Petroleum & Liquids Transport</i>		0.0 kt CH ₄
<i>Petroleum Refining</i>		0.1 kt CH ₄
<i>Other</i>		0.2 kt CH ₄
Portion of Downstream Methane Emissions Attributable to Natural Gas Production		13.0 kt CH ₄
Total Estimated Oil & Gas Sector Methane Emissions		159 (138–183) kt CH₄
Portion of Total Methane Emissions Attributable to Natural Gas		144 (125–165) kt CH₄

¹ <https://www.cer-rec.gc.ca/en/data-analysis/energy-commodities/natural-gas/statistics/marketable-natural-gas-production-in-canada.html>² <https://www.cer-rec.gc.ca/en/data-analysis/energy-commodities/crude-oil-petroleum-products/statistics/estimated-production-canadian-crude-oil-equivalent.html>

Table S9: Calculation of natural gas methane intensities from published measurements.

Estimate Derived from (Shen et al., 2022)	Western Canada Natural Gas Methane Intensity (May 2018–Feb.2020)		0.87% (0.63–1.11%)
	<i>Western Canadian Oil and Gas Production</i>		
	Marketed Gas Production ¹	$163.174 \times 10^9 \text{ m}^3$	6,077 PJ
	Light Crude ²	$34.262 \times 10^6 \text{ m}^3$	1,319 PJ
	Heavy Crude ²	$23.547 \times 10^6 \text{ m}^3$	963 PJ
	Condensate (Pentanes+) ²	$25.209 \times 10^6 \text{ m}^3$	887 PJ
	Upgraded Bitumen ²	$64.036 \times 10^6 \text{ m}^3$	2,741 PJ
	Non-Upgraded Bitumen ²	$108.065 \times 10^6 \text{ m}^3$	4,258 PJ
	Fraction of Produced Energy Attributed to Natural Gas Production		0.374
	Assumed Methane Content of Produced Gas		
	Produced Methane		
	Shen et al. Methane Emissions Estimate (Shen et al., 2022)		2200 (1600–2800) kt CH₄
	Portion of Methane Emissions Attributable to Natural Gas Production		823 (599–1047) kt CH₄
Estimate Derived from (Alvarez et al., 2018)	U.S. Natural Gas Methane Intensity (May 2018–Feb.2020)		1.29% (1.08–1.51%)
	<i>U.S. Oil & Gas Production during May 2018–Feb. 2020 (measurement period of Shen et al., 2022)</i>		
	Marketed Gas Production ¹	35,565,795 MMscf	38,987 PJ
	Light Crude ²	4,372,613 Mbbl	26,255 PJ
	Fraction of Produced Energy Attributed to Natural Gas Production		0.5976
	Assumed Methane Content of Produced Gas		
	Produced Methane		
	Shen et al. Methane Emissions Estimate (Shen et al., 2022)		12.6 (10.5–14.7) Mt CH₄
	Portion of Methane Emissions Attributable to Natural Gas Production		7.53 (6.27–8.78) Mt CH₄
	U.S. 2015 Natural Gas Methane Intensity		1.67% (1.45–1.94%)
	<i>U.S. 2015 Oil & Gas Production (Measurement/Estimation period of Alvarez et al., 2018)</i>		
	Marketed Gas Production ³	28,772,044 MMscf	31,540 PJ
	Crude Oil ⁴	3,446,185 Mbbl	20,692 PJ
	Fraction of Produced Energy Attributed to Natural Gas Production		0.374
Estimated Derived from (Schneising et al., 2020)	Assumed Methane Content of Produced Gas		
	Produced Methane		
	U.S. 2015 Methane Emissions Estimate (Alvarez et al., 2018)		13 (11.3–15.1) Mt CH₄
	Portion of Methane Emissions Attributable to Natural Gas Production		7.85 (6.82–9.12) Mt CH₄
	Permian Basin 2018/2019 Natural Gas Methane Intensity		1.54% (0.99–2.09%)
	<i>Permian Basin 2018/2019 Oil & Gas Production (Measurement Period of Schneising et al., 2020)</i>		
	Marketed Gas Production ³	13,182 MMscf	14.5 PJ
	Crude Oil ⁴	3897 Mbbl	23.4 PJ
	Fraction of Produced Energy Attributed to Natural Gas Production		0.382
	Assumed Methane Content of Produced Gas		
	Produced Methane		
	Permian Estimate Derived from (Schneising et al., 2020)		3.18 (2.05–4.31) Mt CH₄
	Portion of Methane Emissions Attributable to Natural Gas Production		1.21 (0.78–1.65) Mt CH₄

Table S9: Calculation of natural gas methane intensities from published measurements (continued)

Estimated Derived from (Schneising et al., 2020)	Bakken 2018/2019 Natural Gas Methane Intensity		1.47% (0.55–2.40%)
	<i>Bakken 2018/2019 Oil & Gas Production (Measurement Period of Schneising et al., 2020)</i>		
	Marketed Gas Production ³	2661 MMscf	2.92 PJ
	Crude Oil ⁴	1361 Mbbl	8.17 PJ
	Fraction of Produced Energy Attributed to Natural Gas Production		0.263
	Assumed Methane Content of Produced Gas		85.2%
	Produced Methane		15.90 Mt CH ₄
	Bakken Methane Estimate Derived from (Schneising et al., 2020)		0.89 (0.33–1.45) Mt CH₄
	Portion of Methane Emissions Attributable to Natural Gas Production		0.23 (0.09–0.38) Mt CH₄
Appalachia Basin 2018/2019 Natural Gas Methane Intensity		1.27% (0.80–1.75%)	
<i>Appalachia 2018/2019 Oil & Gas Production (Measurement Period of Schneising et al., 2020)</i>			
Marketed Gas Production ³		30,312 MMscf	33.23 PJ
Crude Oil ⁴		127 Mbbl	0.76 PJ
Fraction of Produced Energy Attributed to Natural Gas Production		0.978	
Assumed Methane Content of Produced Gas		85.2%	
Produced Methane		181.18 Mt CH ₄	
Appalachia Methane Estimate Derived from (Schneising et al., 2020)		2.36 (1.48–3.24) Mt CH₄	
Portion of Methane Emissions Attributable to Natural Gas Production		2.31 (1.45–3.17) Mt CH₄	
Eagle Ford Basin 2018/2019 Natural Gas Methane Intensity		1.63% (0.88–2.38%)	
<i>Eagle Ford 2018/2019 Oil & Gas Production (Measurement Period of Schneising et al., 2020)</i>			
Marketed Gas Production ³		6674 MMscf	7.23 PJ
Crude Oil ⁴		1344 Mbbl	8.07 PJ
Fraction of Produced Energy Attributed to Natural Gas Production		0.476	
Assumed Methane Content of Produced Gas		85.2%	
Produced Methane		39.89 Mt CH₄	
Eagle Ford Methane Estimate Derived from (Schneising et al., 2020)		1.37 (0.74–2.00) Mt CH₄	
Portion of Methane Emissions Attributable to Natural Gas Production		0.65 (0.35–0.95) Mt CH₄	
Anadarko Basin 2018/2019 Natural Gas Methane Intensity		1.54% (0.99–2.09%)	
<i>Anadarko Basin 2018/2019 Oil & Gas Production (Measurement Period of Schneising et al., 2020)</i>			
Marketed Gas Production ³		7421 MMscf	8.13 PJ
Crude Oil ⁴		548 Mbbl	3.29 PJ
Fraction of Produced Energy Attributed to Natural Gas Production		0.712	
Assumed Methane Content of Produced Gas		85.2%	
Produced Methane		44.36 Mt CH₄	
Anadarko Basin Estimate Derived from (Schneising et al., 2020)		2.74 (2.00–3.48) Mt CH₄	
Portion of Methane Emissions Attributable to Natural Gas Production		1.95 (1.42–2.48) Mt CH₄	
Permian Basin 2018/2019 Natural Gas Methane Intensity		4.40% (3.21–5.59%)	

¹ <https://www.cer-rec.gc.ca/en/data-analysis/energy-commodities/natural-gas/statistics/marketable-natural-gas-production-in-canada.html>² <https://www.cer-rec.gc.ca/en/data-analysis/energy-commodities/crude-oil-petroleum-products/statistics/estimated-production-canadian-crude-oil-equivalent.html>³ <https://www.eia.gov/dnav/ng/hist/n9050us2a.htm>⁴ <https://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=MCRFPUS1&f=A>**467 S4 Statistical Testing of Emissions Variability**

468 As discussed in the main text, statistical testing was performed to elucidate the temporal variability
 469 of detected sources in the aerial survey. With specific focus on workday-weekend variability as a

470 surrogate of manual operations, two null hypothesis tests were deployed. This section describes
471 the implementation of these tests and the results.

472 The first hypothesis test was performed on the subset of detected sources for which flights
473 were performed on workday(s) *and* weekend(s). The difference(s) between flight-averaged
474 emissions on the workday(s) and weekend(s) (Δ [kg/h]; positive if workday emissions exceeded
475 weekend emissions and vice versa) were computed for each detected source. Available data for
476 the parameter Δ were considered in aggregate – that is, across all sources – and for nine unique
477 source categories: compressors and compressor buildings, dehydrators, flares (lit and unlit), piping
478 infrastructure, power generators, separators, tanks, other (e.g., amine sweetening, line heater, fuel
479 gas, wellhead, etc.), and unknown (not identifiable). One-sample t-tests were performed for each
480 set of Δ data with the null hypothesis that the mean workday-weekend difference ($\bar{\Delta}$ [kg/h]) was
481 zero (i.e., $H_0: \mu_\Delta = 0$; $H_a: \mu_\Delta \neq 0$). Results of the tests are summarized by source category in
482 Table S10, which provides the size of the data set, the mean workday-weekend difference ($\bar{\Delta}$), the
483 t-statistic, and p-value of the hypothesis test. The present data did not justify rejecting the null
484 hypothesis for any source category at 5% significance, implying no statistically significant
485 difference between workday and weekend emissions.

486 The one-sample t-test only identifies statistical significance with respect to the mean and
487 therefore does not necessarily capture effects at the tails of the distribution, where emissions from
488 events like manual liquid unloading could be expected to manifest. Thus, an additional hypothesis
489 test was performed to compare the source *distributions* between detected emissions on workdays
490 and weekends. This was accomplished using the two-sample Kolmogorov-Smirnov (KS) test,
491 which was applied to the same source categories as the t-test. The two-sample KS test compares
492 the empirical cumulative distribution functions (eCDFs) for two datasets – here, quantified
493 emission rates of all sources detected on workdays or weekends – with the null hypothesis that the
494 underlying data come from the same distribution. Letting $\hat{F}_{\text{workday}}(Q)$ and $\hat{F}_{\text{weekend}}(Q)$ represent
495 the eCDFs at source rate Q , the test statistic (D) is simply the maximum difference between the
496 eCDFs:

$$D = \max_Q |\hat{F}_{\text{workday}}(Q) - \hat{F}_{\text{weekend}}(Q)| \quad (\text{S11})$$

497 which follows a Kolmogorov distribution parameterized by the size of the workday and weekend
 498 datasets. The two-sample Kolmogorov-Smirnov test was implements in MATLAB® using the
 499 *ks test2* function; results of the test are summarized in Table S10. Like the t-test, the present data
 500 did not justify rejecting the null hypothesis for any source category at 5% significance. This
 501 additionally implies that there was no statistically significant difference in source rate distributions
 502 between workdays and weekends for all source categories.

503 **Table S10: Summary of hypothesis testing of workday-weekend variability of sources. The tests reveal that**
 504 **the present data imply no statistically significant difference (at 5% significance) in source rate nor**
 505 **distribution between workdays and weekends, which act as a surrogate for manual operations.**

Source Category	One-sample t-Test				Two-Sample Kolmogorov-Smirnov Test			
	Count	$\bar{\Delta}$ [kg/h]	t-stat [-]	p-value	Count		D-stat [-]	p-value
					Workday	Weekend		
Compressors	96	-3.89	-1.76	0.08	281	208	0.11	0.12
Dehydrators	14	-1.18	-0.62	0.54	31	29	0.13	0.96
Flares (lit and unlit)	12	+18.4	+1.80	0.10	21	17	0.30	0.31
Piping infrastructure	8	+7.84	+1.44	0.19	9	12	0.53	0.07
Power generators	6	-1.40	-0.58	0.59	37	28	0.26	0.18
Separators	25	+0.18	+0.19	0.85	59	34	0.25	0.10
Tanks	40	-0.05	-0.03	0.98	83	52	0.15	0.41
Other ^a	19	+0.34	+0.18	0.86	59	35	0.19	0.35
Unknown ^b	11	-0.28	-0.15	0.89	40	15	0.22	0.63
All sources	231	-0.47	-0.40	0.69	620	430	0.07	0.14

^a Examples of “other” source types include: line heaters, amine sweetening buildings, meter buildings, pump buildings, wellheads, fuel gas pumps/skids, heater buildings and heaters, etc.

^b Unknown sources are those for which aerial imagery, satellite imagery, and/or plot plan were insufficient to accurately apportion the detected emission.

506

507 In combination, these statistical tests leverage the available data to identify that workday-
 508 weekend variability – and, hence, the effects of manual operation at surveyed facilities – were
 509 statistically insignificant. Nevertheless, no statistical test is fundamentally conclusive, and
 510 alternative data acquired at different times (considering diurnal and seasonal variations) could
 511 yield statistically significant variability or bolster the presently observed insignificance.

512 **S5 References**

513 AER, 2018. Manual 015: Estimating Methane Emissions. Alberta Energy Regulator (AER).

514 Alvarez, R.A., Zavala-Araiza, D., Lyon, D.R., Allen, D.T., Barkley, Z.R., Brandt, A.R., Davis, K.J.,
 515 Herndon, S.C., Jacob, D.J., Karion, A., Kort, E.A., Lamb, B.K., Lauvaux, T., Maasakkers, J.D.,
 516 Marchese, A.J., Omara, M., Pacala, S.W., Peischl, J., Robinson, A.L., Shepson, P.B., Sweeney, C.,
 517 Townsend-Small, A., Wofsy, S.C., Hamburg, S.P., 2018. Assessment of methane emissions from the

518 U.S. oil and gas supply chain. *Science* (80-). 361, 186–188. <https://doi.org/10.1126/science.aar7204>

519 BCOGC, 2022a. Facility Locations (Permitted) [WWW Document]. URL https://data-bcogc.opendata.arcgis.com/datasets/5ace26f614b9435492d679d766430143_0 (accessed 10.18.22).

520

521 BCOGC, 2022b. Facility Locations (Pre-2016) [WWW Document]. URL https://data-bcogc.opendata.arcgis.com/datasets/e2014a76454545abb0509afa2444876b_0 (accessed 10.18.22).

522

523 BCOGC, 2022c. Well Surface Hole Locations (Permitted) [WWW Document]. URL https://data-bcogc.opendata.arcgis.com/datasets/9149cb556e694617970a5774621af8be_0 (accessed 10.18.22).

524

525 Clearstone Engineering Ltd., 2018. Update of Equipment, Component and Fugitive Emission Factors for Alberta Upstream Oil and Gas. Alberta Energy Regulator (AER).

526

527 Conrad, B.M., Tyner, D.R., Johnson, M.R., 2022. Robust Probabilities of Detection and Quantification 528 Uncertainty for Aerial Methane Detection: Examples for Three Airborne Technologies. *Remote Sens. Environ.* <https://doi.org/https://doi.org/10.31223/X5S05F>

529

530 D'Antoni, M.D., 2018. Level Controller Emission Study Fisher L2 and Improved Relays Norriseal 1001A 531 and EVS. Petroleum Technology Alliance of Canada (PTAC).

531

532 ECCC, 2022. 2020 National Inventory Report (NIR) - Part 3. Environment and Climate Change Canada 533 (ECCC).

533

534 Government of Alberta, 2020. Quantification Protocol for Greenhouse Gas Emission Reductions from 535 Pneumatic Devices - Version 2.1.

535

536 Johnson, M.R., Tyner, D.R., Conrad, B.M., 2022. Root Causes of Oil and Gas Sector Methane Emissions: 537 On-Site Investigations of Aerial Measured Sources. *Environ. Sci. Technol.*

537

538 NGSI, 2021. NGSI Methane Emissions Intensity Protocol Version 1.0. Natural Gas Sustainability Initiative 539 (NGSI).

539

540 Petrinex, 2022a. British Columbia Public Data [WWW Document]. URL <https://www.petrinex.ca/PD/Pages/default.aspx> (accessed 10.15.22).

541

542 Petrinex, 2022b. Petrinex Activity Codes (British Columbia) [WWW Document]. URL <https://www.petrinex.gov.ab.ca/bbreportsBC/PRAActivityCodes.htm> (accessed 10.18.22).

543

544 Prasino Group, 2013. Final Report for Determining Bleed Rates for Pneumatic Devices in British Columbia. 545 Report to British Columbia Ministry of the Environment.

545

546 Robinson, C., Driver, K., D'Antoni, M.D., 2018. Cap-Op Energy British Columbia Oil and Gas Methane 547 Emissions Field Study. <https://doi.org/https://www.bcofc.ca/files/resources/bc-cas-mefs-chapters-1-3-err2-20200224.pdf>

547

548

549 Schneising, O., Buchwitz, M., Reuter, M., Vanselow, S., Bovensmann, H., Burrows, J.P., 2020. Remote 550 sensing of methane leakage from natural gas and petroleum systems revisited. *Atmos. Chem. Phys.* 551 20, 9169–9182. <https://doi.org/10.5194/acp-20-9169-2020>

551

552 Shen, L., Gautam, R., Omara, M., Zavala-Araiza, D., Maasakkers, J.D., Scarpelli, T.R., Lorente, A., Lyon, 553 D., Sheng, J., Varon, D.J., Nesser, H., Qu, Z., Lu, X., Sulprizio, M.P., Hamburg, S.P., Jacob, D.J., 554 2022. Satellite quantification of oil and natural gas methane emissions in the US and Canada including 555 contributions from individual basins. *Atmos. Chem. Phys.* 22, 11203–11215.

556 <https://doi.org/10.5194/acp-22-11203-2022>

557 Sitter, R.R., 1992. A resampling procedure for complex survey data. *J. Am. Stat. Assoc.* 87, 755–765.
558 <https://doi.org/10.1080/01621459.1992.10475277>

559 Tyner, D.R., Johnson, M.R., 2021. Where the Methane Is—Insights from Novel Airborne LiDAR
560 Measurements Combined with Ground Survey Data. *Environ. Sci. Technol.* 55, 9773–9783.
561 <https://doi.org/10.1021/acs.est.1c01572>

562 Western Climate Initiative, 2013. WCI Quantification Method 2013 Addendum to Canadian Harmonization
563 Version.
564