
Supplementary Notes for Modeling Homophily in Dynamic

Networks with Application to HIV Molecular Surveillance

1 Models for Homophily

1.1 Data Generating Process and Simulation

We model growth of clusters over time t (1996 ≤ t ≤ 2018). For each newly infected PWHi at

ti, there are ki number of available clusters available at ti, where xi
j is a vector of cluster-level

covariates for the jth cluster at time ti (1 ≤ j ≤ ki). As noted earlier, for a cluster of size 1, xi
j

is the covariate for PWHi, who defines the jth cluster, while for a cluster of size larger than 1, xi
j

represents a function of the covariates for all of the PWH within cluster j. The newly infected

PWHi either joins one of the clusters available at that time ti or forms its own cluster. In the

former case, the number of clusters at time ti, is unchanged, i.e., ki+1 = ki, but one of the clusters

will have a new member, which we denote the ith newly linked case (NLCi). The covariate for

NLCi, denoted by xi
NLC , will be incorporated into the covariate for the cluster that was joined.

In the latter case, the number of clusters at time ti+1 will increase by 1 to ki+1 = ki + 1, with

xi
NLC forming the (ki + 1)th cluster at ti+1. We assume that xi

j are independent (1 ≤ j ≤ ki;

1 ≤ i ≤ n).

We describe the data generating process for these two scenarios.

Scenario (1) xi
NLC joins one of the jth clusters at time ti, in which case the number of clusters

at time ti+1 remains the same, ki+1 = ki, but the jth cluster will have a new cluster-level covariate

to reflect the addition of xi
NLC :

{
xi
1,x

i
2, ...,x

i
ki

}
=
{
xi
1, ...,x

i+1
j = h

(
xi
j ,x

i
NLC

)
, ...,xi

ki

}
,

where h (·, ·) is a vector-valued function that combines xt
j and xi

NLC to define xi+1
j = h

(
xi
j ,x

i
NLC

)
.

Scenario (2) xi
NLC forms its own cluster at time at time ti, in which case the number of

clusters at time ti+1 will grow by one to ki+1 = ki + 1 and the ki+1 clusters at ti+1 are given by:

{
xi+1
1 ,xi+1

2 , ...,xi+1
ki

,xi+1
ki+1

}
=
{
xi
1, ...,x

i
j ...,x

i
ki
,xi

NLC

}
.
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We now discuss how the two scenarios are determined using Between-subject Multinomial Re-

sponse models.

1.2 Data Generating Model

Given
{
xi
1,x

i
2, ...,x

i
ki

}
and xi

NLC , let mi = ki + 1 and consider a mi-dimensional random vector

zi =
(
zi1, z

i
2, . . . , z

i
mi

)⊤
, where zil is a binary indicator and

∑mi
l=1 z

i
l = 1. Let

{
di1, d

i
2, ..., d

i
(mi−2), d

i
(mi−1)

}
=
{
d
(
xi
1,x

i+1
NLC

)
, d
(
xi
2,x

i
NLC

)
, ..., d

(
xi
ki−1,x

i
NLC

)
, d
(
xi
ki
,xi

NLC

)}
,

where d (·, ·) is a scalar similarity/dissimilarity function to determine if xi
NLC joins xi

j (1 ≤ j ≤ ki).

We assume that zi conditional on di =
{
di1, d

i
2, ..., d

i
(mi−2), d

i
(mi−1)

}
follows a mi-level Between-

subject Multinomial Response model Multib
(
ηi, 1

)
defined as:

zi | di ∼ Multib
(
ηi, 1

)
, (1)

ηi =
(
ηi1, η

i
2, . . . , η

i
(mi−2), η

i
(mi−1)

)⊤
,

ηij =
exp

(
β0 + β1d

i
j

)
1 + Σi

, 1 ≤ j ≤ mi − 1, ηimi
=

1

1 + Σi
,

Σi =

mi−1∑
j=1

exp
(
β0 + β1d

i
j

)
,

mi∑
j=1

zij = 1.

The size of this multinomial is 1, i.e.,
∑mi

j=1 z
i
j = 1, and ηi denotes the vector of cell probabilities.

Thus only one of the components of zi is 1 and the rest is 0.

Note that we term the model in (1) a Between-subject Multinomial Response model because

the cell probabilities ηi are determined by the covariates di that is a function of the NLC and

clusters of subjects. This is different from the traditional within-subject Multinomial Response

model, where the cell probabilities are determined by a single subject [Liu et al., 2021].

Scenario (1) This occurs when zij = 1 for some j (1 ≤ j ≤ mi − 1). In this case, xi
NLC joins

the jth cluster at time ti and the clusters at time ti+1 remain the same as at time ti, except for

the jth cluster that will have a new cluster-level covariate to reflect the addition of xi
NLC to its

members. Thus, ki+1 = ki and the cluster covariates for time ti+1 are given by:{
xi+1
1 , ...,xi+1

j , ...,xi+1
k(i+1)

}
=
{
xi
1, ...,h

(
xi
j ,x

i
NLC

)
, ...,xi

ki

}
.

Scenario (2) This occurs when zimi
= 1, in which case xi

NLC forms a new cluster. The

number of clusters at time ti+1 will grow by one to ki + 1. Thus, ki+1 = ki + 1 and the cluster
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covariates for time ti+1 are given by:{
xi+1
1 , ...,xi+1

j , ...,xi+1
k(i+1)−1,x

i+1
k(i+1)

}
=
{
xi
1, ...,x

i
j ...,x

i
ki
,xi

NLC

}
.

We can readily fit the between-subject multinomial response models in (1) to the data generated.

Alternatively, we can fit independent logistic regression, as we did in the analysis of the homophily

data. We discuss the basis for this alternative approach next.

1.3 Relationship between Independent Bernoulli and Multinomial Distribution

Consider k independent Bernoulli zj ∼ Bern (ρj) (1 ≤ j ≤ k) and let z = (z1, z2, . . . , zk)
⊤. Then,

z given
∑n

j=1 zj = 1 has a multinomial:

z|
n∑

j=1

zj = 1 ∼ Mult (p,1) , p = (p1, p2, . . . , pk)
⊤ ,

pj =
ρj∑k

l=1 ρl +
∑k

i ̸=j
ρj(ρj−ρi)

1−ρj

, 1 ≤ j ≤ k.

To show the above relationship between p and ρ = (ρ1, ρ2, . . . , ρk)
⊤, first consider p1:

p1 = Pr

Z1 = 1, Zj = 0 for all j ̸= 1 |
k∑

j=1

Zj = 1


=

ρ1
∏k

j=2 (1− ρj)∑k
j=1 ρj

∏
l ̸=j (1− ρl)

=
ρ1
∏k

j=2 (1− ρj)∑k
j=1 ρj

∏k
l=2 (1− ρl) +

∑k
j=2 ρj

∏
l ̸=1,j (1− ρl) (ρj − ρ1)

=

(∑k
j=1 ρj

ρ1
+

∑k
j=2 ρj

∏
l ̸=1,j (1− ρl) (ρj − ρ1)

ρ1
∏k

j=2 (1− ρj)

)−1

=

∑k
j=1 ρj

ρ1
+

k∑
j=2

ρj (ρj − ρ1)

ρ1 (1− ρj)

−1

=
ρ1∑k

j=1 ρj +
∑k

j=2
ρj(ρj−ρ1)
(1−ρj)

.

In general, the multinomial event probability pj is given by:

Pr

(
Zj = 1, Zl = 0 for all l ̸= j |

k∑
l=1

Zl = 1

)
=

ρj∑n
l=1 ρl +

∑
l ̸=j

ρl(ρl−ρj)
1−ρl

.
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Thus by viewing the data generating process as the conditional distribution of independent

Bernonlli’s z1, z2, . . . , z
⊤
k under the constraint

∑n
j=1 zj = 1, we can fit the data generated using

independent logistic regression.

1.4 Model Fitting

1.4.1 Model Fitting based on Between-subject Multinomial Response Model

Given n newly infected cases, we have observed data:

xi
NLC ,

{
xi
1,x

i
2, ...,x

i
ki

}
, zi =

(
zi1, z

i
2, . . . , z

i
ki+1

)⊤
, 1 ≤ i ≤ n. (2)

If xi
NLC joins a cluster at time ti, say, j, then zij = 1 for some j (1 ≤ j ≤ ki). If xi

NLC forms its

own cluster, then ziki+1 = 1.

First, we compute the similarity/dissimilarity variables (that serve as homophily covariates) for

the clusters:

di =
{
di1, d

i
2, ..., d

i
ki

}
=
{
d
(
xi
1,x

i
NLC

)
, d
(
xi
2,x

i
NLC

)
, ..., d

(
xi
ki
,xi

NLC

)}
, 1 ≤ i ≤ n. (3)

Then, we fit a (ki + 1)-level between-subject multinomial response model Multib
(
ηi, 1

)
using max-

imum likelihood:

zi | di ∼ Multib
(
ηi
)
, (4)

ηi =
(
ηi1, η

i
2, . . . , η

i
ki
, ηiki+1

)
ηij =

exp
(
β0 + β1d

i
j

)
1 + Σi

, 1 ≤ j ≤ ki, ηiki+1 =
1

1 + Σi
,

Σi =

ki∑
j=1

exp
(
β0 + β1d

i
j

)
,

ki+1∑
j=1

zij = 1, 1 ≤ i ≤ n.

The log-likelihood function is given by:

l =
n∑

i=1

li =
n∑

t=1

ki∑
j=1

zij log(η
i
j).

1.4.2 Model Fitting based on Independent Logistic Regression

When fitting the Between-subject Multinomial response model to the data generated, we need to

have full data that includes both Scenario 1 and Scenario 2. Within the context of the paper, we

only have data for Scenario 1, i.e., we only have data when a newly infected case xi
NLC joins a
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cluster at time ti. Thus, we only have a subset of the data in (2) under the constraint zij = 1 for

some j (1 ≤ j ≤ ki), or
∑ki

j=1 z
i
j = 1 (1 ≤ i ≤ n).

Based on the relationship between independent Bernoulli and multinomial distribution, we

can model the subset of the observed data zi with
∑ki

j=1 z
i
j = 1 using

∑n
t=1 kiI

(∑ki
j=1 z

i
j = 1

)
independent logistic regression models, where I (A) denotes an indicator with I (A) = 1 if A is true

and I (A) = 1 otherwise. Thus, given

xi
NLC ,

{
xi
1,x

i
2, ...,x

i
ki

}
, zi =

(
zi1, z

i
2, . . . , z

i
ki

)⊤
,

ki∑
j=1

zij = 1, 1 ≤ i ≤ n, (5)

we can fit ki independent logistic regression models as described in the main paper.

2 Simulation Study

2.1 Study One

We use simulated data to examine (1) if data generated from the between-subject multinomial

response model in Section 1.2 can be equivalently modeled by independent logistic regression as

described in Section 1.3, and (2) performance of the independent logistic regression when fit to

data generated from the between-subject multinomial response model.

For (1), we started with 5 clusters and set 10 as the total number of clusters. The cluster-

level covariates for the beginning 5 clusters, {x1, x2, ..., x5}, were simulated from 5 different normal

distributions: {
x11, x

1
2, ..., x

1
5

}
, x1j ∼ N (2j − 1, 0.1) , 1 ≤ j ≤ 5.

To simulate a sample of size n from the between-subject Multinomial response model Multib
(
ηi, 1

)
,

for 1 ≤ i ≤ n each newly infected case xi
NLC was generated from a normal distribution:

xi
NLC ∼ N (2r − 1, 1) , r ∼ Ud{1, 2, ..., ki}, 2 ≤ i ≤ n,

where Ud{1, 2, ..., ki} denotes a discrete uniform distribution with values 1, 2, ..., ki. We use dij =

d
(
xij , x

i
NLC

)
=
∣∣∣xij − xiNLC

∣∣∣−1
(truncated at 0.001 and 100) as the similarity/dissimilarity function

and h
(
xij , x

i
NLC

)
= 1

2

(
xij + xiNLC

)
as the function to integrate each xiNLC with the cluster-level

covariate xtj of the cluster that xiNLC joins. We set n = 1, 000 for our simulation. The event

probability ηi for the between-subject Multinomial response model for generating the multinomial
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response zi in (1) is given by:

ηij =
exp

(
β0 + β1d

i
j

)
1 + Σi

=
exp

(
−0.8 + 0.1dij

)
1 + Σi

, mi = ki + 1 (6)

ηimi
=

1

1 + Σi
, Σi =

mi−1∑
j=1

exp
(
−0.8 + 0.1dt+1

j

)
.

To reduce sampling variability as well as to compare estimates from fitting the between-subject

multinomial response and independent logistic regression model, we controlled the total number of

clusters to 10, i.e., kn = 10, with the fixed sample size n. Thus, a newly infected case xiNLC will not

form its own cluster for every ti when
∑ki

j=1 z
i
j = 0 until a certain number of samples are generated

from Multib
(
ηi, 1

)
for a given number of clusters. For example, to grow the initial 5 clusters to 10

clusters, we select 6 subsample sizes, 1 < n5 < n6 . . . < n9 < n10, such that for nl−1+1 ≤ t ≤ nl we

generate zi from Multib
(
ηi, 1

)
with ki clusters, where n4 = 0 and 5 ≤ l ≤ 10. For our simulation

study, we set n5 = 300, n6 = 500, n7 = 700, n8 = 900, n9 = 1100 and n10 = 1500.

We fit both the between-subject Multinomial response model and independent logistic regression

as described in Section in (1.3). For the between-subject Multinomial response model, we obtained:

β̂ =
(
β̂0, β̂1

)⊤
= (−0.7995, 0.0999)⊤, which were quite close to the respective true values β0 =

−0.8 and β1 = 0.1. For the independent logistic regression, we obtained: γ̂ = (γ̂0, γ̂1)
⊤ =

(−2.0401, γ̂1 = 0.0963)⊤. Although β̂ and γ̂ are not directly comparable, we can compare the

fitted η̂t+1 and ξ̂
t+1

based on substituting β̂ and γ̂ in place of β and γ. Since the independent

logistic regression is fit to the subject vector zisub =
(
zi1, z

i
2, . . . , z

i
ki

)⊤
of zi =

(
zi1, z

i
2, . . . , z

i
ki
, ziki+1

)⊤
,

we compare ξ̂
i
=
(
ξ̂i1, ξ̂

i
2, . . . , ξ̂

i
ki

)⊤
with the normalized subvector η̂i

sub =
1
ŝi

(
η̂i1, η̂

i
2, . . . , η̂

i
ki

)⊤
, where

ŝi =
∑ki

j=1 η̂
i
j .

Shown below are the averaged η̂i
sub and ξ̂

i
over the samples 1 ≤ i ≤ n5 with 5 clusters, η̂

5
sub

and ξ̂
5

sub, and over the samples n9 ≤ i ≤ n10, η̂
10
sub and ξ̂

10

sub:

η̂
5
sub = (0.1973, 0.1967, 0.2006, 0.2060, 0.1994)⊤ ,

ξ̂
5

sub = (0.2001, 0.1977, 0.2008, 0.2037, 0.1977)⊤ ,

η̂
10
sub = (0.1019, 0.1045, 0.1002, 0.0951, 0.1024, 0.0970, 0.0978, 0.1019, 0.0934, 0.1060)⊤ ,

ξ̂
10

sub = (0.1017, 0.1091, 0.1022, 0.0875, 0.1004, 0.1008, 0.1028, 0.0997, 0.0938, 0.1021)⊤ .

In both cases, the averaged event probabilities from the fitted between-subject Multinomial response

and independent logistic regression model were quite close to each other.
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To see if estimates of γ̂ = (γ̂0, γ̂1)
⊤ in the independent logistic regression converge, we simulated

a sample size of 450 and 900 homophily cases, i.e., all simulated 450 (900) newly infected cases

that join existing clusters. The two sets of estimates are (γ̂0, γ̂1) = (−2.104, 0.113) for 450 and

(γ̂0, γ̂1) = (−2.051, 0.105) for 900. They are close to each other.

2.2 Study Two

In this simulation study, we simulate data from one continuous and one binary predictor based

on the distributions of the observed birthy year and ethnicity. The mean birth year is 1973 and

the proportion of Hispanic Ethnicity (HE) is 35%. We again set the total number of clusters to

10. We simulate the continuous cluster-level covariate from 10 normal distributions with different

means and the binary cluster-level covariate from 10 Beroulli distributions with different means.

To make the 10 distributions of the cluster-level covariates similar to those of the study data, the

10 normal means average to 1973 and the 10 Bernoulli means average to 35%.

We again started with 5 clusters with the continuous cluster-level birth year covariate, {x11, x12, ..., x15},
following the 5 different normal distributions:{

x111, x
1
12, ..., x

1
15

}
,

x111 ∼ N (1968, 1) , x121 ∼ N (1971, 1) , x131 ∼ N (1975, 1) , x141 ∼ N (1978, 1) , x151 ∼ N (1981, 1) .

The 5 binary cluster-level HE covariates, {x21, x22, ..., x25}, following the 5 different Bernoulli dis-

tributions:{
x121, x

1
22, ..., x

1
25

}
, x121 ∼ Ber(0.25), x122 ∼ Ber(0.3), x123 ∼ Ber(0.35), x124 ∼ Ber(0.4), x125 ∼ Ber(0.45).

To simulate a sample of size n from the between-subject Multinomial response model Multib
(
ηi, 1

)
,

for 1 ≤ i ≤ n each newly infected case xi
NLC =

(
xiNLC1, x

i
NLC2

)⊤
was generated from a normal

and a Beroulli distribution as follows:

xi
NLC1 ∼ N (V1r, 1) , xi

NLC2 ∼ Ber (V2r) , r ∼ Ud{1, 2, ..., ki}, 2 ≤ i ≤ n,

where Ud{1, 2, ..., ki} denotes a discrete uniform distribution with values 1, 2, ..., ki, V1r and V2r de-

notes the r-th row of vector V1 and V2, and V1 = (1968, 1971, 1975, 1978, 1981, 1955, 1961, 1965, 1985, 1991),

V2 = (0.25, 0.3, 0.35, 0.4, 0.45, 0.1, 0.15, 0.2, 0.5, 0.55).

We use d1j = d
(
xi1j , x

i
NLC1

)
=
∣∣∣xi1j − xiNLC1

∣∣∣ and d2j = d
(
xi2j , x

i
NLC2

)
= p

xi
NLC2

j (1− pj)
1−xi

NLC2

as the similarity/dissimilarity function for the continuous and binary cluster-level covariate. We

use h
(
xi
j ,x

i
NLC

)
= 1

2

(
xi
j + xi

NLC

)
as the function to integrate each xi

NLC with the cluster-level

covariate xi
j of the cluster that xi

NLC joins. We set n = 1, 000 for our simulation. The event
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probability ηi for the between-subject Multinomial response model for generating the multinomial

response zi in (1) is given by:

ηij =
exp

(
β0 + β1d

i
1j + β2d

i
2j

)
1 + Σt+1

, ηimi
=

1

1 + Σi
, mi = ki + 1

Σi =

mi−1∑
j=1

exp
(
β0 + β1d

i
1j + β2d

i
2j

)
.

We set β0 = 1, β1 = −0.15 and β2 = 0.9. We use a negative β1 and positive β2 so that smaller d1j

and larger d2j will increase the probability of joining the

To reduce sampling variability as well as to compare estimates from fitting the between-subject

multinomial response and independent logistic regression model, we controlled the total number of

clusters to 10, i.e., kn = 10, with the fixed sample size n. Thus, a newly infected case xiNLC will not

form its own cluster for every i when
∑ki

j=1 z
i
j = 0 until a certain number of samples are generated

from Multib
(
ηi, 1

)
for a given number of clusters. For example, to grow the initial 5 clusters to 10

clusters, we select 6 subsample sizes, 1 < n5 < n6 . . . < n9 < n10, such that for nl−1+1 ≤ t ≤ nl we

generate zi from Multib
(
ηi, 1

)
with ki clusters, where n4 = 0 and 5 ≤ l ≤ 10. For our simulation

study, we set n5 = 300, n6 = 500, n7 = 700, n8 = 900, n9 = 1100 and n10 = 1500.

We fit both the between-subject Multinomial response model and independent logistic regression

as described in Section in (1.3). For the between-subject Multinomial response model, we obtained:

β̂ =
(
β̂0, β̂1, β̂2

)⊤
= (1.0047,−0.1509, 0.8931)⊤, which were quite close to the respective true

values β0 = 1, β1 = −0.15 and β2 = 0.9. For the independent logistic regression, we obtained:

γ̂ = (γ̂0, γ̂1, γ̂2)
⊤ = (−0.9914,−0.1279,−0.0352)⊤. Although β̂ and γ̂ are not directly comparable,

we can compare the fitted η̂i and ξ̂
i
based on substituting β̂ and γ̂ in place of β and γ. Since

the independent logistic regression is fit to the subject vector zisub =
(
zi1, z

i
2, . . . , z

i
ki

)⊤
of zi =(

zi1, z
i
2, . . . , z

i
ki
, ziki+1

)⊤
, we compare ξ̂

i
=
(
ξ̂i1, ξ̂

i
2, . . . , ξ̂

i
ki

)⊤
with the normalized subvector η̂i

sub =

1
ŝi

(
η̂i1, η̂

i
1, . . . , η̂

i
ki

)⊤
, where ŝi =

∑ki
j=1 η̂

i
j .

Shown below are the averaged η̂i
sub and ξ̂

i
over the samples 1 ≤ i ≤ n5 with 5 clusters, η̂

5
sub

8



and ξ̂
5

sub, and over the samples n9 ≤ i ≤ n10, η̂
10
sub and ξ̂

10

sub:

η̂
5
sub = (0.1979, 0.2001, 0.2017, 0.2019, 0.1984)⊤ ,

ξ̂
5

sub = (0.1954, 0.1953, 0.2023, 0.2031, 0.2040)⊤ ,

η̂
10
sub = (0.0943, 0.1098, 0.1012, 0.1041, 0.1073, 0.0820, 0.0994, 0.1077, 0.0921, 0.1021)⊤ ,

ξ̂
10

sub = (0.0949, 0.1007, 0.0978, 0.1047, 0.1043, 0.0939, 0.0964, 0.0983, 0.1043, 0.1045)⊤ .

In both cases, the averaged event probabilities from the fitted between-subject Multinomial response

and independent logistic regression model were quite close to each other.
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