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Supplementary Figure 1 1H NMR spectra of 3,3-diphenylhydroxyindolebefore and after evaluation of the alkaline stability in 8 M aqueous KOH at 80 °C during 700 h. Data were recorded with DMSO-d6 solutions.
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Supplementary Figure 2 1H NMR spectra of 2-phenylbenzimidazolebefore and after evaluation of the alkaline stability in 8 M aqueous KOH at 80 °C during 700 h. Data were recorded with DMSO-d6 solutions.
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Supplementary Figure 3 13C NMR spectra of 2-phenylbenzimidazolebefore and after evaluation of the alkaline stability in 8 M aqueous KOH at 80 °C during 700 h. Data were recorded with DMSO-d6 solutions.
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Supplementary Figure 4 Storage modulus and tan δ of poly(oxindole biphenylene) (POBP).
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Supplementary Figure 5 The pKa values of oxindole and benzimidazole in DMSO solvent.
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Supplementary Figure 6 Contact angles of POBP doped in bulk KOH of concentrations ranging from 0-8 M.

[image: ]
Supplementary Figure 7 Dimensional changes of POBP equilibrated in aqueous bulk KOH solution range from 0-6 M.
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Supplementary Figure 8 XRD of POBP equilibrated in aqueous bulk KOH solution range from 0-6 M.
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Supplementary Figure 9 The XRD corresponding 2θº and d-spacing.
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Supplementary Figure 10 1H NMR spectra of POBP doped in bulk KOH of concentrations ranging from 0-6 M.
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Supplementary Figure 11 XPS survey spectra of PIBP doped in bulk KOH of concentrations ranging from 0-6 M.
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Supplementary Figure 12 The corresponding high resolution of N 1s XPS spectra of PIBP equilibrated in aqueous bulk KOH solution range from 0-6 M.
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Supplementary Figure 13 The corresponding high resolution of O 1s XPS spectra of PIBP equilibrated in aqueous bulk KOH solution range from 0-6 M.
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Supplementary Figure 14 TGA and derivative thermogram (DTG) curves of the POBP membranes equilibrated in aqueous bulk KOH solution under N2 at 10 °C/min.
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Supplementary Figure 15 Arrhenius type behavior between In σ and temperature.
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Supplementary Figure 16 Photo of solubility of pristine and aged mPBI after the different tests.
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Supplementary Figure 17 FT-IR spectra of pristine and aged mPBI after Fenton reagent test (4 ppm FeSO4 at 3 wt% H2O2 at 80 °C).
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Supplementary Figure 18 A mechanism of free radical degradationfor degradation of mPBI in Fenton reagent test.
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Supplementary Figure 19 Mechanical propertiesofpristine and aged POBP after Fenton test (4 ppm Fe2+at 3 wt% H2O2 at 80 °C).
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Supplementary Figure 20 FT-IR spectra ofpristine and aged POBP after Fenton test (4 ppm Fe2+at 3 wt% H2O2 at 80 °C).
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Supplementary Figure 21 Schematic representation of the POBP-ISMs based AWE consisting of PGM-free anode-electrode (Fe-Ni).
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Supplementary Figure 22 Electrolyser polarization characteristics of POBP at 80 °C with different KOH concentrations with Ni foam as electrode.
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Supplementary Figure 23 Nyquist plots of EIS spectra (0.125 A cm-2) of POBP membrane at 1~6 M KOH with Ni foam as electrode.
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Supplementary Figure 24 Photograph of the POBP-ISMs based AWE consisting of Ni foam electrode under -35 °C.
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Supplementary Figure 25 Electrolysis polarization characteristics of POBP at -35 ℃ at 6 M KOH concentrations with Ni foam as anode and cathode after different times.
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Supplementary Figure 26 Transient response time ofelectrolysis of POBP at -35 ℃ at 6 M KOH concentrations with Ni foam as anode and cathode after different freezing times.
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Supplementary Figure 27 Transient response time ofelectrolysis of different membranes (POBP-ISM, Zirfon and PPS) at -35 ℃ at 6 M KOH concentrations with Ni foam as anode and cathode.
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Supplementary Figure 28 a, Comparison of electrolysis polarization and high-frequency resistance(HFR) consisting of different membranes: Zirfon, POBP-ISM and PPS diaphragm, at -35℃. b, Comparison of electrolysis polarization and high-frequency resistance (HFR) consisting of different membranes: Zirfon, POBP-ISM and PPS diaphragm, at 120 ℃.
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Supplementary Figure 29 1H NMR spectrums of pristine and aged PBI after 130 h of in-situ durability.
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Supplementary Figure 30 FT-IR spectrums of pristine and aged mPBI after 130 h of in-situ durability.
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Supplementary Figure 31 1H NMR spectrums of pristine and aged POBP after 2500 h of in-situ durability.
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Supplementary Figure 32 13C NMR spectrums of pristine and aged POBP after 2500 h of in-situ durability.
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Supplementary Figure 33 Comparison of in-situ durability and temperature of present POBP-ISM and current ISMs and AEMs. The electrolyteconcentration of reported AWE with membrane was plotted for comparison. Red dot symbols denote the present work based on PIBP-ISMs, hollow black triangle symbols are reported AEMs1-18, and solid black circles are ISMs19-24. The blue diagonal line area is the electrolyte concentration less than or equal to 1 M,orange diagonal line area is the electrolyte concentration between 1.9 and 6 M.


Supplementary Table 1 More than 60 g of polymerization batcha results for polymers based on isatin and biphenylene.
	entry
	medium
(w/w)
	reaction time(h)
	yield
(%)
	inherent viscosity ηinh (dL g−1)

	1
	100% TFSA
	8
	0
	gel

	2
	95% TFSA-5% TFA
	8
	0
	gel

	3
	90% TFSA-10% TFA
	8
	82
	partial gel

	4
	80% TFSA-20% TFA
	8
	99
	2.20

	5
	70% TFSA-30% TFA
	24
	89
	1.65

	6
	50% TFSA-50% TFA
	24
	85
	1.06

	7
	100% TFA
	72
	0
	0


aother conditions: isatin/ biphenylene (mol/mol)=1.12, temperature: 0°C.

The intrinsic viscosity (η) of the polymer was determined using provirous method25,26. The reduced (ηred) and inherent (ηinh) viscosities were calculated as:

where t1 is the efflux time for the polymer solution with concentration c and t2is the efflux time for a blank sample. Extrapolating ηred and ηinh to c = 0 and computing the average intersection with the y-axis yielded the intrinsic viscosity.


Supplementary Table 2 Solubilitya of the HMW poly(isatin biphenylene) polymers (POBP).
	Sample
	Solubility

	
	CH3CH2OH
	CHCl3
	H2O
	THF
	Acetone
	NMP
	DMF
	DMSO
	DMAc

	PIBP
	–
	–
	–
	–
	–
	+++
	+++
	+++
	+++


a+ soluble, – insoluble
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