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Supplentary Methods
Food and protein consumption 
Historical data on China’s population, grain and animal production were obtained from Chinese National Statistics between 1961 and 2018, including the Compilation of China Agricultural Statistics and Statistical Bulletin on National Economic and Social Development. Plant food and animal food (meat, eggs and milk) consumption were calculated based on the net plant food supply (production + import - export), considering approximately 20% of total food supply as food wastes1,2. The mean daily protein intake per capita was calculated as the sum of protein from all plant and animal food products, excluding those used for animal feeds (50% of plant products). Annual N intake per capita (kg N capita-1 yr-1) was estimated by multiplying daily protein intake (g capita-1 day-1) with the protein N content (16%) and 365 days in one year: 
Annual N intake = Daily protein consumption  0.16  365  0.001            (1)
The ratio of animal protein to total (plant+animal) protein was calculated as:
Animal protein ratio = Animal protein intake / total (plant+animal) protein intake  (2)

N saving potentials 
We analyzed N saving potentials for China’s crop production based on three approaches. First, we focused on the replacement of chemical N fertilizer with an increasing proportion of recycled manure. This is based on setting an equal nutrient value for N from chemical fertilizer and manure in the long-term3,4. We analyzed N saving potentials from technical innovations using the so-called 4R strategy5, i.e. the use of improved fertilizer products (Right N products), that are applied at the Right amount, the Right time and to the Right place. To realize the 4R strategy, we used balanced fertilization (Right amount) for saving N as the second step. Then we adopted integrated approaches (the other 3Rs) for further optimizing N inputs as the third step. The basis for the calculations is as follows: 

(1) N fertilizer replacement at 80% manure recycling. Based on Bai et al.6 and Kang et al.7, only 20% of the N intake by livestock is excreted onto grazed land. This implies that 80% of manure can be recycled. Available recycled manure N to croplands was estimated at 9.8 Tg N yr-1 assuming a recycling efficiency of 80%, while current manure N input was estimated at 5.6 Tg N yr-1 in 2018 (Table S3). Thus 80% recycling of N in manure would lead to an additional saving of 4.2 Tg N yr-1 (plus already recycled 5.6 Tg N yr-1), being approximately equal to 34% of fertilizer N in 2018.
(2) Balanced N fertilization. This approach implies that the N requirement of crops is balanced by all N inputs, including the input of non-N fertilizer sources, i.e. manure, deposition and irrigation, thus allowing a lower N fertilizer input. Considering a similar NUE for all N sources, China’s average NUE was 45% in 2018. Xia et al.8 suggest that an overall decrease of N fertilizer by 1/3 is possible, implying a total NUE of 63% is achievable. 
(3) Integrated approaches. Integrated approaches refer to integrated soil-crop system management, including the 4R technologies (right rate, right type, right place and right time of fertilizer application), optimised irrigation scheme, improved soil and crop management based on 80% manure recycling and balanced N fertilization. This can result in an overall increase in NUE to 73%, which is slightly higher than the expected NUE in Europe in 2050.

Cost savings 
The proposed changes in N management will lead to direct and indirect beneficial economic effects. Direct beneficial effects include the reduced costs of N fertilizer. Based on the costs of urea of about 300-500 Euro per ton and an N content of 46%, we calculated N fertilizer costs as 0.6-1.0 Euro per kg N with an uncertainty of 50% considering the price differences for different types of fertilizers. The indirect benefits from reduced heath costs and an improved environment were based on the willingness to pay (WTP) in the EU279, corrected for the ratio of gross domestic product (GDP) per capita in China to the GDP per capita in EU27. The WTP for China was derived from the corrected values from the EU due to various N losses to air and water given in Table S5. 

Uncertainties 
The estimated country totals for N inputs, N uptake and N losses to air and water are all prone to uncertainties. In line with Kros et al.10, who performed an uncertainty assessment of N inputs and N outputs for the EU27, we used three levels of uncertainties for the coefficient of variation (CV) including a low (0.10), moderate (0.25) and high (0.50) uncertainty. We used a Monte Carlo analysis to assign the ranges in N emissions, leaching and runoff, i.e. 20% for NH3 emissions, and 30% for N2O and NOx emissions and 30% for N leaching plus runoff. These uncertainties are based on the most conservative assumptions for the EU27, considering a higher uncertainty in input data for China as compared to the EU27. The results showed that N balances in maize, wheat and rice systems fit a normal distribution (Fig. S5). These uncertainties are expected to be systematic rather than random, and therefore do not affect conclusions based on temporal comparisons. 
Table S1 │ Estimated N inputs from fertilizer, manure, fixation, deposition, and irrigation, plus crop N uptake and NUE. 
	Types of N inputs
	Total N fluxes (Tg N yr-1)

	
	1961
	1980
	2000
	2018

	N from fertilizer
	0.6 (0.4-0.7)
	12.3 (9.8-14.7)
	22.4 (17.9-26.9）
	28.6 (22.9-34.3)

	N from manure
	2.8 (2.2-3.3)
	9.30 (7.4-11.2)
	11.2 (8.9-13.4)
	12.3 (9.8-14.7)

	· Recycled
	2.5 (2.1-3.1)
	7.0 (5.6-8.4)
	5.8 (4.6-6.9)
	5.6 (4.5-6.7)

	· Non-recycled
	0.2 (0.1-0.30)
	2.2 (1.8-2.7)
	5.4 (4.3-6.4)
	6.7 (5.3-8.0)

	N from environment
	0.9 (0.7-1.1)
	3.1 (2.9-4.4)
	5.6 (4.9-7.4)
	7.1 (6.2-9.4)

	· N fixation
	0.2 (0.1-0.3)
	0.5 (0.3-0.7)
	0.5 (0.3-0.8)
	0.6 (0.4-0.9)

	· N deposition
	0.8 (0.6-1.0)
	2.5 (2.0-3.0)
	4.9 (3.8-5.8)
	6.2 (5.0-7.5)

	· N irrigation
	0.01 (0.01-0.02)
	0.1 (0.05-0.2)
	0.2 (0.1-0.40)
	0.3 (0.1-0.5)

	Total N input
	4.2 (4.0-4.4)
	24.6 (20.1-30.2)
	39.2 (31.8-47.7)
	48.0 (39.0-58.5)

	Crop N uptake
	3.0 (2.7-4.1)
	11.6 (9.5-14.2)
	17.6 (14.3-21.4)
	21.6 (17.5-26.3)

	NUE (%)
	70 (68-73)
	47 (45-49)
	45 (43-47)
	46 (43-48)

	NH3 emissions
	0.4 (0.3-0.5)
	3.2 (2.6-3.9)
	5.9 (4.7-7.1)
	7.2 (5.8-8.7)

	N leaching and runoff
	0.4 (0.3-0.5)
	3.2 (2.6-3.9)
	5.1 (4.1-6.2)
	6.2 (5.1-7.6)

	NO, N2O and N2 emissions
	0.5 (0.4-0.7)
	6.7 (5.4-8.1)
	10.6 (8.6-12.9)
	13.0 (10.5-15.8)




Table S2 │ Leaching rates from precipitation and irrigation to croplands in China based on the water balance in seven major watersheds, according to Li and Huang11. 
	Watershed
	Total land (M ha)
	Cropland (M ha)
	Precipitation (109 m3 yr-1)
	Irrigation (109 m3 yr-1)
	Pleaching  (109 m3 yr-1)
	Ileaching 
(109 m3 yr-1)
	Tleaching total (109 m3 yr-1)
	Tleaching 
(mm yr-1)

	Songleng River
	107
	20
	70
 (56-84)
	36
 (29-43)
	1.6 
(1.2-1.9)
	0.8 
(0.6-0.9)
	2.4
 (1.92-2.88)
	12 
(9.6-14.4)

	Hai River
	32 
	11 
	78 
(62-93)
	27 
(21-32)
	3.5 
(2.8-4.2)
	1.2 
(0.9-1.4)
	4.7 
(3.76-5.64)
	45 
(36.0-54.0)

	Huai River
	29
	12 
	101 
(80 -121)
	32 
(25-38)
	18.2 
(14.5-21.8)
	5.7
 (4.5-6.8)
	23.9
 (19.1-28.6)
	199
 (159-238)

	Yellow River
	82 
	13 
	36 
(28-43)
	42 
(33-50)
	1.9 
(1.5-2.2)
	2.2
 (1.7-2.6)
	4.1 
(3.2-4.9)
	31 
(24.8-37.2)

	Yangtze River
	180 
	25 
	345 
(276-414)
	79 
(63-94)
	78
 (62-93)
	17.8 
(14.2-21.3)
	95.5 
(76.4-114.6)
	388
 (310-465)

	Qiantang- Min Rivers
	17
	5.2 
	121 
(96-145)
	48 
(38-57)
	24 
(19-28)
	9.4 
(7.5-11.2)
	32.9 
(26.3-39.4)
	633
 (506-759)

	Pearl River
	58
	4.8 
	745 
(596-894)
	16
 (12-19)
	21
 (16-25)
	4.5
 (3.6-5.4)
	26 
(20.8-31.2)
	534 
(427-640)

	Seven River Watersheds
	505 
	90 
	825 
(660-990)
	279 
(223-334)
	148
 (118-177)
	42 
(33.6-50.4)
	189 
(151-226)
	210 
(168-252)
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Table S3│Improved N inputs from N fertilizer replacement by 80% manure recycling, balanced N fertilization and integrated soil-crop system management in China. 
	Type of N inputs
	Total fluxes in 2018 (Tg N yr-1)
	N fluxes by improved management
(Tg N yr-1)

	
	
	80% manure recycling 
	Balanced N fertilization
	Integrated approaches 

	N fertilizer
	28.6 (22.9-34.3)
	24.4 (21.2-31.8)
	16.3 (14.2-20.3)
	13.0 (9.2-13.7)

	N manure
	12.3 (9.8-14.7)
	12.3 (9.8-14.7)
	12.3 (9.8-14.7)
	12.3 (9.8-14.7)

	· Recycled
	5.6 (4.5-6.7)
	9.8 (8.8-11.2)
	9.8 (8.8-11.2)
	9.8 (8.8-11.2)

	· Not recycled
	6.7 (5.3-8.0)
	2.5 (2.1-3.1)
	2.5 (2.1-3.1)
	2.5 (2.1-3.1)

	N environment
	7.1 (6.2-9.4)
	6.8 (6.2-8.4)
	6.3 (5.1-7.5)
	5.8 (5.0-7.0)

	· N fixation
	0.6 (0.4-0.9)
	0.6 (0.4-0.9)
	0.6 (0.4-0.9)
	0.6 (0.4-0.9)

	· Nr deposition
	6.2 (5.0-7.5)
	5.9 (4.5-7.0)
	5.4 (4.5-6.2)
	4.9 (3.9-5.8)

	· N irrigation
	0.3 (0.1-0.5)
	0.3 (0.1-0.5)
	0.3 (0.1-0.5)
	0.3 (0.1-0.5)

	Total N input 
	48.0 (39.0-58.5)
	43.5 (38.3-52.5)
	34.9 (31.6-37.8)
	31.1 (23.6-35.4)




Table S4 │ Nr losses and their reductions achieved by manure recycling, plus balanced N fertilization and plus integrated approaches based on soil-crop system management in China.
	Type of Nr fluxes 

	Total N fluxes in 2018 (Tg N yr-1)
	N loss reductions by improved management (Tg N yr-1)

	
	
	80% manure recycling
	Balanced N fertilization
	Integrated approaches

	NH3 emission 
	7.2 (5.8-8.7)
	6.5 (6.1-7.1)
	5.2 (4.6-6.9)
	4.7 (3.9-5.9)

	N2O emission 
	1.0 (0.8-1.2)
	0.9 (0.7-1.1)
	0.7 (0.5-0.8)
	0.6 (0.4-0.7)

	NOx emission 
	0.6 (0.4-0.7)
	0.5 (0.4-0.6)
	0.4 (0.3-0.5) 
	0.4 (0.3-0.5)

	N leaching & runoff 
	6.2 (5.1-7.6)
	5.7 (4.9-7.4)
	4.5 (4.0-6.0)
	4.0 (3.4-5.1)

	Reduction in NH3 emission 
	-
	0.7 (0.6-0.9)
	2.0 (1.7-2.5)
	2.5 (2.1-3.1)

	Reduction in N2O emission 
	-
	0.1 (0.08-0.12) 
	0.3 (0.2-0.4)
	0.4 (0.3-0.5)

	Reduction in NOx emission 
	-
	0.1 (0.08-0.12)
	0.2 (0.1-0.3)
	0.2 (0.1-0.3)

	Reduction in N leaching & runoff 
	-
	0.5 (0.4-0.7)
	1.7 (1.4-2.2)
	2.2 (2.0-2.5)






Table S5 │ Cost-benefit analyses resulting from improving N management. 
	Type of N fluxes
	Costs based on WTP 
(€ kg-1 N)
	N fluxes in 2018 
(Tg N yr-1)
	Total cost (Billion Euro)
	Reduced costs (Billion €)

	
	
	
	
	Manure replacement 
	Balanced fertilization 
	Integrated approaches 

	N fertilizer 
	0.8
 (0.6-1.0)
	28.6 (22.9-34.3)
	22.9 
(18.3-34.3)
	3.4 (2.5-4.2)
	9.8
 (7.4-12.3)
	12.5
(9.4-15.6)

	NH3 to air 
	4 
(2-6)
	7.2 
(5.8-8.7)
	28.8 (11.6-52.2)
	2.8 (1.2-1.9)
	8.0 
(6.6-9.9)
	10.0 (9.5-14.2)

	N2O to air 
	2 
(1-3)
	1.0
 (0.8-1.2)
	2.0 
(0.8-3.6)
	0.2 (0.1-0.4)
	0.6
 (0.4-0.7)
	0.8
 (0.6-0.9)

	NOx to air 
	4
 (2-6)
	0.6
 (0.4-0.7)
	2.4
 (0.8-4.2)
	0.3 (0.2-0.4)
	0.8 
(0.6-0.9)
	0.8
 (0.6-0.9)

	Nr to water 
	3
 (1-5)
	6.2 
(5.1-7.6)
	18.6 
(15.3-38.0)
	1.5 (1.2-2.3)
	5.1
 (4.4-6.7)
	6.3
 (3.1-9.2)

	Total 
	-
	-
	74.7 (68.0-93.0)
	8.2
(6.6-9.9)
	24.3 (21.9-28.8)
	30.4 (28.5-35.8)


The indirect costs are based on Willingness To Pay (WTP) in the EU27, adjusted by dividing this by a factor of 5 according to the ratio of mean per capita GDP in China (approx. 6100 Euro yr-1) to mean per capita GDP in EU27 (30600 Euro yr-1). The total costs and reduced costs in Billion Euro are average values. The uncertainty range given per unit costs was applied to these costs.
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Figure S1│Changes in the population, grain yield, grain consumption, daily protein intake, annual N intake and the ratio of animal protein to total (animal + plant) protein.




Figure S2 │ Spatial distribution of total N inputs including N fertilizer, manure and environment (N deposition, irrigation and N fixation) in China in 1961, 1980, 2000 and 2018.     


Figure S3│ Spatial distribution of N fertilizer, manure and environment (N deposition, irrigation and N fixation) inputs in China in 2010.     



Figure S4│ Spatial distribution of N fertilizer inputs for 16 major crops in China.   
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Figure S5│Distribution and uncertainty ranges of the N balance for wheat (a), rice (b), maize (c) and vegetables (d), based on a Monte Carlo analysis by sampling 1000 times. 
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