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Jaime Cascante14, Hector Galindo-Silva11, Stephanie Majerowicz10, Vladimir Corredor5,9

and Alejandro Feged-Rivadeneira1,*
10

1DataLama - Facultad de estudios internacionales, polı́ticos y urbanos, Universidad del Rosario, Bogotá D.C.,11
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6Departamento de Matemáticas, Universidad de los Andes, Bogotá D.C., Colombia17

7School of Population and Public Health, University of British Columbia, Vancouver, Canada18

8Instituto de Salud y Ambiente, Universidad El Bosque, Bogotá D.C., Colombia19
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ABSTRACT27

Supplementary Materials28

1 Data Summary29

Table 1

Metric Treatment Control
Teusaquillo Engativá. Vivienda Mixta Las Ferias All All

Number of Devices Avg 20,977 683 1,385 7,682 785
Std 18,316 314 457 1,413 498

Number of Contacts Avg 977,456 18,377 3,674 33,316 2,531
Std 284,2211 27,693 3,416 169,724 8,308

Average Distance to Infected Avg 1,917 1,011 1,196 1,375 1,240
Std 903 545 474 771 726

Personalized PageRank (10−5)
Avg 4.76 146.37 72.15 13.01 127.45
Std 15.87 196.71 113.58 54.33 230.03
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2 Personalized PageRank and multiSIR model30

We study a Multi-Sir model. We focus on approximations to the final size using an implicit first order approximation, Newton-31

Raphson iterations. We obtain centrality measures calibrated to the Multi-Sir model that are cases of PageRank and Personalized32

PageRank, we interpret this approximation using random walks.33

2.1 Multi-Sir34

For a weighted graph we have an edge between node j and i if ai j > 0 (note the reverse indices, this is done to be compatible35

with matrix multiplication), we consider a Multi-Sir deterministic model using the adjacency matrix ai j36

S′i =−βSi

n

∑
j=1

ai jI j

I′i =−γIi +βSi

n

∑
j=1

ai jI j

R′
i = γIi

2.1.1 Final Size37

We focus on the final size on each node:

lim
t→∞

Ri(t)

Consider the function

ιi(t) =
n

∑
j=1

ai jR j(t)

and
dSi

dιi
=

S′i
ι ′i

=
−βSi ∑

n
j=1 ai jI j

γ ∑
n
j=1 ai jI j

=−β

γ
Si =−R0Si

giving

ln(Si(t)) =−R0ιi(t)+K

using the initial condition Ri(0) = 0.

Si(t) = Si(0)e−R0ιi(t) = Si(0)e
−R0 ∑

n
j=1 ai jR j(t)

We have Si + Ii +Ri is constant, and when t → ∞, Ii(t)→ 0 and limt→∞ Ri(t) and limt→∞ Si(t) exist, therefore

Si(∞) = Si(0)e
−R0 ∑

n
j=1 ai jR j(∞)

We call

Ni = Si + Ii +Ri

giving the final size equation

Ri(∞) = Ni −Si(0)e
−R0 ∑

n
j=1 ai jR j(∞)

The total final size of the multi-sir model is

R = ∑
i

Ri(∞)

From now on, we will interpret (Si, Ii,Ri) as probabilities and therefore Ni = 1.38
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2.2 First derivatives of the final size and first order approximation39

Now we study the approximation of the final size with first order approximation. The partial derivatives with respect to Sk(0)

∂Ri(∞)

∂Sk(0)
=−δike−R0 ∑

n
j=1 ai jR j(∞)−Si(0)e

−R0 ∑
n
j=1 ai jR j(∞)

(
−R0

n

∑
j=1

ai j
∂R j(∞)

∂Sk(0)

)
which can be written (when Si(0) ̸= 0)

∂Ri(∞)

∂Sk(0)
=−δik

Si(∞)

Si(0)
+Si(∞)R0

n

∑
j=1

ai j
∂R j(∞)

∂Sk(0)

Lets call rik =
∂Ri(∞)
∂Sk(0)

then we have a system

rik =−δik
Si(∞)

Si(0)
+R0

n

∑
j=1

ãi jr jk

where Ã is the matrix Diag(S(∞))A, which can also be written in matrix form as:

(I −R0Ã)r =−Diag(
Si(∞)

Si(0)
)

This, we have obtained that the derivatives of the final size with respect to initial conditions Sk(0) is:

r =−(I −R0Ã)−1Diag(
Si(∞)

Si(0)
)

where Ã = Diag(S(∞))A.40

Lets suppose all initial probabilities of being infected are the same, that is: Ii(0) = α , then Si(0) = 1−α and we can write
a vector of derivatives

dRi(∞)

dα
=− 1

α
(I −R0Ã)−1S⃗(∞)

Which shows the sensitivity of the nodes to a change in the initial susceptible probabilities. (The negative sign comes from the41

fact that we are derivating against initial susceptibles = 1-initial infected).42

The problem with this formula is that still needs Si(∞), we can use this derivative near the disease-free equilibrium (DFE)43

to find a more useful approximation.44

2.2.1 Disease-Free Equilibrium45

When Ii(0) = 0, then Si(0) = Si(∞) = 1, we can approximate near this solution. At DFE

Ã = A

The total final size can be approximated near the DFE using Ri(∞)≈ 0+∑k
∂Ri(∞)
∂Sk(0)

∆Sk(0)

R = ∑
i

Ri(∞)≈ 0− 1⃗T (I −R0A)−1(∆S⃗(0)) =−∆ ⃗S(0)
T
(I −R0AT )−1⃗1 = ∆ ⃗I(0)

T
(I −R0AT )−1⃗1

which is probably better written in terms of fractions of initial susceptible,46

Lets set all ∆Sk(0) = α and get

R ≈ α ∑
k

(
∑

i

∂Ri(∞)

∂Sk(0)

)
and we can ask which node is contributing more to this quantity, i.e. find k such that

∑
i

∂Ri(∞)

∂Sk(0)

is maximum.

∑
i

∂Ri(∞)

∂Sk(0)
= 1⃗T (I −R0A)−1ek = eT

k (I −R0AT )−1⃗1

is the PageRank centrality of the k-th node of the graph with adjacency matrix AT with parameter R0.47
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2.2.2 Newton Raphson iterations48

In the previous section we used a simple first order approximation, but since the final size can also be written as the zero of a49

vector valued function we can use the Newton-Raphson iterations to approximate them.50

We rewrite

Ri(∞) = 1−Si(0)e
−R0 ∑

n
j=1 ai jR j(∞)

as

Ri(∞)+Si(0)e
−R0 ∑

n
j=1 ai jR j(∞)−1 = 0

recall that Newton-Raphson is an iterative method for approximating f (⃗x) = 0⃗, we start with a well-choosen x⃗0 and then
approximate f (⃗x)≈ f (x⃗n)+D f (x⃗n) · (⃗x− x⃗n) to obtain

⃗xn+1 = x⃗n −D f (x⃗n)
−1 f (x⃗n)

this is quadratic method with guaranteed convergence for a good choice of x⃗0.51

In our case fi(⃗x) = xi +Si(0)e−R0 ∑
n
k=1 aikxk −1, the derivative is

∂ fi

∂x j
= δi j −Si(0)R0e−R0 ∑

n
k=1 aikxk

n

∑
k=1

aikδk j = δi j −Si(0)R0e−R0 ∑
n
j=1 ai jx j ai j

Lets look at the initial iteration taking x⃗0 = 0⃗, for which f (x⃗0) = 1⃗,

D f (x⃗0) = I −R0A

which recovers the approximation from the previous section.52

In general, lets suppose we take x⃗n ≈ R⃗(tn) for some times tn, then

D f (x⃗n) = I −R0Ã

where Ã = Diag(S(tn))A, and
f (x⃗n) = R(tn)+S(tn)−1 =−I(tn)

therefore the iterations for Newton-Raphson are approximately

R(tn+1)≈ R(tn)+(I −R0Ã)−1(I(tn))

we can reformulate this as giving the change of probability to become recovered between tn and tn+1:

∆R ≈ (I −R0Ã)−1(I)

with Ã=Diag(S(tn))A, which can be thought as a Personalized PageRank, where the personalization is given by the probabilities53

of being infected.54

Suppose for a moment that at tn all the nodes have the same probabilities: to be susceptible α and probability β to have
recovered and therefore 1−α −β to be infected, then the probability to become recovered between tn and tn+1 is approximately
given by:

(I −αR0A)−1(1−α −β ) = (1−α −β )(I −αR0A)−1(1)

which is a multiple of PageRank of the matrix A with parameter αR0.55

2.2.3 Integrating incomplete information56

When we have additional information about the infected ones we can use our previous approximation. The probability to
become recovered between tn and tn+1 is given by:

∆R ≈ (I −R0Ã)−1(I(tn))

with Ã = Diag(S(tn))A.57

Now suppose that a given time, somehow we acquire an estimate of the probability of each node to be infected but we
do not know the probabilities of being infected before, therefore for simplicity (or lack of better knowledge) we are going to
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assume that the probabilities of being susceptible are all the same S(tn) = α , a number small enough. Therefore, the change on
probability to become recovered between tn and tn+1 is

(I −αR0A)−1(I(tn))

which is a multiple of Personalized PageRank.58

We can state our intuitive interpretation of our approximation:59

Given some good estimate on the probability of each node to be infected and assuming equal small enough probability to be60

susceptible for all nodes, Personalized PageRank gives a multiple of the probability of each node to be infected at some time61

due to network effects.62

Some more explanation:63

• Good estimates implies that we are in a region where Newton-Raphson is converging quadratically, this implies that64

the next iteration corresponds to a tn+1 very big compared to tn, so we can ignore the time an infected person needs to65

recover and thus R(tn+1)−R(tn) is approximately the probability to be infected between tn and tn+1, which basically66

means the probability to be infected at some point after tn.67

• We choose α , the probability of being Susceptible small enough, so that for all nodes

1 ≥ 1−α − Ii(tn)≥ 0

which leads to assume that

1−max
i

Ii(tn)> α > 0

which is needed to make sense of Ri(tn) = 1−α − Ii(tn) as a probability to be Recovered.68

2.2.4 Spatial information69

Suppose that we have partial (and imperfect) spatial information on the infected ones. We are not going to assume that we70

know exactly which nodes are infected, but are going to assign a probability to be infected dependent on the spatial distance to71

the infected ones.72

We define the probability of an individual to be infected

Ii(t) =
ln(1+ e−di)

γ

where di is the spatial distance from node i to the closest infected case and γ is a parameter, larger or equal to ln(2). γ = ln(2)73

was chosen so the nodes at distance zero from infected cases have probability one of being infected74

3 Simulations75

As noted in Section 2, the vector of Personalized PagerRanks of the agents is a multiple of the vector of probabilities that the76

agents become infected at some point. In order to gauge the quantitative implications of the main findings reported in Table 1 of77

Section 6.1, we ran 100 simulations using a computational SIR model involving 1000 agents who live and move stochastically78

on and a grid, and which come in contact with each other according to a network generated based on their proximity on the grid,79

over 80 time periods. For each time period in each simulation, we computed the mean probability of infection of susceptible80

agents during the following 7 time periods (the probability of next-week infection), conditional on their Personalized Page81

Ranks. Note that while the total PageRank is by construction always equal to 1, and thus its mean in the population is 1/1000,82

its distribution varies widely as the virus spreads throughout the population. It follows, that its variance, as well as the impact83

on the probability of next-week-infection changes throughout the simulated epidemic. Figure ?? shows the mean probability of84

infection over all simulations of susceptible nodes within seven days (periods), starting on the day shown in the axis. The red85

line shows this mean probability for susceptible agents whose PPRs were within 0.1 standard deviations of the mean. The blue86

line shows this mean probability for susceptible agents whose PPRs were between −0.1 and −0.2 standard deviation from87

the mean. Note that the difference between the mean probabilities is between 1 and 2 percentage points and varies widely88

throughout the epidemic.89
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Figure 1. Mean probability of infection of susceptible nodes within seven days (periods), after the day shown in the axis. The
red line shows the mean probability of infection among susceptible agents whose PPRs were ±0.1 standard deviations of the
mean (1/1000). The blue line shows the mean probability of infection of susceptible agents whose PPRs were between −0.1
and −0.2 standard deviation from the mean.

4 Genetic Sampling90

A total of 377 SARS-CoV-2 genome sequences of Colombian origin were sequenced through this project, obtained from91

samples provided by Grupo de Investigación en Enfermedades Tropicales del Ejército (GINETEJ), Laboratorio de Referencia92

e Investigación, Dirección de Sanidad Ejército. Sample collection was carried out by nasopharyngeal swabs of individuals93

sampled from the Military Hospital in Bogotá. Individuals provided informed consent and sample collection was approved by94

Universidad del Rosario’s Research Ethics committee (DVO005 1550-CV1400).95

Whole genome sequencing of SARS-CoV-2 was performed using Oxford Nanopore’s MinION platform, using the96

MinKNOW application (v1.5.5) according to the established protocol (https://artic.network/ncov-2019). The bioinformatic97

analysis was performed on the raw Fast5 files, which were basecalled to obtain the Fastq files, and then demultiplexed using the98

Guppy tool. After that, the Fastq files already assigned by barcode were filtered by quality and length eliminating possible99

chimeric reads. Finally, genome assemblies were obtained following the algorithm for MinION sequences described in the100

ARTIC bioinformatics pipeline (https://artic.network/ncov-2019/ncov2019-bioinformatics-sop.html). Once the assemblies were101

obtained, typing was performed based on the Pangolin COVID-19 Lineage Assigner (Phylogenetic Assignment of Named102

Global Outbreak LINeages). The mutation search was performed by means of Clade assignment, mutation calling, and sequence103

quality checks NextClade v 1.5.4 (https://clades.nextstrain.org/).This yielded 377 SARS-CoV-2 genome sequences. Raw104

sequences are deposited on GISAID1 (gisaid.org).105

Genomes were preprocessed, aligned, and included in a maximum-likelihood phylogeny of subsampled global SARS-106

CoV-2 genomes using Nextclade (clades.nextstrain.org) under default parameters, part of the Nextstrain-TreeTime107

computational framework2, 3. The resulting phylogeny was visualized using Auspice (auspice.us)2 with custom colors and108

region implemented independently.109

Two genomes sequenced in this study (samples A339 and A514) were found to cluster poorly with other samples and were110

flagged by Nextclade as having poor quality private mutations. The genomes were found to combine sequence similarity to111

different lineages, including lineages not in existence at the time of collection (sample A339 was collected in 11 April 2021,112

almost six months prior to the emergence of Omicron REF, with which it holds significant similarity). These sequences were113

deemed likely to be the result of cross-contamination events between samples, and not considered in further analysis.114

The remaining 375 genomes were plotted on a phylogeny and represent sequences from variants of concern Alpha, Gamma,115

Lambda, Delta, Mu, and Omicron throughout the course of the pandemic. Genetic distance was calculated as the Kimura116
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2-parameter distance, based on the APE R package implementation of molecular models of evolution for genetic distance4.117

5 Device co-location as a proxy for contacts118

One of the key assumptions on co-location or digital contact based methodologies is that the device interaction is indeed a good119

proxy for physical contacts between users. Although it has been shown that these techniques have their limitations5, specially120

when it comes to the selection of the interaction distance parameter6, a link between between digital proximity and effective121

public policy has also been established7.122

One way to justify the use of device co-location as an effective proxy for actual contact, at least in the context this study,123

was to evaluate the correlation of the distance between the devices of two COVID-19 positive users, with the genetic distance124

from their sequenced samples. Specifically, given a couple of geolocated COVID-19 samples gi and g j taken from different125

individuals, we wanted to see if there is correlation between:126

• Genetic distance: the Kimura 2-parameter distance as mentioned in 4.127

• Device distance: using the geolocation of sample gi, we obtained the set Di of devices that most likely correspond to
the subject’s actual device. The set Di = d1,d2, . . .dn contains all the devices who’s mobility patterns show that they
had spend at least one night 30 meters or less from the device, in the previous month since the subject’s first symptoms
appear. Also, a network of devices was built between all devices that where active in the previous 14 days of the sample’s
first symptoms date across the Bogotá’s metropolitan area. The nodes and edges of the network where computed using
the same schema as the main methodology (see section main manuscript). So the distance δ (dk,dl) between devices dk
and dl corresponds to the length of the shortest path between them over the constructed network with all edges having an
equal weight of 1. If dk and dl are in different connected components of the graph, then δ (dk,dl) = ∞. Thus, the device
distance between gi and g j is:

∆(gi,g j) = min
dk∈Di,dl∈D j

δ (dk,dl)

Although theoretically possible to correlate these two distances, we encountered a sampling problem that we wish to discuss.128

As mentioned in 4, we started with 377 samples, of which only 168 (44.5 %) had sufficient metadata to be geolocated inside the129

metropolitan limits. From those remaining samples, we were only able to associate 34 (9.02 %) to devices and from those130

corresponding devices, only 3 devices (0.7 %) were inside a connected component graph. This means that only three samples131

have non infinite device distance, which renders useless the correlation study with the obtained genetic distances.132

This serves to show the importance of proper articulation with the local government, more so when genetic sampling is133

required. It is crucial to have in place a robust data and sample recollection scheme, where informed consents are always134

included (we had to discard significant amount of samples because the informed consents were missing or were not handed)135

and metadata quality and availability are regarded as priorities.136

Another negative factor that could be improved is sequencing a useful subset of samples. Since we could only sequence a137

fraction of the collected samples, it is crucial to select the most relevant samples, which in our case means samples that can138

be geolocated, associated to a device and that the device has an important role (i.e high centrality) in a connected part of the139

network. Since most of the available samples for sequencing were either discarded or lacked the consent form, our final samples140

represented a very specific time and place in the pandemic, making the proposed analysis even more difficult. With correct141

sample recollection protocols, where all patients were offered a consent form and addresses were filled in correctly, we could142

select the key samples to be sequenced and compare the two defined distances to further confirm our methodology and choice143

of metrics.144
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