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» 1 Data Summary

Table 1
Metri Treatment Control
ete Teusaquillo | Engativa. Vivienda Mixta | Las Ferias | All All
. Avg | 20,977 633 1,385 7,682 785
Number of Devices Std 18316 314 457 1.413 498
Number of Contacts Ave | 977,456 18,377 3674 33316 | 2,531
Std | 2842211 27.693 3416 | 169,724 | 8.308
. Ave 1917 1,011 1,196 1375 | 1,240
Average Distance to Infected S 903 545 74 o 76
. .| Avg 4776 146.37 7215 13.01 | 127.45
5
Personalized PageRank (107°) |—c7 15.87 196.71 113.58 5433 | 230.03




» 2 Personalized PageRank and multiSIR model

31 We study a Multi-Sir model. We focus on approximations to the final size using an implicit first order approximation, Newton-
32 Raphson iterations. We obtain centrality measures calibrated to the Multi-Sir model that are cases of PageRank and Personalized
s PageRank, we interpret this approximation using random walks.

s 2.1 Multi-Sir
s For a weighted graph we have an edge between node j and i if a;; > 0 (note the reverse indices, this is done to be compatible
s with matrix multiplication), we consider a Multi-Sir deterministic model using the adjacency matrix a;;

n
Si=—BSi Y aijl;
=

I = —yli+BSi Y aijl
J=1

R =1l;
7 2.1.1 Final Size
We focus on the final size on each node:
H i)

Consider the function

() = i]auR,-m

and
z:%: ﬁl,,ZJIUJZ—ESiZ—ROSi
dy Y -1 aijl; Y

giving
ln(S,'(l‘)) = —Rol[(l‘) +K

using the initial condition R;(0) = 0.

Si(t) = Si(0)e Roti(t) = §;(0)eRoXj-14iRi1)

We have S; +1; + R; is constant, and when # — oo, [;(t) — 0 and lim,—. R;(¢) and lim, .. S;(t) exist, therefore
Si(e0) = Si(0)e FoXi= aijRj(>)

We call
N;=S;i+ 1 +R;

giving the final size equation

Ri(e0) = N; — S;(0)e RoXi=1aiR;()

The total final size of the multi-sir model is

R =Y Ri(=)

i

38 From now on, we will interpret (S;,1;, R;) as probabilities and therefore N; = 1.
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2.2 First derivatives of the final size and first order approximation
Now we study the approximation of the final size with first order approximation. The partial derivatives with respect to Sy (0)

IR;(o0) —RoX"_, aijR;( —RoY"_, aijR; " dRj(e)
a5c(0) ok 0L R g(0)e oL ki) ( ROZau 95¢(0)

which can be written (when S;(0) # 0)

IRi(=) Si(e) - JRj(e)
35:0) ~ o) TSI ROZ“” 95:(0)

Lets call ry, = g?;(&;)) then we have a system

o Si(eo)
Tk = 61k SZ(O)

n
+R() Z dl-jrjk
j=1

where A is the matrix Diag(S(c))A, which can also be written in matrix form as:

Si(e) )
Si(0)

(I —RoA)r = —Diag(

This, we have obtained that the derivatives of the final size with respect to initial conditions Si(0) is:

—(I—RoA) ' Diag(*:

where A = Diag(S(=))A.
Lets suppose all initial probabilities of being infected are the same, that is: /;(0) = o, then S;(0) = 1 — « and we can write
a vector of derivatives

dIZSO) _ _é([ — RoA)715(o0)

Which shows the sensitivity of the nodes to a change in the initial susceptible probabilities. (The negative sign comes from the
fact that we are derivating against initial susceptibles = 1-initial infected).

The problem with this formula is that still needs S;(ec), we can use this derivative near the disease-free equilibrium (DFE)
to find a more useful approximation.

2.2.1 Disease-Free Equilibrium
When 7;(0) = 0, then S;(0) = S;(e0) = 1, we can approximate near this solution. At DFE

A=A
The total final size can be approximated near the DFE using R;(e0) ~= 0+ ):k as ASk( )
- ~ - - T -
R= ZR 17(I—RoA) "1 (AS(0)) = —AS(0) (I—ROAT)’II = AI(0) (I—RoAT)™'T

which is probably better written in terms of fractions of initial susceptible,

Lets set all AS;(0) = o and get
N IR;(*)
Rro) (? 75.(0) )

and we can ask which node is contributing more to this quantity, i.e. find k such that

Z JR;(=0)
i ask(())
is maximum.
Z ask T(1—RoA) ey = el (1—RoAT) 1

is the PageRank centrality of the k-th node of the graph with adjacency matrix A7 with parameter Ry.
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2.2.2 Newton Raphson iterations
In the previous section we used a simple first order approximation, but since the final size can also be written as the zero of a
vector valued function we can use the Newton-Raphson iterations to approximate them.

We rewrite

Ri(oo) = 1 = §;(0)e R0Za0Fi (<)

as

R;(°) +Si(0)e_ROZ’}:1 aijRi(=) _ 1 _

recall that Newton-Raphson is an iterative method for approximating f(X) = 0, we start with a well-choosen ¥ and then
approximate f(X) ~ f(x,) +Df (&) - (X — X, to obtain

X1 = X — D (%) 7 £ (%)

this is quadratic method with guaranteed convergence for a good choice of xp.
In our case f;(X) = x; + Si(0)e RoXi=1%% — 1, the derivative is

/i

n
S, =0~ Si(0)Roe RoXi1 4 ¥ 485 = 85 — Si(0)Roe 0 Xi=1 %ty
J

k=1
Lets look at the initial iteration taking X = 0, for which f(%) = 1,
Df(xp) =1—RoA

which recovers the approximation from the previous section.
In general, lets suppose we take %, = R(t,) for some times #,, then

Df(%,) =1—RoA

where A = Diag(S(t,))A, and
(%) =R(tn) +S(ta) — 1= —1(tn)

therefore the iterations for Newton-Raphson are approximately
R(tns1) ~ R(ts) + (1= RoA) " (1(t)
we can reformulate this as giving the change of probability to become recovered between f,, and #,,4:
AR ~ (I —RoA) (1)

with A = Diag(S(t,))A, which can be thought as a Personalized PageRank, where the personalization is given by the probabilities
of being infected.

Suppose for a moment that at #,, all the nodes have the same probabilities: to be susceptible & and probability 3 to have
recovered and therefore 1 — oo — f3 to be infected, then the probability to become recovered between ¢, and 7,11 is approximately
given by:

(I—aRA) '(1—a—B)=(1—a—B)I—aRA) ' (I)

which is a multiple of PageRank of the matrix A with parameter aR.

2.2.3 Integrating incomplete information
When we have additional information about the infected ones we can use our previous approximation. The probability to
become recovered between #, and 7,1 is given by:

AR =~ (I —RA) "' (I(1,))
with A = Diag(S(,))A.

Now suppose that a given time, somehow we acquire an estimate of the probability of each node to be infected but we
do not know the probabilities of being infected before, therefore for simplicity (or lack of better knowledge) we are going to
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assume that the probabilities of being susceptible are all the same S(z,) = ¢, a number small enough. Therefore, the change on
probability to become recovered between ¢, and 7,41 is

(I — aRoA) (I(ta))

which is a multiple of Personalized PageRank.

We can state our intuitive interpretation of our approximation:

Given some good estimate on the probability of each node to be infected and assuming equal small enough probability to be
susceptible for all nodes, Personalized PageRank gives a multiple of the probability of each node to be infected at some time
due to network effects.

Some more explanation:

* Good estimates implies that we are in a region where Newton-Raphson is converging quadratically, this implies that
the next iteration corresponds to a 7,4 very big compared to #,, SO we can ignore the time an infected person needs to
recover and thus R(#,41) — R(t,) is approximately the probability to be infected between #, and 7,1, which basically
means the probability to be infected at some point after ,.

* We choose «, the probability of being Susceptible small enough, so that for all nodes

1> lfafli(tn)zo

which leads to assume that

1 —max/(t,) >a>0
which is needed to make sense of R;(#,) = 1 — o — I;(#,) as a probability to be Recovered.

2.2.4 Spatial information
Suppose that we have partial (and imperfect) spatial information on the infected ones. We are not going to assume that we
know exactly which nodes are infected, but are going to assign a probability to be infected dependent on the spatial distance to
the infected ones.

We define the probability of an individual to be infected

In(14 e %)

Li(t) = ¥

where d; is the spatial distance from node i to the closest infected case and  is a parameter, larger or equal to In(2). v = In(2)
was chosen so the nodes at distance zero from infected cases have probability one of being infected

3 Simulations

As noted in Section 2, the vector of Personalized PagerRanks of the agents is a multiple of the vector of probabilities that the
agents become infected at some point. In order to gauge the quantitative implications of the main findings reported in Table 1 of
Section 6.1, we ran 100 simulations using a computational SIR model involving 1000 agents who live and move stochastically
on and a grid, and which come in contact with each other according to a network generated based on their proximity on the grid,
over 80 time periods. For each time period in each simulation, we computed the mean probability of infection of susceptible
agents during the following 7 time periods (the probability of next-week infection), conditional on their Personalized Page
Ranks. Note that while the total PageRank is by construction always equal to 1, and thus its mean in the population is 1/1000,
its distribution varies widely as the virus spreads throughout the population. It follows, that its variance, as well as the impact
on the probability of next-week-infection changes throughout the simulated epidemic. Figure ?? shows the mean probability of
infection over all simulations of susceptible nodes within seven days (periods), starting on the day shown in the axis. The red
line shows this mean probability for susceptible agents whose PPRs were within 0.1 standard deviations of the mean. The blue
line shows this mean probability for susceptible agents whose PPRs were between —0.1 and —0.2 standard deviation from
the mean. Note that the difference between the mean probabilities is between 1 and 2 percentage points and varies widely
throughout the epidemic.
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Figure 1. Mean probability of infection of susceptible nodes within seven days (periods), after the day shown in the axis. The
red line shows the mean probability of infection among susceptible agents whose PPRs were +0.1 standard deviations of the
mean (1/1000). The blue line shows the mean probability of infection of susceptible agents whose PPRs were between —0.1

and —0.2 standard deviation from the mean.

4 Genetic Sampling

A total of 377 SARS-CoV-2 genome sequences of Colombian origin were sequenced through this project, obtained from
samples provided by Grupo de Investigacién en Enfermedades Tropicales del Ejército (GINETEJ), Laboratorio de Referencia
e Investigacion, Direccién de Sanidad Ejército. Sample collection was carried out by nasopharyngeal swabs of individuals
sampled from the Military Hospital in Bogota. Individuals provided informed consent and sample collection was approved by
Universidad del Rosario’s Research Ethics committee (DVO005 1550-CV 1400).

Whole genome sequencing of SARS-CoV-2 was performed using Oxford Nanopore’s MinlON platform, using the
MinKNOW application (v1.5.5) according to the established protocol (https://artic.network/ncov-2019). The bioinformatic
analysis was performed on the raw Fast5 files, which were basecalled to obtain the Fastq files, and then demultiplexed using the
Guppy tool. After that, the Fastq files already assigned by barcode were filtered by quality and length eliminating possible
chimeric reads. Finally, genome assemblies were obtained following the algorithm for MinION sequences described in the
ARTIC bioinformatics pipeline (https:/artic.network/ncov-2019/ncov2019-bioinformatics-sop.html). Once the assemblies were
obtained, typing was performed based on the Pangolin COVID-19 Lineage Assigner (Phylogenetic Assignment of Named
Global Outbreak LINeages). The mutation search was performed by means of Clade assignment, mutation calling, and sequence
quality checks NextClade v 1.5.4 (https://clades.nextstrain.org/).This yielded 377 SARS-CoV-2 genome sequences. Raw
sequences are deposited on GISAID'! (gisaid.org).

Genomes were preprocessed, aligned, and included in a maximum-likelihood phylogeny of subsampled global SARS-
CoV-2 genomes using Nextclade (clades.nextstrain.org) under default parameters, part of the Nextstrain-TreeTime
computational framework>>. The resulting phylogeny was visualized using Auspice (auspice .us)> with custom colors and
region implemented independently.

Two genomes sequenced in this study (samples A339 and A514) were found to cluster poorly with other samples and were
flagged by Nextclade as having poor quality private mutations. The genomes were found to combine sequence similarity to
different lineages, including lineages not in existence at the time of collection (sample A339 was collected in 11 April 2021,
almost six months prior to the emergence of Omicron REF, with which it holds significant similarity). These sequences were
deemed likely to be the result of cross-contamination events between samples, and not considered in further analysis.

The remaining 375 genomes were plotted on a phylogeny and represent sequences from variants of concern Alpha, Gamma,
Lambda, Delta, Mu, and Omicron throughout the course of the pandemic. Genetic distance was calculated as the Kimura
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2-parameter distance, based on the APE R package implementation of molecular models of evolution for genetic distance®.

5 Device co-location as a proxy for contacts

One of the key assumptions on co-location or digital contact based methodologies is that the device interaction is indeed a good
proxy for physical contacts between users. Although it has been shown that these techniques have their limitations®, specially
when it comes to the selection of the interaction distance parameter®, a link between between digital proximity and effective
public policy has also been established’.

One way to justify the use of device co-location as an effective proxy for actual contact, at least in the context this study,
was to evaluate the correlation of the distance between the devices of two COVID-19 positive users, with the genetic distance
from their sequenced samples. Specifically, given a couple of geolocated COVID-19 samples g; and g; taken from different
individuals, we wanted to see if there is correlation between:

¢ Genetic distance: the Kimura 2-parameter distance as mentioned in 4.

* Device distance: using the geolocation of sample g;, we obtained the set D; of devices that most likely correspond to
the subject’s actual device. The set D; = d,d>,...d, contains all the devices who’s mobility patterns show that they
had spend at least one night 30 meters or less from the device, in the previous month since the subject’s first symptoms
appear. Also, a network of devices was built between all devices that where active in the previous 14 days of the sample’s
first symptoms date across the Bogotd’s metropolitan area. The nodes and edges of the network where computed using
the same schema as the main methodology (see section main manuscript). So the distance 0 (dy,d;) between devices dy
and d; corresponds to the length of the shortest path between them over the constructed network with all edges having an
equal weight of 1. If dy and d; are in different connected components of the graph, then & (d,d;) = oo. Thus, the device
distance between g; and g; is:

Algi,gi) = in  &(dy,d
(8i:8)) B, (d.dy)

Although theoretically possible to correlate these two distances, we encountered a sampling problem that we wish to discuss.
As mentioned in 4, we started with 377 samples, of which only 168 (44.5 %) had sufficient metadata to be geolocated inside the
metropolitan limits. From those remaining samples, we were only able to associate 34 (9.02 %) to devices and from those
corresponding devices, only 3 devices (0.7 %) were inside a connected component graph. This means that only three samples
have non infinite device distance, which renders useless the correlation study with the obtained genetic distances.

This serves to show the importance of proper articulation with the local government, more so when genetic sampling is
required. It is crucial to have in place a robust data and sample recollection scheme, where informed consents are always
included (we had to discard significant amount of samples because the informed consents were missing or were not handed)
and metadata quality and availability are regarded as priorities.

Another negative factor that could be improved is sequencing a useful subset of samples. Since we could only sequence a
fraction of the collected samples, it is crucial to select the most relevant samples, which in our case means samples that can
be geolocated, associated to a device and that the device has an important role (i.e high centrality) in a connected part of the
network. Since most of the available samples for sequencing were either discarded or lacked the consent form, our final samples
represented a very specific time and place in the pandemic, making the proposed analysis even more difficult. With correct
sample recollection protocols, where all patients were offered a consent form and addresses were filled in correctly, we could
select the key samples to be sequenced and compare the two defined distances to further confirm our methodology and choice
of metrics.
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