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ABSTRACT

Model architecture
Table S1. presents the architectures used for the generator and the discriminator. Note that no batch normalisation should be
applied in the discriminator’s layers, otherwise WGAN-GP does not improve the stability as reported by1. This is critical in
WGAN-GP as the norm of the discriminator’s gradient is penalized according to each image instead of the entire batch2. A
convolution layer is also added before the last layer in the generator to avoid checkerboard pattern artefacts created by the
uneven overlap in the transpose convolution layers3. In generator, However, batch normalisation is followed at each layer by
applying a rectified linear unit (ReLU) or leaky ReLU as activation functions4, 5. Our investigation indicates better results are
obtained when no activation function is applied in the discriminator’s last layer. Table S2 provides the parameters for training
the WGAN-GP in both case studies. Network weights were first randomly initialised and then were updated at each iteration
by the Adam optimiser6 using the reported learning rate and momenta. Discriminator repeats are the number of times the
discriminator’s weights were updated for each generator update. Table S3 reports the mean square errors (MSEs) between
scaled spatial-correlation functions derived from original and reconstructed microstructures using SA and WGAN-GP methods.
It can be seen that the MSE associated with WGAN-GP is two to three orders of magnitude less than SA, except for the
two-point correlation function.

Table S 1. Generator and discriminator architecture in this study.

Layer Type Filters Kernel Stride Padding Batch Activation
Generator
1 ConvTrans2D 1024 4×4 1 0 Yes ReLU
2 ConvTrans2D 512 4×4 2 1 Yes ReLU
3 ConvTrans2D 256 4×4 2 1 Yes ReLU
4 ConvTrans2D 128 4×4 2 1 Yes ReLU
5 ConvTrans2D 64 4×4 2 1 Yes ReLU
6 Conv2D 64 1×1 1 0 Yes ReLU
7 ConvTrans2D 1 4×4 2 1 No Tanh
Discriminator
1 Conv2D 64 4×4 2 1 No LeakyReLU
2 Conv2D 128 4×4 2 1 No LeakyReLU
3 Conv2D 256 4×4 2 1 No LeakyReLU
4 Conv2D 512 4×4 2 1 No LeakyReLU
5 Conv2D 1024 4×4 2 1 No LeakyReLU
6 Conv2D 1 4×4 1 0 No None



Table S 2. Training parameters used in this study.

Image size 1282

Batch size 128
Noise vector (z) dimension 512
Generator filters 64
Discriminator filters 64
Learning rate (α) 0.0001
Momenta(β1, β2) (0.5, 0.999)
Discriminator repeats 5
Coefficient(λ ) 10

References
1. Guan, K. Reconstructing pore networks using generative adversarial networks. (2018).

2. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V. & Courville, A. C. Improved training of wasserstein gans. Adv. neural
information processing systems 30 (2017).

3. Odena, A., Dumoulin, V. & Olah, C. Deconvolution and checkerboard artifacts. Distill 1, e3 (2016).

4. Maas, A. L., Hannun, A. Y., Ng, A. Y. et al. Rectifier nonlinearities improve neural network acoustic models. In Proc. icml,
vol. 30, 3 (Citeseer, 2013).

5. Shang, W., Sohn, K., Almeida, D. & Lee, H. Understanding and improving convolutional neural networks via concatenated
rectified linear units. In international conference on machine learning, 2217–2225 (PMLR, 2016).

6. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).

Table S 3. The assessment of image reconstruction quality using SA and our WGAN-GP.The values are mean square errors
(MSEs) calculated between correlation functions of original and reconstructed images as shown in Figs. 4-5.

Correlation functions Meta-igneous Serpentinite
SA WGAN-GP SA WGAN-GP

S2 8.26×10−6 2.16×10−5 5.94×10−5 4.42×10−5

P3H 5.23×10−5 2.96×10−7 1×10−3 2.13×10−6

P3V 7.69×10−5 4.72×10−7 1.27×10−3 3.78×10−6

P4 6×10−5 1.61×10−6 1.33×10−3 5.74×10−6

P6 2.98×10−5 2.56×10−7 1.19×10−3 1.44×10−6
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