Supplementary Notes for Modeling Homophily in Dynamic
Networks with Application to HIV Molecular Surveillance

1 Models for Homophily

1.1 Data Generating Process and Simulation

We model growth of clusters over time ¢ (1996 < ¢ < 2018). For each newly infected PWH; at

t;, there are k; number of available clusters available at t;, where x§~ is a vector of cluster-level

covariates for the j cluster at time t; (1 < j <k;). As noted earlier, for a cluster of size 1, X;-

is the covariate for PW H;, who defines the j** cluster, while for a cluster of size larger than 1, xé

represents a function of the covariates for all of the PWH within cluster j. The newly infected
PWH; either joins one of the clusters available at that time ¢; or forms its own cluster. In the
former case, the number of clusters at time ¢;, is unchanged, i.e., k;+1 = k;, but one of the clusters
will have a new member, which we denote the i*" newly linked case (NLC?). The covariate for
NLC?, denoted by xﬁv o> Will be incorporated into the covariate for the cluster that was joined.
In the latter case, the number of clusters at time ¢;;; will increase by 1 to k;11 = k; + 1, with
x% o forming the (k; + 1)th cluster at ¢;+1. We assume that xé are independent (1 < j < ky;
1<i<n).

We describe the data generating process for these two scenarios.

Scenario (1) x% . joins one of the jth clusters at time ¢;, in which case the number of clusters
at time ¢; 41 remains the same, k; 11 = k;, but the jth cluster will have a new cluster-level covariate

to reflect the addition of x; ~:
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{x’l,xé, ...,x}%} = {th ...,x;- =h (x},xﬁmc) ,...,x}%} ,

where h (-, -) is a vector-valued function that combines X§~ and xY;; - to define xj.H =h (x} xh; LC) .

Scenario (2) x%;, forms its own cluster at time at time ¢;, in which case the number of
clusters at time ¢;1 will grow by one to k;11 = k; + 1 and the k; ;1 clusters at ¢;,41 are given by:
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We now discuss how the two scenarios are determined using Between-subject Multinomial Re-

sponse models.

1.2 Data Generating Model
Given {Xil,x’é, ,X}CZ} and XﬁVLO, let m; = k; + 1 and consider a m;-dimensional random vector

z' = (zi, 2y, zﬁnz) where zl is a binary indicator and ), zl =1. Let

{ Vi ), gmi_l)}:{d(xl,x;ygc) d (b, Xy 1) s oo d (X 1y Xrc) o (X, X))

where d (-, ) is a scalar similarity/dissimilarity function to determine if x%;; ., joins x (1<j<k).
We assume that z* conditional on d* = { Zi, é, ey démi—2)’ dfmi_l)} follows a m;-level Between-
subject Multinomial Response model Multi, (ni, 1) defined as:
z' | d’ ~ Multi, (', 1), (1)
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The size of this multinomial is 1, i.e., Y., 2z¢ = 1, and ' denotes the vector of cell probabilities.

Jj=1 J
Thus only one of the components of z’ is 1 and the rest is 0.

Note that we term the model in (1) a Between-subject Multinomial Response model because

the cell probabilities ° are determined by the covariates d’ that is a function of the NLC and
clusters of subjects. This is different from the traditional within-subject Multinomial Response

model, where the cell probabilities are determined by a single subject [Liu et al., 2021].

Scenario (1) This occurs when z; =1 for some j (1 < j <m; —1). In this case, X joins
the jth cluster at time ¢; and the clusters at time ¢;;1 remain the same as at time ¢;, except for
the jth cluster that will have a new cluster-level covariate to reflect the addition of xﬁv o to its
members. Thus, k;11 = k; and the cluster covariates for time ¢;41 are given by:
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{X1 s X kﬁﬂ)} {xl,... (xj,xNLC),...,xki}.

Scenario (2) This occurs when zﬁni = 1, in which case x%; forms a new cluster. The

number of clusters at time ¢;; will grow by one to k; + 1. Thus, k;+1 = k; + 1 and the cluster



covariates for time ¢;11 are given by:
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We can readily fit the between-subject multinomial response models in (1) to the data generated.
Alternatively, we can fit independent logistic regression, as we did in the analysis of the homophily

data. We discuss the basis for this alternative approach next.

1.3 Relationship between Independent Bernoulli and Multinomial Distribution

Consider k independent Bernoulli z; ~ Bern (p;) (1 <j < k) and let z = (21, 22, . .. ,2) . Then,

z given Z?Zl zj = 1 has a multinomial:
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In general, the multinomial event probability p; is given by:
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Thus by viewing the data generating process as the conditional distribution of independent
Bernonlli’s z1, zo, ... ,z,;r under the constraint Z’;:l zj = 1, we can fit the data generated using

independent logistic regression.

1.4 Model Fitting
1.4.1 Model Fitting based on Between-subject Multinomial Response Model

Given n newly infected cases, we have observed data:

Xype, {xLx4,..xp ), 2 =(21,25,...,24,41) » 1<i<n. (2)

If Xf}VLC joins a cluster at time ¢;, say, 7, then z; =1 for some j (1 <j <k If xéVLC forms its
own cluster, then z,il_ﬂ =1.

First, we compute the similarity /dissimilarity variables (that serve as homophily covariates) for

the clusters:
d' = {di,dy, ... dj, } = {d (X1, Xyc)  d (x5, XN1c) s oond (X Xvpo) o 1<i<ne (3)

Then, we fit a (k; + 1)-level between-subject multinomial response model Multi, (ni, 1) using max-

imum likelihood:

z' | d° ~ Multi, (771) , (4)
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The log-likelihood function is given by:
n n kl
=2 L= > #log(n)):
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1.4.2 Model Fitting based on Independent Logistic Regression

When fitting the Between-subject Multinomial response model to the data generated, we need to

have full data that includes both Scenario 1 and Scenario 2. Within the context of the paper, we

only have data for Scenario 1, i.e., we only have data when a newly infected case x’ 1 joins a



cluster at time ¢;. Thus, we only have a subset of the data in (2) under the constraint z; =1 for
some j (1 <j <k;),or Zf;lz; =1(1<i<n).
Based on the relationship between independent Bernoulli and multinomial distribution, we

can model the subset of the observed data z' with Efl:l zt =1 using Y5 kil (Zf’zl z; = 1)

independent logistic regression models, where I (A) denotes an indicator with I (A) = 1 if A is true

and I (A) =1 otherwise. Thus, given

7

I
—~
N
=
N
N .
N
G
~—
_|
N
S
I
—_
=
N
-~
N
S
—~~
ot
~—

XNLC {XZI,XZQ, ...,X}Ci} , Z
we can fit k; independent logistic regression models as described in the main paper.

2 Simulation Study

2.1 Study One

We use simulated data to examine (1) if data generated from the between-subject multinomial
response model in Section 1.2 can be equivalently modeled by independent logistic regression as
described in Section 1.3, and (2) performance of the independent logistic regression when fit to
data generated from the between-subject multinomial response model.

For (1), we started with 5 clusters and set 10 as the total number of clusters. The cluster-
level covariates for the beginning 5 clusters, {1, x2, ..., z5}, were simulated from 5 different normal

distributions:
{a1,23,...,a5}, aj ~N(2j-1,01), 1<j<5.

To simulate a sample of size n from the between-subject Multinomial response model Multi, (ni, 1),

for 1 <4 < n each newly infected case xﬁv o Was generated from a normal distribution:
XéVLCNN<2T_171)7 7,"\Jlel{1727”'7k’L'}7 2SZ§n7

where Uy{1,2,...,k;} denotes a discrete uniform distribution with values 1,2,...,k;. We use d} =

. ) . -1
d (m;, x'y LC> = ‘x; — Ty LC‘ (truncated at 0.001 and 100) as the similarity/dissimilarity function
and h (x;, xﬁv LC) = % (x; + xﬁv LC) as the function to integrate each 333\1 o With the cluster-level
covariate mz of the cluster that xﬁv 1o joins.  We set n = 1,000 for our simulation. The event

probability i* for the between-subject Multinomial response model for generating the multinomial



response z' in (1) is given by:

exp (50 + ﬁld;) exp (—0.8 + O.ld;-)
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To reduce sampling variability as well as to compare estimates from fitting the between-subject

multinomial response and independent logistic regression model, we controlled the total number of

clusters to 10, i.e., k, = 10, with the fixed sample size n. Thus, a newly infected case x%; o Will not

form its own cluster for every ¢; when Zf;l z;'» = 0 until a certain number of samples are generated

from Multip (ni, 1) for a given number of clusters. For example, to grow the initial 5 clusters to 10
clusters, we select 6 subsample sizes, 1 < n5 < ng... < ng < nig, such that for n;_1+1 <t < n; we
generate z' from Multi, (ni, 1) with k; clusters, where ny = 0 and 5 <[ < 10. For our simulation
study, we set ns = 300, ng = 500, n7 = 700, ng = 900, ng = 1100 and nig = 1500.

We fit both the between-subject Multinomial response model and independent logistic regression

as described in Section in (1.3). For the between-subject Multinomial response model, we obtained:

~ ~ AT
B8 = (ﬁo,ﬂl) = (—O.7995,0.0999)T, which were quite close to the respective true values [y =

—0.8 and 8 = 0.1. For the independent logistic regression, we obtained: & = (%fy\l)T =

(—2.0401,7; = 0.0963)T. Although B and 4 are not directly comparable, we can compare the

~ ~t+1 e 5 ~ . . .
fitted 7' and € based on substituting 8 and ¥ in place of 3 and ~. Since the independent

logistic regression is fit to the subject vector zéub = (z’{, zé, . ,z,ii)—r of zt = (zi, zé, R z,ii, z,ii+1)—r,
we compare EZ = (E;, %, ... ,g’ﬁ)T with the normalized subvector ﬁiub = ?11 (77’”17 ﬁé, ... ,%i)—r, where
=Y, 0.

Shown below are the averaged 7', and EZ over the samples 1 < i < ns with 5 clusters, ﬁiub

X5 —10 ;10
and &,,;, and over the samples ng < i < njg, Ny, and &,

7o, = (0.1973,0.1967, 0.2006, 0.2060, 0.1994) T |

=5

€., = (0.2001,0.1977,0.2008, 0.2037,0.1977) ",

A — (0.1019,0.1045,0.1002, 0.0951, 0.1024, 0.0970, 0.0978, 0.1019, 0.0934, 0.1060) | ,

=10
€., = (0.1017,0.1091,0.1022, 0.0875,0.1004, 0.1008, 0.1028, 0.0997, 0.0938, 0.1021) " .

In both cases, the averaged event probabilities from the fitted between-subject Multinomial response

and independent logistic regression model were quite close to each other.



To see if estimates of ¥ = (7o, %)T in the independent logistic regression converge, we simulated
a sample size of 450 and 900 homophily cases, i.e., all simulated 450 (900) newly infected cases
that join existing clusters. The two sets of estimates are (7p,71) = (—2.104,0.113) for 450 and

(70,71) = (—2.051,0.105) for 900. They are close to each other.

2.2 Study Two

In this simulation study, we simulate data from one continuous and one binary predictor based
on the distributions of the observed birthy year and ethnicity. The mean birth year is 1973 and
the proportion of Hispanic Ethnicity (HE) is 35%. We again set the total number of clusters to

10. We simulate the continuous cluster-level covariate from 10 normal distributions with different
means and the binary cluster-level covariate from 10 Beroulli distributions with different means.

To make the 10 distributions of the cluster-level covariates similar to those of the study data, the
10 normal means average to 1973 and the 10 Bernoulli means average to 35%.
We again started with 5 clusters with the continuous cluster-level birth year covariate, {x11, 212, ..., 215},

following the 5 different normal distributions:
{1&1, x%27 veey [13%5} s
xt ~ N (1968,1), 23 ~ N (1971,1) , 21, ~ N (1975,1) ,x}; ~ N (1978,1),x, ~ N (1981,1).

The 5 binary cluster-level HE covariates, {x21, €22, ..., 225}, following the 5 different Bernoulli dis-

tributions:
{231,259, s v35 } , 73 ~ Ber(0.25), 33, ~ Ber(0.3), 235 ~ Ber(0.35), x5, ~ Ber(0.4), x5 ~ Ber(0.45).

To simulate a sample of size n from the between-subject Multinomial response model Multi, (ni, 1) ,
for 1 < ¢ < n each newly infected case xﬁVLC = (mﬁ\, LCl,aﬁV LC2)T was generated from a normal
and a Beroulli distribution as follows:

xhror ~ N Vi, 1), XNpoe ~ Ber (Va,), 17 ~Ug{1,2,...k}, 2<i<n,

where Ug{1,2, ..., k;} denotes a discrete uniform distribution with values 1,2, ..., k;, V1, and Va, de-
notes the r-th row of vector V; and V5, and V; = (1968, 1971, 1975, 1978, 1981, 1955, 1961, 1965, 1985, 1991),
Vo = (0.25,0.3,0.35,0.4,0.45,0.1,0.15,0.2, 0.5, 0.55).

We use dyj = d (i, 2 g1 ) = [0, = #ipon | and day = d (w2 pop ) = V007 (1= py)! e
as the similarity/dissimilarity function for the continuous and binary cluster-level covariate. We
use h (xé,x’j\, LC) = % (X; + Xl}v LC) as the function to integrate each xﬁv o With the cluster-level

covariate xé of the cluster that xf}VLC joins. We set n = 1,000 for our simulation. The event



probability i for the between-subject Multinomial response model for generating the multinomial

response z' in (1) is given by:

exp (o + Pl + Bad )

. : 1
i = = ki +1
77] 1 + Et-i,-l 9 "7m1 1 + Eia ml 7 +
mi;—1
Si= Y exp (o + Bidi; + Badb)) .
j=1

We set fp =1, f1 = —0.15 and 32 = 0.9. We use a negative 31 and positive 33 so that smaller d,;
and larger do; will increase the probability of joining the
To reduce sampling variability as well as to compare estimates from fitting the between-subject

multinomial response and independent logistic regression model, we controlled the total number of

clusters to 10, i.e., k,, = 10, with the fixed sample size n. Thus, a newly infected case 373\/ o Will not
form its own cluster for every 7 when 252:1 z; = 0 until a certain number of samples are generated

from Multip (ni, 1) for a given number of clusters. For example, to grow the initial 5 clusters to 10
clusters, we select 6 subsample sizes, 1 < ns < ng... < ng < nig, such that for nj_1+1 <t < n; we
generate z' from Multi, (ni, 1) with k; clusters, where ngy = 0 and 5 <[ < 10. For our simulation
study, we set ns = 300, ng = 500, n7 = 700, ng = 900, ng = 1100 and nig = 1500.

We fit both the between-subject Multinomial response model and independent logistic regression

as described in Section in (1.3). For the between-subject Multinomial response model, we obtained:

~

o anT
B = (Bo,ﬁl,ﬁg) = (1.0047, —0.1509,0.8931)T, which were quite close to the respective true

values By = 1, 1 = —0.15 and B2 = 0.9. For the independent logistic regression, we obtained:

5 = (F0,71,%2) " = (—0.9914, —0.1279, —0.0352) " . Although B and 7 are not directly comparable,

we can compare the fitted 7’ and ? based on substituting ,@ and 4 in place of @ and ~. Since

the independent logistic regression is fit to the subject vector z! , = (zi,zé, . ,z}ci) of z* =
i i i i\ T 2 _(h G AZT‘hh lized sub 7l =

(zl,zz, .. .,zki,zkiﬂ) , we compare § = (&],&5,...,&, | with the normalized subvector 1, =

1 (=~ i ~a o N ki oo

37(771,7717---,71161.) aWhere S’L_Z]'Z:lnj'

—~q 4 . . =5
Shown below are the averaged 7., and El over the samples 1 < ¢ < ns with 5 clusters, 1.,



and &,,;, and over the samples ng <7 < njg, Ngyp and €

Hows = (0.1979,0.2001, 0.2017, 0.2019, 0.1984) T ,

=5
€., = (0.1954,0.1953,0.2023,0.2031,0.2040) ",

Ay = (0.0943,0.1098, 0.1012, 0.1041, 0.1073, 0.0820, 0.0994, 0.1077, 0.0921,0.1021) T ,
=10
€. = (0.0949,0.1007,0.0978, 0.1047, 0.1043, 0.0939, 0.0964, 0.0983, 0.1043,0.1045) " .

In both cases, the averaged event probabilities from the fitted between-subject Multinomial response

and independent logistic regression model were quite close to each other.
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