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A. Data preprocessing and data distribution
There are 24,338 available gene features and 10 relevant clinical features in the METABRIC dataset.
The gene features are preprocessed microarray gene expression values. Although gene expression measured through the RNA-Seq technique is the major trend nowadays, which contains lower background noise, METABRIC is the largest available open-access breast cancer cohort containing gene expression, clinical information, and long-term survival data that allows relevant data analysis. We did not use a combined dataset by merging multiple small cohorts, since different platforms, sample curation workflows, and experimental procedures can all lead to different measurement outputs. Even if multiple cohorts are combined after careful preprocessing and standardization, it is still difficult to obtain robust feature selection and prognosis prediction results using such a combined dataset with heterogeneous composition.
The clinical features were derived from the raw clinical information in the dataset, which include age, tumor size, neoplasm histologic grade, cellularity, menopausal state, radio therapy, chemotherapy, hormone therapy, breast conserving surgery, and breast mastectomy surgery. Since most features (the latter six) are binary, we normalized the other features (the first four) according to the training data, ensuring that the scale of clinical features did not differ significantly from each other.
   After excluding samples with missing values, the dataset was divided into an unlabeled, training, and hold-out testing sets. Table S1 provides a summary of the three subsets.

	
	
	Unlabeled
	Training
	Testing
	

	
	Samples
	1282
	465
	117
	

	
	Class
	
	
	
	

	
	  Good prognosis
	-
	221 (48%)
	55 (47%)
	

	
	  Poor prognosis
	-
	244 (52%)
	62 (53%)
	

	
	Median DSS time (months)
	-
	56.33
	56.27
	

	
	Median age (years)
	61.99
	61.55
	59.82
	

	
	Median tumor size (mm)
	21
	26
	25
	

	
	ER status
	
	
	
	

	
	Positive
	1023 (80%)
	326 (70%)
	81 (69%)
	

	
	Negative
	259 (20%)
	139 (30%)
	36 (31%)
	

	
	PR status
	
	
	
	

	
	Positive
	729 (57%)
	207 (45%)
	54 (46%)
	

	
	Negative
	553 (43%)
	258 (55%)
	63 (54%)
	

	
	HER2 status
	
	
	
	

	
	Positive
	120 (9%)
	86 (18%)
	23 (20%)
	

	
	Negative
	1162 (91%)
	379 (82%)
	94 (80%)
	

	
	Menopausal state
	
	
	
	

	
	Pre
	260 (20%)
	105 (23%)
	32 (27%)
	

	
	Post
	1022 (80%)
	360 (77%)
	85 (73%)
	

	
	Neoplasm Histologic Grade
	
	
	
	

	
	1
	140 (11%)
	16 (3%)
	7 (6%)
	

	
	2
	530 (43%)
	164 (35%)
	38 (32%)
	

	
	3
	556 (45%)
	285 (61%)
	72 (62%)
	

	
	Cellularity
	
	
	
	

	
	Low
	142 (11%)
	40 (9%)
	15 (13%)
	

	
	Moderate
	474 (38%)
	173 (37%)
	50 (43%)
	

	
	High
	626 (50%)
	252 (54%)
	52 (44%)
	


Table S1. Data distribution overview



B. Systems biology feature selector
The inputted samples were divided into two groups according to the binary split criterion that was assigned, for example, ER+ samples and ER- samples. Genes without significant differential expression between the two groups were excluded by ANOVA. Next, we constructed interaction networks for each group based on the interaction information documented in the BioGRID database. We used gene expression data to estimate the interaction ability between genes and excluded false positive links. The constructed interaction networks would therefore be disease-specific and tailored for the inputted group of samples.
The main assumption of the network construction method is that the expression level of a gene is affected by other genes, which can thus be represented by the linear combination of the expression level of its interaction partners:

	
	(1)



where  is the expression level of gene  for patient ;  is the interaction ability between genes  and ;  is the set of genes that are related to gene  according to BioGRID; and  is stochastic noise. Equation (1) can be rewritten into the matrix form:

	
	(2)


where
, , 

where M is the number of genes left after excluding those without differential expression by ANOVA, and N is the sample size. The interaction abilities were estimated by Linear Minimum Mean Square Error (LMMSE). Afterwards, we performed model selection and excluded false positive interactions through Akaike information criterion (AIC) and t-test. If  is not equal to , we took the one with the larger absolute value as the final interaction ability between genes  and . After calculating all the interaction abilities, we then obtain the final interaction ability matrix A. By constructing interaction networks for two sample groups (e.g., ER+ samples and ER- samples), we would get A+ and A- for each group. We define the difference matrix D to be:

	
	(3)



where  is the difference in interaction ability between genes  and . The prognosis relevance value (PRV) is then defined as:

	
	(4)



which is the summarized interaction ability difference between gene  and its interaction partners. For each gene, a higher PRV implies greater difference in its interaction abilities between two networks. Since the two networks represent different prognosis statuses, genes with high PRVs can be selected as potential prognosis biomarkers, which serve as an extension to the original inputted prognosis-relevant split criterion.



C. Bimodal DNN
Figure S1 illustrates the structure of bimodal DNN. The bimodal DNN processes gene expression input and clinical input with two separated subnetworks. The output of two subnetworks were then merged together, processed by successive hidden layers, and then turned into a final prediction output. The weights of the subnetworks were pre-trained. During the first phase of training, we froze the weights of subnetworks and trained only the weights between the merged layer and final output. During the second phase of training, all weights were unfrozen to allow fine-tuning of the whole network.
[image: ]
Fig. S1. Bimodal DNN model structure



D. Data perturbation ensemble approach
For the data perturbation random sampling setting, we tried subsampling 90%, 80%, and 70% of the whole data each time. In addition, we tried different number of subsamples: repeating 5, 10, 20, or 30 times. There were therefore 12 possible combinations of subsampling rates and number of subsamples. We evaluated the 12 settings through random validation by adding the areas of seven feature selectors to be the final summarized area. 
From the comparison (Fig. S2), we found that no matter what setting, all of the data perturbation results outperformed those of the original feature selection. Among all, subsampling 70% and repeating 5 times achieved the highest performance, which became the final data perturbation setting we used.
[image: ]After determining the final data perturbation setting, we then compared the seven original feature selectors with their data-perturbation versions. From pairwise comparisons for each feature selector (Fig. S3), we found that data perturbation improves the robustness in most of the cases except for PR-selector. The improvement was verified through the one-tailed paired t-test, which implied that the “summarized area” distribution of the data-perturbation results for ER, HER2, TN, HP, MKI67, and PLAU-selectors were all significantly higher than their corresponding original feature selection results.
Fig. S2. Comparison of different data perturbation subsampling settings. The orange line represents the median of the original feature selection result.

[image: ]Fig. S3. Pairwise comparison of data perturbation and original feature selection results



E. Function perturbation ensemble approach
Since the output scale of different systems biology feature selection functions are different, we carefully evaluated the aggregation strategy when combining multiple PRV lists in function perturbation. The following are the aggregation strategies we tested:

(1) PRV-median: For each gene, take the median in all PRV lists as its final feature ranking score.
(2) PRV-norm-median: Normalize each component PRV list to 0–1. For each gene, take the median of all normalized PRV lists as its final feature ranking score.
(3) PRV-mean: For each gene, take the mean in all PRV lists as its final feature ranking score.
(4) PRV-norm-mean: Normalize each component PRV list to 0–1. For each gene, take the mean in all normalized PRV lists as its final feature ranking score.
(5) Rank-median: Transform each component PRV list into ranking list. For each gene, take the median ranking in all lists as its final feature ranking score.
(6) Rank-mean: Transform each component PRV list into ranking list. For each gene, take the mean ranking of all lists as its final feature ranking score.
(7) Top N overlap: Take the interaction of the top N genes from each list as the final selected gene. This aggregation strategy cannot output a final feature ranking score but just final selected genes.

Through random validation (Fig. S4) we found that rank-mean and top N overlap produce the best performance. However, since the top N overlap strategy cannot output a feature ranking score and the number of final selected genes cannot be determined by the user, there will be more limitation when using the top N overlap strategy in real applications. Therefore, we adopted rank-mean as our final aggregation strategy for function perturbation.
Having determined the aggregation strategy, we compared the original results of the seven feature selectors. Through Fig. S5, we found that function perturbation brought significant improvement to the original feature selection results, statistically verified by the one-tailed paired t-test.
[image: ]Fig. S4. Comparison of different function perturbation aggregation strategies


[image: ]Fig. S5. Comparison of function perturbation and original feature selection results




F. The final selected gene set 
The top 50 selected genes via the hybrid ensemble approach are listed below. The final selected genes are the first 16 genes that produced the peak performance.

	1
	ELAVL1
	11
	ZDHHC17
	21
	AURKA
	31
	CDK4
	41
	EIF4E2

	2
	EGFR
	12
	ENO1
	22
	ARRB1
	32
	SLC15A1
	42
	IGBP1

	3
	BTRC
	13
	DBN1
	23
	FLNA
	33
	MCM5
	43
	CDK1

	4
	FBXO6
	14
	PLK1
	24
	CREBBP
	34
	PPP2CA
	44
	CHEK1

	5
	SHMT2
	15
	ESR1
	25
	PCM1
	35
	TCTN1
	45
	CTDSPL

	6
	KRAS
	16
	GSK3B
	26
	ANLN
	36
	TENC1
	46
	ECT2

	7
	SRPK2
	17
	HIST1H3A
	27
	RPS14
	37
	KCTD3
	47
	AHSA1

	8
	YWHAQ
	18
	FBXW7
	28
	TRIM23
	38
	CENPJ
	48
	ACTR2

	9
	PDHA1
	19
	UCHL5
	29
	RPL6
	39
	HDAC11
	49
	POC5

	10
	EWSR1
	20
	SYNCRIP
	30
	TUBA1C
	40
	FUS
	50
	YBX1


Table S2. Top 50 selected genes via hybrid ensemble approach

We compared the performance of the final feature selection result (16 genes) with all genes before feature selection (24,338 genes) through random validation. We found that the selected genes significantly outperform all genes with a much smaller number of features, verified by the one-tailed paired t-test. A lower number of features reduces cost in clinical application and prevents model overfitting.

[image: ]Fig. S6. Comparison of final selected genes and all genes



G. Hyperparameter grid search result
Below lists the hyperparameter grid search range for SVM, RF, and DNN. We searched through all possible combinations of the listed values. The final determined hyperparameter values are the combinations that achieved the best 4-fold cross validation performance, which are highlighted in bold.

	
	Gene feature SVM
	Clinical feature SVM
	Combined feature SVM

	C
	0.1, 1, 10, 100
	0.1, 1, 10, 100
	0.1, 1, 10, 100

	gamma
	0.00001,0.00005,0.0001, 0.0005,0.001,0.005,0.01,0.05
	0.00001,0.00005,0.0001, 0.0005,0.001,0.005,0.01,0.05
	0.00001,0.00005,0.0001, 0.0005,0.001,0.005,0.01,0.05


Table S3. SVM hyperparameter grid search

	
	Gene feature RF
	Clinical feature RF
	Combined feature RF

	max_features
	4,5,6,7,8,9,10,11,12
	4,5,6,7,8,9,10
	4,5,6,7,8,9,10,11,12

	max_depth
	4,5,6,7,8,9,10,11,12
	4,5,6,7,8,9,10
	4,5,6,7,8,9,10,11,12

	min_samples_leaf
	10
	10
	10

	n_estimators
	1000
	1000
	1000


Table S4. RF hyperparameter grid search

	
	Gene feature DNN
	Clinical feature DNN
	Combining part of bimodal DNN

	number of hidden layer
	2, 3
	1, 2
	1

	number of neuron
	10, 20
	5, 10
	5, 10

	activation function
	relu, tanh
	relu, tanh
	relu, tanh

	learning rate
	0.002, 0.0002
	0.002, 0.0002, 0.00002
	0.00002

	batch size
	10
	10
	10

	Number of epoch
	200, 400, 600, 800
	200, 400, 600, 800
	epoch_1*: 50, 100
epoch_2**: 0, 50, 100

	optimizer
	Nadam
	Nadam
	Nadam

	l2-regularization term
	0. 0001
	0.0001
	0.0001

	dropout rate
	0.05
	0.05
	0.05

	max_norm constraint
	1
	1
	1


Table S5. DNN hyperparameter grid search



H. Test performance of selected genes as single biomarkers
Through test performance evaluation, we found that models with gene feature alone (Table 1a) can achieve an AUC between 0.7443 and 0.7672. This performance achieved by a multi-gene approach is higher than the AUC of any component gene as a single biomarker (Table S6). This indicates that a multi-gene approach can indeed model the complex molecular process of breast cancer more comprehensively through joint evaluation of multiple genes.

	
	Positive / negative correlation
with poor prognosis
	AUC
	CI

	ELAVL1
	-
	0.5471
	0.5254

	EGFR
	+
	0.6739
	0.6170

	BTRC
	-
	0.7258
	0.6228

	FBXO6
	+
	0.5169
	0.5195

	SHMT2
	+
	0.6957
	0.6331

	KRAS
	+
	0.6581
	0.5894

	SRPK2
	-
	0.7029
	0.6078

	YWHAQ
	+
	0.6575
	0.6113

	PDHA1
	+
	0.7032
	0.6095

	EWSR1
	-
	0.5386
	0.5083

	ZDHHC17
	-
	0.6507
	0.5960

	ENO1
	+
	0.6516
	0.6036

	DBN1
	+
	0.5809
	0.5566

	PLK1
	+
	0.7125
	0.6406

	ESR1
	-
	0.7349
	0.6321

	GSK3B
	+
	0.5836
	0.5504

	PGR
	-
	0.7062
	0.6235

	ERBB2
	-
	0.505
	0.5035

	MKI67
	+
	0.6982
	0.6166

	PLAU
	+
	0.6132
	0.5520


Table S6. Test performance of selected genes as single biomarkers
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