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2. GENERAL EXPERIMENTAL INFORMATION

Unless otherwise stated, all reagents were purchased from commercial sources (Acros Organics, Alfa Aesar,
Fisher Scientific, FluoroChem, Sigma Aldrich and VWR) and used without further purification.
[Cu(CH3CN)4]PFe was prepared as described by Pigorsch and Kéckerling.! Anhydrous solvents were
purchased from Acros Organics. Petrol refers to the fraction of petroleum ether boiling in the range 40-
60 °C. THF refers to tetrahydrofuran. EDTA-NH3(,q.) solution refers to an aqueous solution of NH3 (17% w/w)
with sodium-ethylenediaminetetraacetate. Rochelle salt(q) solution refers to an aqueous solution of
potassium sodium tartrate. CDCls (without stabilising agent) was distilled over CaCl, and K,COs prior to use.
Unless otherwise stated, all reaction mixtures were performed in oven dried glassware under an inert N;
atmosphere with purchased anhydrous solvents. Unless otherwise stated experiments carried out in sealed

vessels were performed in CEM microwave vials, with crimped aluminium caps, with PTFE septa.

Flash column chromatography was performed using Biotage Isolera-4 or Isolera-1 automated
chromatography system. SiO; cartridges were purchased commercially Biotage (SNAP or ZIP (50 um), or
Sfar (60 um) irregular silica, default flow rates). Analytical TLC was performed on pre-coated silica gel plates
on aluminum (0.25 mm thick, 60F254, Merck, Germany) and observed under UV light (254 nm) or visualised

with KMnQa, vanilin or ninhydrin stains.

All melting points were determined using a Griffin apparatus. NMR spectra were recorded on Bruker AV400
or AV500 instrument, at a constant temperature of 298 K. Chemical shifts are reported in parts per million
from low to high field and referenced to residual solvent. Coupling constants (J) are reported in Hertz (Hz).
Standard abbreviations indicating multiplicity were used as follows: m = multiplet, quint = quintet, g =
quartet, t = triplet, d = doublet, s = singlet, app. = apparent, br = broad, sept = septet. Signal assignment
was carried out using 2D NMR methods (COSY, NOESY, ROESY, TOCSY, HSQC or HMBC) where necessary.
In some cases, complex multiplets with multiple contributing proton signals, exact assighnment was not
possible. In interlocked compounds, all proton signals corresponding to axle components are in lower case,

and all proton signals corresponding to the macrocycle components are in upper case.

Low resolution mass spectrometry was carried out by the mass spectrometry services at University of
Southampton (Waters TQD mass spectrometer equipped with a triple quadrupole analyser with UHPLC
injection [BEH C18 column; CH3CN-H,0 gradient {0.2% formic acid}]). High resolution mass spectrometry
was carried out either by the mass spectrometry services at the University of Southampton (MaXis, Bruker
Daltonics, with a Time of Flight (TOF) analyser; samples were introduced to the mass spectrometer via a
Dionex Ultimate 3000 autosampler and uHPLC pump in a gradient of 20% CHsCN in "hexane to 100%
acetonitrile (0.2% formic acid) over 5-10 min at 0.6 mL/min; column: Acquity UPLC BEH C18 (Waters) 1.7

micron 50 x 2.1mm).

Circular dichroism spectra were acquired on an Applied Photo-physics Chirascan spectropolarimeter,
recorded using Applied Photophysics software Ver. 4.2.0 in dried spectroscopic grade CH3CN at a

concentration range of <50 uM, in a quartz cell of 1 cm path length, at a temperature of 293 K.

S4



Stereochemical purities of COOMe/OH/NH-OTBDMS catenanes were determined by Chiral Stationary
Phase HPLC on a Waters Acquity Arc Instrument at 303 K, with "hexane-EtOH isocratic eluents, employing
Regis Technologies (S,5)-Whelk-O1 (1-(3,5-dinitrobenzamido)-1,2,3,4-tetrahydrophenanthrene stationary
phase (5 um, column dimensions 25 cm x 4.6 mm). Samples of catenane 5 were analysed by REACH
Separations (Nottingham, UK) using Supercritical Fluid Chromatography, at 313 K and 125 BarG, with
isocratic 1:1 MeOH:CO; (0.1% v/v NHs), employing Chiralpak IK tris(3-chloro-5-methylphenyl)carbamate

stationary phase (5 pum, column dimensions 25 cm x 4.6 mm).

Compounds 22, S134, 545, 575, 5182, S202, S217, piperidinium acetate®, benzyl azide® tris[(1-benzyl-1H-1,2,3-

triazol-4-yl)methyl]lamine (TBTA)® were synthesised following literature procedures.

)—COOH N; HO
OTf

CO,Me
s7

(5r2 (S)-s18 $20
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3. SYNTHESIS OF PRE-MACROCYCLE (Z)-1
3.1. Synthetic schemes
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Scheme S1: Synthetic route to compound (2)-S6.
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Scheme S2: Synthetic route to compound S12.
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Scheme S3: Synthetic route to compound (2)-1.
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3.2. compounds leading to (Z)-S6

(E/2)-S2

a Cc
TIPSA @
[Pd(PPhs),]Cl,, Cul d

1, iR Sy
e_f
} orf EGN, nF X

™S 80°C, 16 h i Si—(
99% ! )\

S1 S2

O

To a solution of (E/2)-S1 (3.52 g, 10.1 mmol), Pd(PPhs),Cl; (355 mg, 0.506 mmol), and Cul (193 mg, 1.01
mmol) in anhydrous EtsN (200 mL) at 80 °C was added (triisopropylsilyl)acetylene (2.10 mL, 12.0 mmol) via
syringe. The solution was stirred for 16 h, then concentrated in vacuo. Chromatography (petrol) afforded

E/Z)-S2 (64 : 36 dr Figure S1) as a yellow oil (3.83 g, 99%).
(E/2)-S2 ( 8 )asay (3.83 g, 99%)

1H NMR (400 MHz, CDCl3) 84 7.98-7.87 (m, 2H, H,), 7.38-7.28 (m, 6H, Ho, Hp), 7.04 - 7.02 (2 s, 1H, Hy), 1.15-
1.09 (m, 21H, He, Hy), 0.26 - 0.23 (2 s, 9H, Hy).

13C NMR (101 MHz, CDCls) 8¢ 144.1, 143.7, 135.6, 135.6, 129.3, 129.4, 129.4, 129.3, 129.3, 128.4, 128.3,
106.5, 104.8, 103.8, 103.7, 103.6, 102.1, 101.3, 99.0, 93.4, 90.5, 18.8, 18.8, 11.5, 0.0, -0.2.

HR-EI-MS (+ve): m/z = 337.1803 [M-Pr]** (100) calc. for Cy1H29Si> 337.1802; m/z = 380.2353 [M]** (32.3)
calc. for C24H365i2 380.2350.

jul721jccfr2.10.fid
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Figure S1: IH NMR (CDCls, 400 MHz, 298 K) of (£/2)-S2.
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Figure S2: IMOD NMR (CDCls, 101 MHz, 298 K) of (E/Z)-S2.
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Figure S3: COSY NMR (CDCls, 298 K) of (E/Z)-S2.
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Figure S4: HSQC NMR (CDCls, 298 K) of (E/Z)-S2.
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Figure S5: HMBC NMR (CDCls, 298 K) of (£/2)-S2.
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Compound (E/2)-S3

b

® <.
oL N
A A . S
™™ Tips ' M§?1FgChH2CIZ 97 N k{
7% A
s2 s3
To a stirred solution of (E/Z)-S2 (64 : 36 dr, 2.79 g, 7.33 mmol) in a MeOH-CH,Cl, (1 : 1, 74 mL) was added
K2COs3 (5.07 g, 36.7 mmol). The resulting suspension was stirred for 16 h, then filtered through Celite® and
concentrated in vacuo. Chromatography (100% petrol) afforded (E/Z)-S3 (52 : 48 dr Figure S6) as a pale-

yellow oil (2.19 g, 97%).

'H NMR (400 MHz, CDCl3) 8y 7.99-7.84 (m, 2H, H.), 7.40-7.30 (m, 3H, H,, Hp), 7.12 - 7.08 (2 s, 1H, Ha),
3.37-2.98 (25, 1H, Hy), 1.17-1.11 (m, 21H, He, Hj).

13C NMR (101 MHz, CDCls) 8¢ 145.3, 144.9, 135.3, 135.3, 129.6, 129.5, 129.3, 129.1, 128.5, 128.4, 106.2,
103.3, 102.6, 102.5, 99.1, 90.5, 83.5, 83.1, 80.8, 75.8, 18.8, 18.7, 11.5 (x2).

HR-EI-MS (+ve): m/z = 195.0626 [C13H11Si]** (100) calc. for Ci3H1:Si 195.0630; m/z = 265.1409 [M-'Pr]**
(72.1) calc. for C18H21Si 265.1407; m/z = 308.1958 [M]** (15.2) calc. for C1H2sSi 308.1955.
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Figure S6: IH NMR (CDCls, 400 MHz, 298 K) of (£/2)-S3.
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Figure S7: J-MOD NMR (CDCls, 101 MHz, 298 K) of (£/2)-S3.
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Figure S8: COSY NMR (CDCls, 298 K) of (E/2)-S3.
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Figure S9: HSQC NMR (CDCls, 298 K) of (E/2)-S3.
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Figure S10: HMBC NMR (CDCls, 298 K) of (E/2)-S3.
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Compound S5

N3 @,OH s b R
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XX

Cul, TBTA, Et3N

d
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N ps CH,Cly, tt, 16 h AT Si.(
HO x| AN

93%
X

To a solution of S3 (92 mg, 0.30 mmol), (E/2)-S4 (48 : 52 dr, 62.5 mg, 0.462 mmol), Cul (6 mg, 0.03 mmol)
and TBTA (20 mg, 0.037 mmol) in CHxCl, (3 mL) was added EtzN (42 uL, 0.30 mmol). The solution was stirred
for 16 h, then diluted with CH,Cl, (10 mL), washed with EDTA-NH3(q) (0.1 M, 20 mL), and the aqueous phase
extracted with CH3Cl; (3 x10 mL). The combined organic layers were dried (MgSQ,), filtered, and
concentrated in vacuo. Chromatography (CH,Cl>-acetone 0 : 100 to 5 : 95) afforded (E/Z)-S5 (56 : 44 dr
Figure S11) as a red oil (123 mg, 93%).

1H NMR (400 MHz, CDCl3) 8y 9.56 (s, 2H, How), 8.57 (app. dt, J = 8.7, 2.2, 2H, Hi), 8.20-8.12 (m, 2H, He, Hy),
7.85 (s, 1H, Ha), 7.78 (s, 1H, Hy), 7.44-7.23 (m, 6H, H,, Hp, He, Ha, Hi), 7.02-6.93 (m, 1H, H;), 6.88 (app. dddd,
J=48.9,8.0,2.3,0.9, 1H, H), 1.28-1.12 (m, 42H, He, He, Hs, Hr);

13C NMR (101 MHz, CDCls) 8¢ 159.1, 159.1, 148.4, 144.7, 140.4, 137.6, 137.4, 135.7, 135.6, 135.3, 130.6,
130.5, 129.8, 129.2, 129.0, 128.7, 128.6, 128.4, 120.7, 119.8, 117.1, 117.0, 113.0, 109.6, 109.6, 109.2,
108.9, 108.8, 106.8, 104.1, 99.6, 92.1, 18.9, 18.9, 11.5, 11.5.

HR-ESI-MS (+ve): m/z = 444.2476 [M+H]" calc. for C27H34N30Si 443.2466; m/z = 466.2295 [M+Na]* calc. for
C27H33N3NaOSi 466.2285.

0.44{
0.56]

795 790 785 7.80 7.75 7.70 7.65
Chemical Shift (ppm)

L T L L e g
— o o~ < [sa] (o)) o
o S - o o o9 o
o — — — o — ~N
J)O 95 90 85 80 75 70 65 60 55 50 45 40 35 3.0 25 20 15 1.0 05 O

Chemical Shift (ppm)

Figure S11: H NMR (CDCls, 400 MHz, 298 K) of (E/Z)-S5.

513



Ll L
T

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 O ~-10
Chemical Shift (ppm)

Figure S12: JIMOD NMR (CDCls, 101 MHz, 298 K) of (£/2)-S5.
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Figure S13: COSY NMR (CDCls, 298 K) of (£/2)-S5.
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Figure S14: HSQC NMR (CDCls, 298 K) of (£/2)-S5.
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Figure S15: HMBC NMR (CDCls, 298 K) of (E/2)-S5.
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Compound (2)-S6

@ BrN""Br
’\;l\ e

< NN _—

QNN'-N N1ps CH;CN, 80°C, 16 h

HO 32%
Br

(E/Z)-85

To a stirred solution of (E/2)-S5 (56 : 44 dr, 2.48 g, 5.58 mmol) and 1,5-dibromopentane (1.90 mL, 13.9
mmol) at 80 °C in CH3CN (28 mL) was added K,COs (3.89 g, 28.2 mmol), and the resulting solution was
stirred for 16 h. The mixture was allowed to cool rt, filtered through Celite® and concentrated in vacuo.
Chromatography (petrol-CH,Cl, 1 : 1) gave (Z)-S6 (>98 : <2 dr Figure S16 as a pale yellow oil (1.05 g, 32%).
Note: this separation is extremely challenging. It was carried out manually using a 50 cm x 6 cm column of

SiO;.

1H NMR (400 MHz, CDCls) 84 7.81 (s, 1H, H,), 7.44-7.40 (m, 2H, H.), 7.37 (t, J = 8.2, 1H, H)), 7.32-7.25 (m,
4H, Ha, Hb, Hy), 7.22 (s, 1H, Ha), 7.15 (ddd, J = 8.0, 2.0, 0.9, 1H, Hs), 6.94 (ddd, J = 8.4, 2.5, 0.9, 1H, H,), 4.03
(t,J = 6.3, 2H, H)), 3.45 (t, J = 6.7, 2H, H,), 1.99-1.91 (m, 2H, Ho), 1.90-1.80 (m, 2H, Hn), 1.69-1.60 (m, 2H,
Hy), 1.17-1.13 (m, 21H, He, Hj).

13C NMR (101 MHz, CDCls) 8¢ 160.1, 145.2, 139.5, 138.0, 135.9, 130.6, 129.4, 128.5, 128.4, 121.2, 115.3,
113.3,112.1, 108.0, 106.7, 90.9, 68.2, 33.6, 32.5, 28.4, 24.9, 18.9, 11.5.

HR-ESI-MS (+ve): m/z = 592.2352 [M+H]* (calc. for C32Ha3"°BrN3;0Si 592.2353), 614.2177 [M+Na]* (calc. for
C32H42BrN3NaOSi 614.2173).

[ . W [ PN g
oonNMTOoO =N [se} < MmN ™M
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Figure S16: 1H NMR (CDCls, 400 MHz, 298 K) of (2)-S6.

S16



L n | Al

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 O ~-10
Chemical Shift (ppm)

Figure S17: IMOD NMR (CDCls, 101 MHz, 298 K) of (2)-S6.
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Figure S18: COSY NMR (CDCls, 298 K) of (2)- S6.
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Figure $19: HSQC NMR (CDCls, 298 K) of (2)- S6.
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Figure S20: HMBC NMR (CDCls, 298 K) of (2)- S6.
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Figure S21: NOESY NMR (CDCls, 298 K) of (2)- S6.

Compound (E)-S6

14 NMR (400 MHz, CDCls) 8y 8.14-8.10 (m, 2H, H), 8.06 (s, 1H, Hy), 7.96 (s, 1H, Ha), 7.42 (t, J = 8.2, 1H, H)),
7.40-7.30 (m, 4H, Ho, Hb, Hy), 7.23 (ddd, J = 8.0, 2.0, 0.9, 1H, H»), 6.97 (ddd, J = 8.4, 2.5, 0.9, 1H, H)), 4.05 (t,
J=6.3,2H, H), 3.45 (t, J = 6.7, 2H, H,), 2.01-1.92 (m, 2H, Ho), 1.91-1.83 (m, 2H, Hp), 1.71-1.62 (m, 2H, Hy,),
1.22-1.17 (m, 21H, He, Hj).

13C NMR (101 MHz, CDCls) 8¢ 160.2, 148.5, 138.1, 136.0, 134.7, 130.7, 129.6, 129.0, 128.4, 119.8, 115.3,
112.1,110.1, 106.7, 104.5, 99.2, 68.1, 33.6, 32.5, 28.4, 24.9, 18.9, 11.5.

HR-ESI-MS (+ve): m/z = 592.2352 [M+H]* (calc. for C3;H437°BrN30Si 592.2353), 614.2177 [M+Na]* (calc. for
C32H427°BrNsNaOSi 614.2173).
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Figure S22: 1H NMR (CDCls, 400 MHz, 298 K) of (E)-S6.
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Figure S23: JIMOD NMR (CDCls, 101 MHz, 298 K) of (£)-S6.
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Figure S24: COSY NMR (CDCls, 298 K) of (E)-S6.
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Figure S25: HSQC NMR (CDCls, 298 K) of (£)-S6.
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Figure S26: HMBC NMR (CDCls, 298 K) of (E)-S6.
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Figure S27: NOESY NMR (CDCls, 298 K) of (E)-S6. Inset shows close interactions through space between the phenyl ring of
the alkene and the methylenic protons of TIPS protecting group, indicating the presence of (E)-isomer.
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3.3. Compounds leading to S13

Mono-protected phenol S8

H H a g
° © iPr,NE HO OO0~
+ NN ——— b R e f
P 1:1 acetone/CH,CI,
[Slge] rt, 19 h o>o~d
34%
S7 S8

Bis-phenol S7 (0.20 g, 1.2 mmol) was dissolved in acetone-CH,Cl; (1 : 1, 3 mL), under N; atmosphere and
PraNEt (0.31 mL, 1.8 mmol) was added at rt. Chloromethyl ethyl ether (0.12 mL, 1.3 mmol) was added and
the reaction mixture stirred for 19 h at rt. The reaction mixture was diluted with EtOAc (40 mL), washed
with sat. NH4Cl(aq) (3 X 30 mL), H,0 (30 mL) and brine (30 mL). The organic layer was dried (Na,SOa), filtered,
and concentrated in vacuo. Chromatography (petrol- EtOAc 9 : 1 to 6 : 4) gave mono-protected phenol S8

as a colourless oil (93 mg, 34%).

1H NMR (400 MHz, CDCl3) 6 7.28 (dd, J = 2.3, 1.3, 1H, H.), 7.18 (dd, J = 2.4, 1.3, 1H, Hb), 6.76 (t, J = 2.3, 1H,
H.), 5.34 (s, 1H, Hox), 5.23 (s, 2H, He), 3.90 (s, 3H, Ha), 3.73 (q,J = 7.1, 2H, Hf), 1.23 (t, J = 7.1, 3H, Hy).

13C NMR (101 MHz, CDCl3) & 166.9, 158.7, 156.9, 132.3, 110.2, 110.0, 108.6, 93.3, 64.7, 52.5, 15.2.

HR-ESI-MS (+ve): m/z = 249.0735 [M + Na]* calc. for C11H14NaOs 249.0733.
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Figure S28: 'H NMR (CDCls, 400 MHz, 298 K) of S8.
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Figure S29: IMOD NMR (CDCls, 101 MHz, 298 K) of S8.
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Figure S30: COSY NMR (CDCls, 298 K) of S8.
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Figure S31: HSQC NMR (CDCls, 298 K) of S8.

5.5

5.0

4t5 4L0 3t5
Chemical shift (ppm)

3.0

2.5

2.0

s '] — umwwmm« ’ umﬂl: “ it ! —

1.5

1.0

0.5

I

75 7.0 65 6.0

Figure S32: HMIBC NMR (CDCls, 298 K) of S8.
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Benzylic alcohol S9

HO 0_0- Ho_A_o_o_-?
LiAH, M
—e b c
THF,
e 0C,5minthenrt, 1 h d™oH
89%
S8 s9

Ester S8 (2.60 g, 11.5 mmol) was dissolved in THF (50 mL) under an N, atmosphere and cooled at 0 °C.
LiAlH4 (1 M in THF, 15.0 mL, 15.0 mmol) was added dropwise over 15 min at 0 °C. The reaction mixture was
stirred for 5 min at 0 °C then 1 h at rt. The reaction mixture was cooled at 0 °C, quenched with MeOH (2
mL) then partitioned between EtOAc (100 mL) and sat. Rochelle saltaq) (150 mL). The layers were
separated, and the aqueous layer extracted with EtOAc (4 x 75 mL). The combined organic layers were
dried (Na;S0.), filtered, and concentrated in vacuo to give alcohol S9 as a yellow oil (2.04 g, 89%). No

further purification was required.

1H NMR (400 MHz, CDCl) § 6.51 — 6.48 (m, 1H, H.), 6.46 — 6.44 (m, 1H, Hy), 6.43 (t,J = 2.2, 1H, H.), 5.12 (s,
2H, He), 4.49 (s, 2H, Ha), 3.69 (q, /= 7.1, 2H, Hy), 1.19 (t, J = 7.1, 3H, Hp).

13C NMR (101 MHz, CDCls) 6 158.6, 157.4, 143.2, 107.8, 107.0, 103.2, 93.1, 64.9, 64.6, 15.1.

HR-ESI-MS (+ve): m/z =221.0781 [M + Na]* calc. for C1oH14NaO4 221.0784.

_ Jo L A‘JLJ |
s X & 3 a4
Qo Q Q - Q
— o~ ~N o~ (s}
0 85 80 75 70 65 60 55 50 45 40 35 3.0 25 20 15 1.0 05 0.0 <

Chemical Shift (ppm)

Figure S33: 'H NMR (CDCls, 400 MHz, 298 K) of S9.
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Figure S34: J-MOD NMR (CDCls, 101 MHz, 298 K) of S9.
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Figure S35: COSY NMR (CDCls, 298 K) of S9.
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Figure S36: HSQC NMR (CDCls, 298 K) of S9.
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Figure $37: HMBC NMR (CDCls, 298 K) of S9.
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Alkyl bromide S10

g a i k
OO0 OH K,COg3 OO O NABr
+ Br/\/\/\Br - 5 f e h j |
Acetone ¢ b
oH 70°C, 16 h dSon
86%
S9 $10

Phenol S9 (260 mg, 1.31 mmol) and K,COs (905 mg, 6.49 mmol) were suspended in acetone (13 mL). After
5 min of stirring at rt, 1,5-dibromopentane (0.89 mL, 6.6 mmol) was added and the reaction mixture was
heated at 70 °C overnight. After being cooled to rt, the reaction mixture was filtered over Celite®, the
residue washed with acetone and the filtrate concentrated in vacuo. Chromatography (petrol-Et,O 100 : 0

to 1:1) gave bromide S10 as a colourless oil (390 mg, 86%).

1H NMR (400 MHz, CDCl3) § 6.63 (ddt, J = 2.0, 1.3, 0.7, 1H, H.), 6.57 (td, J = 1.4, 0.7, 1H, Hp), 6.52 (t, J = 2.3,
1H, Ha), 5.21 (s, 2H, He), 4.63 (d, J = 6.1, 2H, Ha), 3.96 (t, J = 6.3, 2H, Hy), 3.73 (q, J = 7.1, 2H, Hy), 3.44 (t, J =
6.8, 2H, H)), 1.99 — 1.88 (m, 2H, Hi), 1.86 — 1.75 (m, 2H, Hi), 1.70 — 1.58 (m, 2H, H), 1.23 (t, J = 7.1, 3H, H,).

13C NMR (101 MHz, CDCl5) 6 160.5, 158.8, 143.5, 1067.0, 106.4, 102.4, 93.3, 67.8, 65.5, 64.5, 33.7, 32.6,
28.5,25.0, 15.3.

HR-ESI-MS (+ve): m/z = 369.0675 [M + Na]* calc. for CisH237°BrNaO, 369.0672.
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Figure S38: 1H NMR (CDCls, 400 MHz, 298 K) of S10.
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Figure S39: J-MOD NMR (CDCls, 101 MHz, 298 K) of S10.
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Figure S40: COSY NMR (CDCls, 298 K) of S10.
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Figure S41: HSQC NMR (CDCls, 298 K) of S10.
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Figure S42: HMIBC NMR (CDCls, 298 K) of S10.
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Azide S13

HO@,M

s4
\,ovo]ig(o\/\/\,sr KGO oo OO Conc. HCI  HO_A o\e/f\g/h\i,o K
Acetone, 70 °C 1:? @ 1:1 MeOH/CH,Cl, t@ j\©m
OH OH N iotkozs ¢ ~oH N
$10 s11 s12

Bromide S10 (440 mg, 1.27 mmol) and 3-azidophenol S4 (189 mg, 1.40 mmol) were dissolved in
acetone (12 mL) and K,COs (888 mg, 6.42 mmol) was added. The reaction mixture was heated at 70 °C
overnight then cooled to rt. The reaction mixture was filtered over Celite®, the residue washed with

acetone and the filtrate concentrated in vacuo. The residue containing azide S11 (

1.02«
7.
1.94<«
2.00=
1 3.78%
2.15%
3.947
3.007
4.297

.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0
Chemical shift (ppm)

Figure S43) was dissolved in MeOH-CH,Cl; (1: 1, 13 mL) and conc. HCI (0.25 mL) was added and the reaction
mixture was stirred overnight at rt. The reaction mixture was quenched with sat. NaHCOs3(aq,) (25 mL), the
layers were separated, and the aqueous layer was extracted with CH,Cl; (3 x 10 mL). The combined organic
layers were dried (Na;S0a), filtered, and concentrated in vacuo. Chromatography (petrol-Et,O 1:1 to O :

100) gave azide S12 as a pale-yellow powder (304 mg, 70% over two steps).

14 NMR (400 MHz, CDCl3) § 7.24 (t, J = 8.2, 1H, H)), 6.68 (ddd, J = 8.3, 2.4, 0.9, 1H, H\), 6.63 (ddd, J = 7.9,
2.2,0.8, 1H, Hy), 6.54 (t, Jz= 2.2, 1H, H)), 6.50 (ddt, /= 2.1, 1.3, 0.7, 1H, H.), 6.44 (ddt, J = 2.0, 1.3, 0.6, 1H,
Hb), 6.32 (t,J=2.3, 1H, H.), 5.70 (br s, 1H, How), 4.61 (s, 2H, H4), 3.96 (t, J = 6.4, 2H, H,), 3.94 (t, J = 6.4, 2H,
H.), 2.11 (br s, 1H, Hon), 1.90 — 1.77 (m, 4H, Hs Hy), 1.70 — 1.54 (m, 2H, Hy).
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13C NMR (101 MHz, CDCls) 6 160.7, 160.4, 157.2 (x2), 143.5, 141.4, 130.6, 111.4, 111.3, 106.3 (x2), 105.6,
105.6, 101.4 (x2), 68.0, 68.0, 65.3, 29.1, 29.0, 22.8.

HR-ESI-MS (+ve): m/z = 366.1419 [M + Na]* calc. for C1sH>1N3NaOa 366.1424.

m.p.: 93-94°C
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Figure S43: 'H NMR (CDCls, 400 MHz, 298 K) of the residue containing S11 prior to ethoxymethyl ether deprotection.
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Figure S44: 'H NMR (CDCls, 400 MHz, 298 K) of S12.
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Figure S45: J-MOD NMR (CDCls, 101 MHz, 298 K) of S12.
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Figure S46: COSY NMR (CDCls, 298 K) of S12.
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Figure S47: HSQC NMR (CDCls, 298 K) of S12.

S35

Chemical shift (ppm)

Chemical shift (ppm)



PO

S oo

80 75 7.0 6.5 6.0

Figure S48: HMIBC NMR (CDCls, 298 K) of S12.
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3.4. Compounds leading to (2)-1

Protected pre-macrocycle (2)-S14

OH't

F Hoétoﬁi fél

] K,COq4 o (]

+
> k s
N CH4CN, 80 °C, 16 h N
N\ N RS N3 67% Y ONTN s
@3\&{ s12 a@}si—(
A d )\f

b ¢ e

(2)-813

To a stirred solution of (2)-S6 (220 mg, 0.371 mmol) and $12 (127mg, 0.371 mmol) at 80 °C in CHsCN (3.5
mL) was added K>COs (213 mg, 1.54mmol), and the resulting mixture stirred for 18 h. The mixture was
cooled to rt and filtered through Celite®. The residue was washed with EtOAc and the filtrate was
concentrated in vacuo. Chromatography (petrol-Et,0 100 : 0 to 8 : 2 ) gave (Z)-S13 as a pale-yellow oil
(246 mg, 78%).

H NMR (400 MHz, acetone-ds) 8 8.35 (s, 1H, Hg), 7.50-7.36 (m, 5H, H, Hp, Hi, Hy), 7.32-7.25 (m, 5H, Ha, Hs,
Ha, Hs), 7.05 (ddd, J = 8.3, 2.4, 1.0, 1H, Hj), 6.76 (ddd, J = 8.3, 2.4, 0.9, 1H, Hj), 6.66 (ddd, J = 7.9, 2.2, 0.8,
1H, H,), 6.61 (t, J = 2.2, 1H, H,), 6.56 — 6.50 (m, 2H, Hy, Hy), 6.36 (t, J = 2.3, 1H, H,), 4.55 (dq, /= 5.9, 0.6, 2H,
Hs), 4.14 (t, ] = 6.4, 2H, H)), 4.11 (t, J = 5.9, 1H, Hy), 4.05 (t, J = 6.4, 2H, H,), 4.01 (t, J = 6.4, 2H, H, or H,),3.99
(t,J= 6.4, 2H, Hyor H,), 1.94-1.79 (m, 8H, Hp, Ho, Hw, H,), 1.73-1.61 (M, 4H, H,, Hy), 1.16-1.13 (m, 21H, H,,
Hy)

13C NMR (101 MHz, acetone-dg) & 161.4, 161.3 (x2), 161.1, 145.9, 145.3, 142.0, 140.4, 138.9, 136.6, 131.6,
131.5,130.2, 129.3, 129.1, 122.4, 115.9, 114.5, 112.9, 112.3, 111.8, 109.3, 107.3, 106.2, 105.5 (x2), 100.5,
91.0, 69.0, 68.7, 68.4 (x2), 64.7, 29.8 (x2), 29.6 (x2), 23.4 (x2), 19.1, 12.1.

HR-ESI-MS (+ve): m/z = 855.4635 [M + H]* calc. for CsoHesNeOsSi 855.4624.
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Figure S49:'H NMR (acetone-dg, 400 MHz, 298 K) of (2)-S13.
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Figure S50: 13C NMR (acetone-de, 101 MHz, 298 K) of (2)-S13.
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Figure S51: JMOD NMR (acetone-dg, 101 MHz, 298 K) of (2)-S13.
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Figure S52: COSY NMR (acetone-de, 298 K) of (2)-S13.
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Figure S53: HSQC NMR (acetone-dg, 298 K) of (2)-S13.
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Figure S54: HMBC NMR (acetone-ds, 298 K) of (2)-S14.
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Benzylic alcohol pre-macrocycle (Z)-S14

OH r OHs
[o) u
o) 0 n~o o)
m P
TBAF
o} 0 k

I
s o

v
X
Y~o

THF, rt,2 h i z a

@\N.NN N© 83% h@N.N N©/”

3 3 5

- g =N
Y f

/ :Si-< a Va1
A d

b ¢
(2)-513 (2)-514

To a stirred solution of (2)-S13 (220 mg, 0.257 mmol) in THF (2.5 mL) was added TBAF (1.0 M in THF, 1.3
mL, 1.3 mmol) and the resulting solution was stirred at rt for 2 h. The solution was diluted with sat. NH4Cl(aq,
and extracted with Et,0 (3 x 20 mL). The combined organic phases were dried (MgSQ.), filtered, and
concentrated in vacuo. Chromatography ("hexane-acetone 100:0 to 1 : 1 ) gave benzylic alcohol pre-

macrocycle (2)-S14 as a pale yellow oil (149 mg, 83%).

1H NMR (400 MHz, acetone-ds) & 8.44 (s, 1H, Hy), 7.51-7.40 (m, 5H, H, Hy, Hh, Hj), 7.35-7.23 (m, 5H, Ha, Hb,
Hg, Hp), 7.05 (ddd, J = 7.7, 2.6, 1.4, 1H, H)), 6.76 (ddd, J = 8.3, 2.4, 0.9, 1H, H,), 6.66 (ddd, J = 7.9, 2.1, 0.8,
1H, Hs), 6.61 (t, J = 2.2, 1H, Hy), 6.53 (ddq, J = 2.6, 1.7, 0.9, 2H, H), 6.36 (t, J = 2.3, 1H, H,), 4.55 (d, J = 5.5,
2H, H,), 4.14 (t,J = 6.4, 2H, Hy), 4.11 (t, J = 6.2, 1H, Hs), 4.05 (t, J = 6.4, 2H, H,), 4.01 (t, J = 6.4, 2H, Ho or Hy),
3.99 (t,J= 6.4, 2H, Hoor Hu), 3.67 (d, J = 0.6, 1H, He), 1.94-1.79 (m, 8H, Hj, Hn, Hy, Hy), 1.73-1.60 (m, 4H, Hn,
Hu).

13C NMR (101 MHz, acetone-dg) & 161.4, 161.3 (x2), 161.1, 145.9, 145.1, 142.0, 140.8, 138.9, 136.5, 131.6,
131.5, 130.2, 129.4, 129.1, 122.6, 115.8, 113.4, 112.9, 112.3, 111.9, 107.3, 106.2, 105.6 (x2), 100.5, 85.4,
79.1, 69.0, 68.7, 68.4 (x2), 64.7, 29.8 (x2), 29.6 (x2), 23.4 (x2).

HR-ESI-MS (+ve): m/z = 721.3120 [M + Na]* calc. for C41H42NgNaOs 721.3109.
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Figure S55: 'H NMR (acetone-dg, 400 MHz, 298 K) of (2)-S14.
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Figure S56:13C NMR (acetone-de, 101 MHz, 298 K) of (2)-S14.
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Figure S57:JMOD NMR (acetone-dg, 101 MHz, 298 K) of (2)-S14.
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Figure S58: COSY NMR (acetone-dg, 298 K) of (2)-S14.
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Figure S59: HSQC NMR (acetone-dg, 298 K) of (2)-S14.
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Figure S60: HMBC NMR (acetone-de, 298 K) of (2)-S14.
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Pre-macrocycle (2)-1

OH (OXNEN

r s
q, u
o v
o o TBDMSCI n~o o
Imidazole ; m P
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R ———
o o) o7k
DMF, rt, 16 h ) )
o o s .
-N N S5
N N N N
N 8 g fl= N 7
/) Va1
d

(2)-814 (2)1

lil

To a stirred solution of (2)-S14 (147 mg, 0.211 mmol), imidazole (70 mg, 1.0 mmol) and TBDMSCI (316 mg,
2.10 mmol) in DMF (2.0 mL) was added EtsN (60 pL, 0.43 mmol) and the resulting solution was stirred at rt
for 16 h. H,0 (15 mL) was added and the mixture was extracted with EtOAc (3 x 20 mL). The combined
organic layers were washed with brine (2 x 20 mL), dried (MgSQ.), filtered, and concentrated in vacuo.

Chromatography ("hexane-acetone 100:0 to 1 : 1) gave (2)-1 as a pale yellow oil (146.3 mg, 85%).

1H NMR (400 MHz, acetone-ds) & 8.43 (s, 1H, Hj), 7.50-7.40 (m, 5H, H, Hy, Hh, Hj), 7.34-7.23 (m, 5H, Ha, Hb,
Ha, Hs), 7.05 (ddd, J = 7.5, 2.7, 1.5, 1H, H)), 6.76 (ddd, J = 8.3, 2.4, 0.9, 1H, Hp), 6.66 (ddd, J = 7.9, 2.1, 0.9,
1H, H,), 6.61 (t, J= 2.2, 1H, H,), 6.52 (dq, J = 2.4, 0.8, 2H, Hy, Hu), 6.37 (t, J= 2.3, 1H, H,), 4.69 (d, = 0.7, 2H,
H,),4.14 (t,J = 6.4, 2H, Hy), 4.05 (t, ) = 6.4, 2H, H,), 4.01 (t, J = 6.4, 2H, H,), 4.00 (t, J = 6.4, 2H, Ho or H,,), 3.66
(d,J=0.7, 1H, H.), 1.93-1.79 (m, 8H, H;, Hy, Hw, H,), 1.73-1.60 (m, 4H, Hnm, Hy), 0.94 (s, 9H, Hy), 0.11 (s, 6H,
Hy).

13¢ NMR (101 MHz, acetone-dg) & 161.4, 161.3 (x2), 161.1, 145.1, 144.9, 142.0, 140.8, 138.9, 136.5, 131.5,
131.5, 130.2, 129.3, 129.1, 122.6, 115.8, 113.4, 112.9, 112.3, 111.8, 107.3, 106.2, 105.1 (x2), 100.5, 85.5,
79.0, 69.0, 68.7, 68.4 (x2), 65.4, 29.7 (x2), 29.6 (x2), 26.3, 23.4 (x2), 18.9, -5.1.

HR-ESI-MS (+ve): m/z = 813.4173 [M + H]* calc. for C47Hs7NeOsSi 813.4154.
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Figure S61: 'H NMR (acetone-dg, 400 MHz, 298 K) of (2)-1.
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Figure S62: 13C NMR (acetone-dg, 101 MHz, 298 K) of (2)-1.
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Figure S63: IMOD NMR (acetone-ds, 101 MHz, 298 K) of (2)-1.
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Figure S64: COSY NMR (acetone-de, 298 K) of (2)-1.
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Figure S65: HSQC NMR (acetone-ds, 298 K) of (2)-1.
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Figure S66: HMBC NMR (acetone-ds, 298 K) of (2)-1.
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4. SYNTHESIS OF CATENANE (Rwmp)-5 (FIGURE 2 IN MAIN TEXT)

_\ \ /) Bn
N N« )»CO,H
N

H 1
CH,0SiMe,'Bu I CH,0SiMe,Bu CH,0SiMe,Bu

QL e

(0] (@)
1) [Cu(CH3CN),4]PFg 2 Bn{\/
iProNEt MeOZC-/

‘\_\

O O
CH,Cly, 40 °C, 4 h
N.NN N3 2) TMSCHN, \
~ 1:1MeOH:THF, rt, 1 h
7= Ph
(S:Rmvaco-c)'3 (S’SmP’ECO'C)-4
(21
DMSO, (COCI),,
Et;N
CH,Cl, -78 °C
CHZOSiMeztBu CHZOSiMeztBu

j piperidinium acetate
THF, rt, 1 h ,\j\\ n /_,'\1 1:9 H,O/THF, rt
N < N
o

(Rmvaco-C)'5 (Smvaco-c)'S16 (S’SmprEco-c)'S15

Scheme S4: Synthetic route to compound (Rmp, Eco-c)-5.

$49



Catenane (S,Rmp,Eco-c)-3

CH,0SiMe,Bu CH,0SiMe,Bu

1NN\~
) Bn /©\ /@\
N NX )>CO,H o o 1) [Cu(CH3CN),JPFg, iPr,NEt 0 O )
N 3 4. 6 2! 2
CH,Cl, 40°C,4h = 2 B (g /"
* 0 o > 9 meo,c4 IN N{ G
2) TMSCHN, N 2
@ /@ 1:1 MeOH:THF, rt, 1 h I
21% oys
NN N 3

_N N

(S)-2

n’/(

(srRmprEco»c)'3
(@1

To a stirred solution of (5)-2 (10 mg, 0.016 mmol), [Cu(CH3CN)a]PFs (5.7 mg, 0.15 mmol), and ‘Pr,NEt
(11.5 pL, 0.0660 mmol) in CH,Cl, (1.6 mL) at 35 °C was added (2)-1 (29 mg, 0.035 mmol) in CH,Cl, (0.7 mL)
at a constant rate using a syringe pump over 4 h. The reaction mixture was stirred for 10 min after the
addition had completed, cooled to rt and sat. EDTA-NH3(aq) (2 mL) was added with stirring. After 17 h, the
mixture was diluted with H,0 (20 mL), the layers were separated and the aqueous layer extracted with
CH,Cl (3 x 10 mL). The combined organic layers were dried (Na;SOa), filtered, and concentrated in vacuo.
The residue was redissolved in THF-MeOH (1 : 1, 1.0 mL), and TMSCHN; (2.0 M in hexanes, 0.05 mL,
0.1 mmol) was added and the resulting solution stirred at rt for 1 h then concentrated in vacuo.
Chromatography ("hexane-CH,Cl,-Et;01:1:0to 0:0: 1) afforded (S,Rmp,Eco-c)-3 as an colorless film (5 mg,

21% over two steps).
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H NMR (400 MHz, CD,Cl,) 81 9.37 (s, 1H, H,), 8.59 (s, 1H, He), 7.71 (s, 1H, Hy), 7.56 (t, J = 7.8, 1H, Hg), 7.35
—7.15 (m, 12H, Ha, Hy, Ho Hy Hy, HsHa Hc Hr, Hy), 7.15 — 7.04 (m, 6H, Hp, Hw, Hy, Hs), 6.97 (t, J = 8.2, 1H, Hy),
6.88 (t,J = 2.2, 1H, H), 6.87-6.82 (m, 2H, Hg), 6.79 (ddd, J = 7.9, 2.4, 1.4, 1H, Hp), 6.65 (d, J = 8.5, 2H, Hy),
6.60 (t, J = 2.2, 1H, H,), 6.58-6.52 (m, 4H, H,, H;, He), 6.50 (ddd, J = 8.2, 2.4, 0.9, 1H, H,), 6.43 (t, J = 2.4, 1H,
H,), 6.16 (d, J = 8.5, 2H, Hu), 4.72 (s, 2H, Hg), 4.25-4.11 (m, 2H, H¢), 4.05-3.74 (m, 8H, 1 of Hj, H,, 1 of Ho,
Hu, H1), 3.62 (s, 3H, Hy), 3.61-3.55 (m, 1H, 1 of Hj), 3.42-3.22 (m, 5H, H,, Hp, Hy), 3.11 (dd, J = 13.9, 10.7, 1H,
1 of Hg), 2.80 (d, J = 13.3, 1H, 1 of Ho), 2.59 (dd, J = 14.0, 4.2, 1H, 1 of Hg), 2.04-1.50 (m, 18H, Hx, H, Hm, H,,
He, Hu, Hi, Hy, Hy), 1.39-1.22 (m, 3H, Hy, 1 of Hy), 1.17-1.04 (m, 1H, 1 of H.,), 0.98 (app d, J = 0.4, 9H, Hs),
0.14 (app d, /J=0.4, 6H, H,).

13CNMR (101 MHz, CD,Cl,) 6§ 171.7,160.7, 160.7, 160.0, 159.7, 159.5, 159.3, 158.2, 158.0, 157.9 (x2), 147.1,
145.0, 144.8, 138.8, 138.3, 137.9, 137.8, 137.5, 136.6, 131.5, 130.4, 130.2, 129.9, 129.3, 129.1, 128.9 (x2),
128.5, 128.3, 128.1, 127.4, 126.5, 126.4, 123.0, 122.0, 121.6, 121.3, 120.7, 120.2, 115.3, 114.2, 113.7,
113.0, 112.0, 111.7, 106.3, 105.6, 104.4, 104.3, 101.2, 68.2, 68.2, 68.1, 68.0, 67.6, 65.3, 65.1, 62.4, 57.2,
55.1,51.2,37.4,29.8,29.3,29.2,29.1, 29.1, 29.0, 28.4, 26.1, 26.1, 26.0, 23.5, 23.2,18.7, -5.2.

LR-ESI-MS (+ve): m/z = 1454.7 [M + H]* calc. for CggH100N9OsSi 1454.7.
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Figure S67: 'H NMR (acetone-ds, 400 MHz, 298 K) of the residue containing (S,Rmp,Eco-c)-3 prior to chromatography.
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Figure $68: IH NMR (CD,Cl,, 400 MHz, 298 K) of (S,Rmp,Ecoc)-3-
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Figure $69: J-MOD NMR (CD,Cl,, 101 MHz, 298 K) of (S,Rmp,Eco-c)-3.
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Figure S70: COSY NMR (CD,Cly, 298 K) of (S,Rmp,Eco-c)-3-
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Figure S71 HSQC NMR (CD,Cly, 298 K) of (S,Rmp,Eco-c)-3.
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Figure S72: HMIBC NMR (CD,Cl, 298 K) of (S,Rmp,Eco-c)-3.
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Figure S73: NOESY NMR (CD,Cly, 298 K) of (S,Rmp,Eco.c)-3.
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Figure S74: LRMS - Observed (top) and calculated (bottom) isotopic pattern for (S,Rmp,Eco-c)-3 CssH100N9OgSi.
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Catenanes (R,Smp,Eco-c)-3 and rac-(S,Rmp,Eco-c)-3

CHQOS\Me2’Bu CH,0SiMe,Bu

/_\ \ /) Bn /©\
N N \—co2 1) [CU(CH3CN),]PFg, iPr,NE ( o 0 )
CH,Cl,, 35 °C, 4 h ZJ*\/ “Nen \/2\(1
d 0 / \—002 0

O % 2) TMSCHN, N
/@ 1:1 MeOH:THF, rt, 1 h | >
18% 0,8
N N 002 WA
(512 =

(Rrsmvaco-c)'3

To a stirred solution of (R)-2 (27 mg, 0.044 mmol), [Cu(CH3CN)4]PFs (16 mg, 0.042 mmol), and 'Pr,NEt
(30.0 pL, 0.17 mmol) in CH,Cl; (4.2 mL) at 35 °C was added (2)-1 (39 mg, 0.048 mmol) in CH,Cl, (1.7 mL) at
a constant rate using a syringe pump over 4 h. The reaction mixture was stirred for 10 min after the addition
had completed, cooled to rt and sat. EDTA-NH3(q) (3 mL) was added with stirring. After 17 h, the mixture
was diluted with H,0 (30 mL), the layers were separated and the aqueous layer extracted with CH,Cl, (3 x
15 mL). The combined organic layers were dried (Na;S04), filtered, and concentrated in vacuo. The residue
was redissolved in THF-MeOH (1 : 1, 2.0 mL), and TMSCHN; (2.0 M in hexanes, 0.2 mL, 0.4 mmol) was added
and the resulting solution stirred at rt for 1 h then concentrated in vacuo. Chromatography ("hexane-

CH,Cl,-Et,01:1:0t00:0: 1) afforded (R,Smp,Eco-c)-3 as an white foam (11 mg, 18% over two steps).

rac-(S,Rmp,Eco-c)-3 (26 mg, 23% over two steps) was synthesised starting from rac-2 (50 mg, 0.080 mmol)

using the same procedure.

rac-(S,Rmp,Eco-c)-3 and (R,Smp,Eco-c)-3 produced identical analytical data to (S,Rmp,Eco-c)-3 (e.g., Figure S75)
with the exception of their CSP-HPLC (Figure S76) and circular dichroism spectra (Figure S77).
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Figure S75: Stack plot *H NMR (acetone-ds, 400 MHz, 298 K). (Top) (R,Smp,Eco-c)-3; (Middle) rac-(S,Rmp,Eco-c)-3; (Bottom)

(S,Rmp,Eco-c)-3.
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Figure S76: CSP-HPLC (loaded in Et,0, SSWhelk, "hexane-EtOH 40 : 60, flowrate 1 mLmin-t) of (R,Smp,Eco-c)-3 (98.7% ee) (top);
rac-(S,Rmp,Eco-c)-3 ([S,Rmp,Eco-c]-3 @ 21.33 min, 49.9%; [R,Smp,Eco-c]-3 @ 47.72 min, 50.1%) (middle); (S,Rmp,Eco-c)-3 (99.2% ee).
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Figure S77: Circular dichroism spectra (3.23 uM in CH3CN, 293 K) of (R,Smp,Eco-c)-3 (red) and (S,Rmp, Eco-c)-3 (blue).
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Catenanes (S,Smp,Eco-c)'4 and (R,Rmp,Eco-c)'4

CH,0SiMe,Bu CH,0SiMe,Bu

A A

(S:RmprEco-c)'3 (S:SmprEco-c)""

Ester catenane (S,Rmp,Eco-c)-3 (16 mg, 0.011 mmol) was dissolved in THF (1.0 mL), cooled to 0 °C and
LiAlH4 (1 M in THF, 0.05 mL, 0.05 mmol) was added dropwise. After 5 min at 0 °C, the flask was removed
from the ice-bath. After 90 min at rt, the reaction mixture was cooled down at 0 °C, diluted with Et,O
(10 mL) and water (0.08 mL), NaOH,q) (15% w/v, 0.08 mL) and H,0 (0.24 mL) were successively added. The
flask was removed from the ice-bath and the reaction mixture was stirred at rt for 15 min. Solid MgSO. was
added and the reaction mixture stirred for 15 min at rt. The reaction mixture was filtered over Celite’, the
solids washed with Et,0O and the filtrate concentrated in vacuo. Two rounds of chromatography (1°:
"hexane-CH,Cl-Et;01:1:0t02:2:1; 2" CH,Cl,-MeOH 100 : 0 to 97 : 3) gave catenane (S,Smp,Eco-c)-4 as

a colorless film (3 mg, 19%).

(R,Rmp,Eco-c)-4 (3 mg, 40%) was synthesised using a similar procedure starting from (R,Smp,Eco-c)-3 (8 mg,
0.005 mmol) but purified using a single round of chromatography (CH,Cl,-MeOH 100 : 0 to 98 : 2 and
"hexane-CH,Cl>-Et;01:1:0t03:3:4).

Analytical data of (S,Smp,Eco-c)-4 and (R,Rmp,Eco-c)-4 Were identical (e.g., Figure S84) with the exception of
their CSP-HPLC (Figure S84) and circular dichroism spectra (Figure S86).

S59



1H NMR (400 MHz, CD,Cl) 6 8.98 (s, 1H, H,), 7.83 (s, 1H, He), 7.63 (t, J = 7.8, 1H, H5), 7.47 (t, J = 7.8, 1H, Hyx),
7.46 (s, 1H, Ha), 7.40 (ddd, J = 8.1, 2.1, 1.0, 1H, Hs), 7.35 — 7.25 (m, 6H, Hg, Ha Hw, H,, Hs), 7.25 — 7.02 (m,
13H, Ha, Hb, He, Hs, He, Ho, Hr, Hr, Hp), 6.99 (d, J = 7.9, 1H, Hy), 6.93 (t, J = 2.1, 1H, Hi), 6.91 (ddd, J = 8.2, 2.4,
0.9, 1H, Hy), 6.78 (d, J = 8.5, 2H, Hy), 6.68 (ddd, J = 8.2, 2.5, 0.9, 1H, H,), 6.52 (dd, J = 2.3, 1.2, 1H, Hp), 6.46
(dd,J=2.3,1.2, 1H, H:), 6.41 (d,J = 8.7, 2H, H), 6.33 (t, J = 2.3, 1H, Ho), 6.26 (d, J = 8.5, 2H, Hw), 4.67 (s, 2H,
Ho), 4.06 (m, 5H, Hn, Hr, 1 of H), 3.99 —3.79 (m, 4H, Hj, 1 of Hy, 1 of Hy), 3.78 — 3.67 (m, 3H, H., 1 of Ho),
3.68—3.58 (m, 1H, 1 of H,), 3.55 (d, J = 12.8, 1H, 1 of Hy), 3.44 (t, J=9.7, 1H, 1 of Hy), 3.36 —3.23 (m, 2H, 1
of Ho, 1 of Hu), 3.09 — 2.94 (m, 3H, Hp, 1 of Ho, 1 of H,), 2.52 (dd, J = 12.8, 8.4, 1H, 1 of Hq), 1.95 — 1.47 (m,
18H, Hi, Hi, Hm, H, H, Hu, Hi, Hy, Hy), 1.41 (app. quint, J = 7.1, 2H, H), 1.17 — 1.08 (m, 2H, H.,), 0.95 (s, 9H,
H.), 0.11 (s, 6H, H.).

13C NMR (101 MHz, CD,Cl;) & 160.7, 160.6, 160.3, 159.6, 159.3, 159.2, 159.1, 159.0, 158.2, 157.7, 147.1,
144.7, 144.4, 140.2, 138.4, 138.2, 137.4, 137.4, 137.3, 131.9, 130.6, 130.4, 129.9, 129.8, 129.7, 129.7,
129.3, 128.9, 128.5, 128.3, 127.5, 126.6, 125.2, 122.3, 121.9, 121.6, 121.2, 120.1, 120.1, 115.0, 114.5,
114.1, 114.0, 112.2, 112.1, 107.2, 106.4, 104.9, 103.8, 100.8, 68.6, 68.2, 68.0 (x2), 67.7, 65.8, 65.3, 62.2,
61.3,56.6, 53.2, 33.0, 29.7, 29.4, 29.3, 29.2, 29.1, 29.0, 28.7, 26.2, 26.2, 26.1, 23.8, 22.8, 18.7, -5.2.

LR-ESI-MS (+ve): m/z = 1427.7 [M + H]* 100%, calc. for Cs7H100N9OsSi 1427.7.
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Figure S78: 'H NMR (CD,Cl,, 400 MHz, 298 K) of (S,Smp,Eco-c)-4.
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Figure $79: IMOD NMR (CD,Cly, 101 MHz, 298 K) of (S,Smp,Eco-c)-4.
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Figure S80: COSY NMR (CD;Cla, 298 K) Of (S,Smp, Eco-c)-4.
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Figure S81: HSQC NMR (CD;Cly, 298 K) of (S,Smp, Eco-c)-4-
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Figure S82: HMIBC NMR (CD,Cl,, 298 K) of (S,Smp,Eco-c)-4.
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Catenane rac-(S,Smp,Eco-c)-4

CH,0SiMe,Bu CH,0SiMe,Bu

- Y

(5 “*l’
eozc—( 2 LiAIH, 2
@ — @
THF, 0°C, 1 h
.y .y
J K J K

~

onN
onN

</:\>_
</:\>_

N 72% A \
N ° N
rac-(S,Rmp:Eco-c)-3 rac-(S,Smp,Eco-c)-4

Ester catenane rac-(S,Rmp,Eco-c)-3 (33 mg, 0.023 mmol) was dissolved in THF (1.8 mL), cooled to 0 °C and
LiAlH4 (1 M in THF, 0.09 mL, 0.09 mmol) was added dropwise. After 15 min, the reaction mixture was
guenched by slow addition of EtOAc (0.2 mL), stirred at 0 °C for 5 min and warmed to rt. Sat. Rochelle
salt(aq) (2 mL) was added and the mixture stirred for 10 min. H,O (20 mL) was added, the layers separated,
and the aqueous layer extracted with CH2Cl, (3 x 10 mL). The combined organic layers were dried (Na;SOa4)
and concentrated in vacuo. Chromatography ("hexane-Et,0 100:0 to 3 : 7) gave catenane rac-(S,Smp,Eco-c)-

4 as an off-white foam (23 mg, 72%).

Analytical data of rac-(S,Smp,Eco-c)-4 were identical to those of (S,Smp,Eco-c)-4 and (R,Rmp,Eco-c)-4 (e.g., Figure
$84) with the exception of their CSP-HPLC (Figure S85) and circular dichroism spectra (Figure S86).
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Figure S84: Stack plot *H NMR (CD,Cl,, 400 MHz, 298 K) of (R,Rmp,Eco-c)-4 (top), rac-(S,Smp,Eco-c)-4 (middle) and (S,Smp,Eco-c)-4
(bottom).
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Figure S85: CSP-HPLC (loaded in Et,0, SSWhelk, "hexane-EtOH 40 : 60, flowrate 1 mLmin) of (R,Rmp,Eco-c)-4 (>99% ee) (top);
rac-(S,SmprEcoc)-4 ([S,SmpEco]-4 @ 25.77 min, 49.6%; [R,Rmp,Eco]-4 @ 35.51 min, 50.4%) (middle); (S,Smp,Ecoc)-4 (>99% ee)

(bottom).
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Figure S86: Circular dichroism spectra (4.20 uM in CH3CN, 293 K) of (R,Rmp,Eco-c)-4 (red) and (S,Smp,Eco-c)-4 (blue).
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Catenanes (Smp,Eco-c)-S16 and (Rmp,Eco-c)-S16 (telescoped procedure)
CH,0SiMe,Bu 1) [Cu(CH5CN),JPF¢, iPr,NE CH,0SiMe,Bu
/@ CH,Cly, 40 °C. 4 h @
0 o N 2) TMSCHN, 0 o )
- /, Bn . R ( \/\ﬁ\
NN Pycop 1T MeOHTHE ft 1h /rrz\’ 2\ Jn\ L2
N > O a2
N N
) 0 3) LiAIH, HN -
@ /@ THF, 0 °C, 20 min 21
N N
NN Ny 4) DMSO, (COCl),, Et;N NAYS
- CH,Cly, -78 °C NN
\\/5\: (S)-2 5) piperidinium acetate

21 1:9 H,O/THF, 70 °C (Smp+Eco-c)-816
13% ogs

For convenience, enantioenriched catenanes (Smp,Ecoc)-S16 and (Rmp,Ecoc)-S16 were obtained using a

telescoped procedure from (2)-1 and macrocycle 2 without purification of the intermediate products:

Step 1: To a stirred solution of (S)-2 (35 mg, 0.056 mmol), [Cu(CH3CN)s]PFs (20 mg, 0.053 mmol), and
PrNEt (39.0 uL, 0.224 mmol) in CH,Cl, (5.6 mL) at 38 °C was added (2)-1 (99 mg, 0.122 mmol) in CHxCl, (2.5
mL) at a constant rate using a syringe pump over 4 h. The reaction mixture was stirred for 10 min after the
addition had completed, cooled to rt and sat. EDTA-NH3(.q) (4 mL) was added with stirring. After 15 min,
the mixture was diluted with H,0 (40 mL), the layers were separated, and the aqueous layer extracted with
CH.Cl; (3 x 20 mL). The combined organic layers were washed with brine (50 mL), dried (NaxSQ.), filtered,
and concentrated in vacuo. The residue was redissolved in THF-MeOH (1 : 1, 3.6 mL), and TMSCHN; (2.0 M
in hexanes, 0.18 mL, 0.36 mmol) was added and the resulting solution stirred at rt for 1 h then concentrated

in vacuo to give a residue containing methyl ester catenane (S,Rmp,Eco-c)-3-

Step 2: The residue was dissolved in THF (5.0 mL), cooled to 0 °C and LiAlH4 (1 M in THF, 0.22 mL, 0.22
mmol) was added dropwise. After 15 min at 0 °C, the reaction mixture was diluted with Et,0 (20 mL) and
water (0.05 mL), NaOHaq) (15% w/v, 0.05 mL) and water (0.15 mL) were successively added. The mixture
was allowed to warm up at rt and the reaction mixture was stirred at rt for 15 min. Solid MgSO4 was added
and the reaction mixture stirred for 15 min at rt. The reaction mixture was filtered over Celite®, the solids
rinced with Et;O and the filtrate concentrated in vacuo to give a residue containing alcohol catenane

(S,Smp,Eco-c)-S4.

Step 3: DMSO (0.12 mL, 1.7 mmol) was added dropwise to a solution of oxalyl chloride (0.07 mL, 0.8 mmol)
in CH,Cl; (3.0 mL) at -78 °C and the reaction mixture was stirred for 10 min. An aliquot of this solution
(1.0 mL) was added to the previous residue in CH,Cl, (5.0 mL) at -78 °C followed by Et3N (0.22 mL, 1.6 mmol)
and the reaction mixture was stirred for 5 min before the flask was removed from the -78 °C bath. After 3
hours at rt, the reaction was quenched by addition of sat. NaHCO3(aq) (50 mL), the phases separated, and
the aqueous layer extracted with CH,Cl> (3 x 15 mL). The combined organic layers were dried (Na;SOas),

filtered and concentrated in vacuo to give a residue containing the corresponding aldehyde catenane.

S66



Step 4: Piperidinium acetate (40 mg, 0.28 mmol) was added to the residue and the flask purged with N, for
10 min. THF-H,0 (9: 1, 3.3 mL) was sparged with N, for 5 min, added to the mixture, and the resulting
solution was stirred at 70 °C for 42 h. The reaction mixture was cooled to rt, quenched by addition of sat.
NaHCO3(aq) (50 mL), the phases separated, and the aqueous layer extracted with CH,Cl; (3 x 20 mL). The
combined organic layers were dried (Na;SO4), filtered and concentrated in vacuo. Successive
chromatographies ("hexane-acetone 100 : 0 to 0 : 100; CH,Cl,-acetone 100 : 0 to 0 : 100; CH,Cl,-MeOH-
EtsN 99.5:0:0.5t098.5:1:0.5) gave NH-catenane (Smp,Eco-c)-516 as a white foam (9 mg, 98% ee, 13%

over five steps).

(Rmp,Eco-c)-S16 (8 mg, 98% ee, 12% over five steps) was synthesised using an identical procedure starting
from (R)-2 (35 mg, 0.056 mmol). Analytical data for (Smp,Eco-c)-516 and (Rmp,Eco-c)-S16 were identical (e.g.,

Figure S95) with the exception of their CSP-HPLC (Figure S96) and circular dichroism spectra (Figure S97).

1H NMR (500 MHz, CD,Cl2) 6 9.17 (s, 1H, H,), 7.66 (s, 1H, Ha), 7.55 (t,J= 7.8, 1H, Hs), 7.51 (t, J = 7.7, 1H, Hg),
7.46 (s, 1H, He), 7.43 (ddd, J = 8.1, 2.0, 1.0, 1H, Hs), 7.34 — 7.29 (m, 2H, Hc, H,), 7.28 = 7.13 (m, 9, Ha, Hy, H.,
Hg, Mg, Ha Hs), 7.02 (d, J = 8.7, 2H, Hp), 6.96 (d, J = 7.7, 1H, Hq), 6.84 (ddd, J = 8.4, 2.5, 0.9, 1H, Hy), 6.75 (dd,
J=8.1,1.2,1H, Hy), 6.72 (d, J = 8.4, 2H, Hy), 6.68 (ddd, J = 8.2, 2.4,0.9, 1H, H,), 6.63 (t, J = 2.2, 1H, H)), 6.56
(dd, J=2.2,1.2, 1H, H,), 6.46 (dd, J = 2.3, 1.2, 1H, Hy), 6.40 (t, J = 2.3, 1H, H,), 6.36 (d, J = 8.7, 2H, Hg), 6.25
(d, J = 8.5, 2H, Hw), 4.69 (s, 2H, Hg), 4.22 (dt, J = 10.1, 5.1, 1H, 1 of Hy), 4.18 — 4.04 (m, 4H, H,, H), 3.99 —
3.88 (m,3H, H)1 of HL), 3.79 —3.71 (m, 3H, Hu 1 of Ho), 3.56 (d, J = 12.2, 1H, 1 of Hp), 3.47 (d, J=12.2, 1H, 1
of Ho), 3.43 (d, J = 13.1, 1H, 1 of Hp), 3.22 (dt, J = 9.0, 6.4, 1H, 1 of Hy), 3.01 (dt, /= 9.0, 6.6, 1H, 1 of H,), 2.13
—1.45 (m, 18H, Hy Hi Hm, Hy, Ho, Hu, Hi Hy, Hy), 1.40 — 1.21 (m, 2H, Hy), 1.15 — 1.01 (m, 2H, H.,), 0.96 (s, 9H,
H.), 0.13 (s, 6H, Hy).

13C NMR (126 MHz, CD,Cl, ) 6§ 160.7, 160.6, 160.1, 160.1, 159.6, 159.5, 158.0, 156.9, 156.9, 156.7, 147.1,
144.8, 144.6, 138.6, 137.8, 137.6, 137.4, 137.2, 132.1, 130.3, 129.7, 129.6, 129.3, 129.3, 128.7, 128.5 (x2),
127.5, 123.1, 121.4, 121.1, 120.8, 120.6, 120.3, 114.6, 114.6, 114.0, 113.9, 112.0, 111.8, 107.0, 105.3,
105.1, 103.8, 101.0, 68.6, 68.2, 67.8, 67.6, 67.4, 65.5, 65.3, 54.4 (x2), 29.7, 29.5, 29.3, 29.2, 28.8, 28.7, 28.4,
26.2,26.1, 26.1, 23.8, 22.6, 18.7, -5.2.

LR-ESI-MS (+ve): m/z = 1292.7 (100%) [M + H]* calc. for CgHeoNsO7Si 1292.7.
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Figure $87: 'H NMR (CD,Cl,, 500 MHz, 298 K) of (Smp,Eco-c)-S16.
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Figure S88: 1H NMR (CDCl, 126 MHz, 298 K) of (Smp,Eco-c)-S16 .
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Figure S89: COSY NMR (CD,Cly, 298 K) of (Smp,Eco-c)-516 .
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Figure S90: TOCSY NMR (CD,Cly, 298 K) of (Smp,Eco-c)-S16.

S69

i
. ¥ ,f:./ L1
; :"‘«Q v
) @l
§ 6 9 o)
& r4
¢
)
'
g7 4 ;
r9
'

Chemical shift (ppm)

Chemical shift (ppm)



T
i
Chemiral chift (nnm)

9.5 8.5 7.5 6.5 5.5 4.5 3.5 2.5 1.5 0.5 -0.5
Chemical shift (ppm)

Figure S91: NOESY NMR (CD,Cly, 298 K) Of (Smp,Eco-c)-S16 .
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Figure $92: HSQC NMR (CD;Cly, 298 K) of (Smp,Eco-c)-S16 .
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Figure $93: HMBC NMR (CD:Cl5, 298 K) of (Smp,Ecoc)-S16 .

Imens

M2 0.7-0.8min MAL-45)
xiort

12027

12237

125

1.00

ars

050

12957
025

1207.7

0.00 CTARBSNGOTS! MenH 1233 67|

12027

‘ | \ J| 12057
I l JI \ Jl ll )L A

12977
1298 ?

1208

1260 1292 1300 miz
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Amine catenane rac-(Smp,Eco-c)-S16

CH,0SiMe,Bu CH,0SiMe,Bu CH,0SiMe,Bu

, .
HOHQC-( N DMSO P|per|d|n|um acetate NN
-] — HN 3
X CH,Cly, Ny, 1:9 HZO/THF N
SNAYS

M /\ N -78°C, 5 min \ N 70°C,42h ’LN ’\il
N T N rt, 3 h M 76% *N I-‘ N’
rac~(S,Smp,Eco-c)-4 rac~(S,Smp,Eco-c)-815 rac~(Smp,Eco-c)-S16

DMSO (0.12 mL, 1.7 mmol) was added dropwise to a solution of oxalyl chloride (0.07 mL, 0.8 mmol) in
CHCl; (3.0 mL) at -78 °C and the reaction mixture was stirred for 10 min. An aliquot of this solution
(0.53 mL) was added to a stirred solution of catenane rac-(S,Smp,Eco-c)-4 (41 mg, 0.029 mmol) in
CH,Cl> (1.8 mL) at -78 °C followed by EtsN (0.11 mL, 0.79 mmol) and the reaction mixture was stirred for
5 min before the flask was removed from the -78 °C bath. After 3 hours at rt, the reaction was quenched
by addition of sat. NaHCO3(.q) (30 mL), the phases separated, and the aqueous layer extracted with
CHCl; (3 x 15 mL). The combined organic layers were dried (Na,SO4), filtered and concentrated in vacuo to
give a residue containing aldehyde catenane (S,Smp,Eco-c)-S15. Piperidinium acetate (21 mg, 0.14 mmol) was
added to the residue and the flask purged with N, for 10 min. THF-H,O (9 : 1, 1.8 mL) was sparged with N,
for 5 min, added to the mixture, and the resulting solution was stirred at 70 °C for 44 h. The reaction mixture
was cooled to rt, quenched by addition of sat. NaHCO3(aq) (40 mL), the phases separated, and the aqueous
layer extracted with CHyCl; (3 x 15 mL). The combined organic layers were dried (Na;SQ.), filtered and
concentrated in vacuo. Chromatography (CH,Cl,-MeOH 100 : 0 to 94 : 6) gave NH-catenane rac-(Smp,Eco-c)-
$16 as a white foam (22 mg). Impure product fractions were combined and repurified using the same

chromatography conditions to afford additional material (6 mg, 28 mg in total, 76% over two steps).
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Figure S95: Stack plot 'H NMR (acetone-dg, 400 MHz, 298 K) of (Smp,Eco-c)-S18 (top), rac-(Smp,Eco-c)-S18 (middle), and
(Rmp/Eco—c)-Sls (bottom).
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Figure S96: CSP-HPLC (loaded in Et,0, SSWhelk, "hexane-EtOH 80 : 20, flowrate 1 mLmin) of (Smp,Eco-c)-S18 (97.8% ee) (top);
rac-(Rmp,Eco-c)-S18 ([Rmp,Ecoc]-518 @ 40.22 min, 50.1%; [Smp,Ecoc]-518 @ 46.62 min, 49.9%) (middle); (Rmp,Eco-c)-S18 (>99%
ee) (bottom).
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Figure S97: Circular dichroism spectra (3.12 mM mM in CH3CN, 293 K) of (Smp,Eco-c)-S16 (red) and (Rmp,Eco-c)-S16 (blue).
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Catenanes 5

CH,0SiMe,Bu

N N TBAF
HN @ D
~ THF, 0°C,1h
NN AYE 56%
SN

(SmpEco-c)-516
TBDMS catenane (Smp,Eco-c)-S16 (9 mg, 0.007 mmol) was dissolved in THF (1.0 mL) and cooled to 0 °C.
TBAF (1 M in THF, 0.07 mL, 0.07 mmol) was added dropwise and the reaction mixture was stirred at 0 °C
for 20 min. NH4Cl(zq) (0.1 M, 0.4 mL) was added dropwise at 0 °C and the mixture was stirred for 2 min.
EtOAc (50 mL) was added, the phases separated, and the organic layer was washed with H,0 (3 x 30 mL)
and brine (50 mL). The combined organic layers were dried (Na;SO4), and concentrated in vacuo.
Chromatography (CH,Cl,-MeOH 100:0 to 92 : 8) gave amino-alcohol catenane (Rmp)-5 as white foam (4 mg,
43%). Catenane (Rmp)-5 was initially isolated and characterised as its (Rmp,Eco-c)-5 co-conformational isomer
but on standing in solution this evolved to an equilibrium mixture of (Rmp,Eco-c)-5 and (Rmp,Zco-c)-5 (see

section S6).

Catenanes rac-4 (11 mg, 56%) and (Smp)-5 (3 mg, 38%) were synthesised using an identical procedure
starting from rac-(Rmp,Eco-c)-S16 (22 mg, 0.017 mmol) or (Rmp,Eco-c)-S16 (8 mg, 0.006 mmol) respectively.
Their analytical data were identical to (Rmp)-5 (e.g., Figure S107) with the exception of their CSP-HPLC
(Figure S108) and CD spectra (Figure $109).
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1H NMR (500 MHz, CD,Cl;) 6 9.15 (s, 1H, Hp), 7.66 (s, 1H, Ha), 7.51 (t, J = 7.8, 1H, Hg), 7.49 (t, J = 7.8, 1H,
Hs), 7.45 (d,J = 7.9, 1H, H,), 7.34 — 7.28 (m, 2H, Hy Hc), 7.26 (app. t,J = 8.2, 2H, H,, He), 7.25 - 7.13 (m, 7H,
Ha, Hy, He, Hg Ha), 7.10 (d, J = 7.6, 1H, Hs), 7.00 (d, J = 8.6, 2H, Hb), 6.86 (app. ddd , J = 8.3, 2.4, 0.9 H z, 2H,
Hh, Ha), 6.77 (d, J = 8.0, 2H, Hy), 6.70 (dd, J = 8.2, 1.5, 1H, H,), 6.69 — 6.60 (m, 3H, H;, Hp, Hs), 6.51 (s, 1H, H.),
6.43 (t,J = 2.3, 1H, Ho), 6.35 (d, J = 8.6, 2H, Hg), 6.25 (d, J = 8.5, 2H, Hw), 4.63 (d, J = 13.0, 1H, 1 of Hy), 4.60
(d,J=13.0, 1H, 1 of Hy), 4.29 — 4.17 (m, 2H, 1 of Hy, 1 of Hy), 4.18 — 4.09 (m, 2H, 1 of Hy, 1 of He), 4.07 (dt,
J=10.1,5.7, 1H, 1 of H), 3.98 —3.68 (m, 4H, H;, 1 of Ho, 1 of Hy), 3.86 —3.73 (m, 2H, Hs), 3.68 —3.41 (m, 3H,
Hp, 1 of Ho), 3.25 (dt, J = 8.9, 6.1, 1H, H.,), 2.98 (dt, J = 9.0, 6.7, 1H, 1 of H,), 2.16 — 1.45 (m, 18H, Hy, H), Hm,
Hy, He, Hy, H, Hy, H), 1.43 —1.18 (m, 2H, H,), 1.17 = 0.99 (m, 2H, H.).

13C NMR (126 MHz, CD,Cl2) 6 160.9, 160.7, 160.3 (x2), 160.1, 159.7, 159.5, 158.2 (HMBC), 156.8 (x3), 147.0,
144.9, 144.6, 138.6, 137.7, 137.7, 137.2, 137.2, 132.0, 130.3, 129.6, 129.4, 128.7, 128.5, 128.4, 127.6,
123.1, 121.3, 120.9, 120.8 (x2), 120.2, 114.7, 114.5 (x2), 114.1, 114.0, 111.9, 111.5, 106.8, 106.4, 105.2,
104.5, 101.4, 68.7, 68.2, 67.7, 67.7, 67.4, 65.5, 65.4, 53.5 (x2, HSQC/HMBC), 30.1, 29.7, 29.5, 29.2, 29.2,
28.8,28.6, 28.4,26.2, 26.1, 23.7, 22.6.

LR-ESI-MS (+ve): m/z = 1178.6 (100%) [M+H]* calc. for C7;H76NsO7 1178.6.
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Figure S98: 'H NMR (CDCl, 500 MHz, 298 K) of (Rmp)-5.
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Figure S99: JMOD NMR (CD,Cl5, 126 MHz, 298 K) of (Rmp)-5.
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Figure S100: COSY NMR (CD,Cl, 298 K) of (Rmp)-5.
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Figure $102: HSQC NMR (CDCl,, 298 K) of (Rmp)-5.
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Figure $103: HMBC NMR (CD,Cla, 298 K) of (Rmp)-5.
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Figure S104: NOESY NMR (CDCl,, 298 K) of (Rmp)-5.
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Figure $105: ROESY NMR (CD,Cly, 298 K) of (Rmp)-5.
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Figure S106: LRMS - Observed (top) and calculated (bottom) isotopic pattern for (Rmp)-5 C72H75N9O3.
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Figure S107: *H NMR (acetone-dg, 400 MHz, 298 K) stack plot of (Smp)-5 (top), rac-5 (middle) and (Rmp)-5 (bottom).
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Figure S108: CSP-HPLC (1 mL loaded in Et,0, Chiralpak IK, 40 °C, 125 BarG, isocratic 50 : 50 MeOH : CO; [0.1% v/v NHs],
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(middle); (Smp,Eco<)-5 (97.5% ee) (bottom).
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Figure S109: Circular dichroism spectra (3.23 M in CH3CN, 293 K) of (Smp,Eco-c)-5 (red), (Rmp,Eco-c)-5 (blue) and rac-(Eco-c)-5
(black).
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5. 'H NMR SPECTRA OF CATENANES 3 AND 4 AND THEIR NON-INTERLOCKED COMPONENTS

5.1. 'H NMR stack plot comparing catenane 3 and the component non-interlocked macrocycles

CH,0SiMe,Bu
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s17 (S)-s18

Figure S110: The structures of catenane 3, triazole macrocycle S17 and bipyridine macrocycle (5)-S18 with key proton
environments labelled.
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Figure S111: Partial *H NMR (acetone-ds, 400 MHz, 298 K) of (a) bipyridine macrocycle (5)-S18, (b) (S,Rmp,Eco-)-3, (c) rac-
(S,Rmp,Eco-c)-3, (d) triazole macrocycle S17.
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5.2. 'H NMR stack plot comparing catenane 5 and the component non-interlocked macrocycles

(Rmvaco-c)'s

Figure S112: The structures of catenane 5, triazole macrocycle S19 and bipyridine macrocycle S20 with key proton
environments labelled.
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Figure S113: Partial *H NMR (acetone-ds, 400 MHz, 298 K) of (a) bipyridine macrocycle $20, (b) (Rmp,Eco-c)-5, (c) rac-(Eco-)-5,
(d) triazole macrocycle S19.
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5.3. Synthesis of non-interlocked macrocycles S17 and S19

Non-interlocked macrocycle S17

CH, OSM\/IeZBu \ J<
q o
r
/Hf /IL [CU(CH3CN),JPF
_TBTA, DIPEA |
N-NN N% CH ,Cly, 40°C, 4 h
= ’ 41%
NN
) . N NN N
I ;
@1 a

To a stirred solution of TBTA (5 mg, 0.01 mmol), [Cu(CH3CN)4]PFs (4 mg, 0.01 mmol) and ProNEt (17 L,
0.097 mmol) in CHxCl; (1.0 mL) at 40 °C was added (2)-1 (39 mg, 0.048 mmol) in CH,Cl, (1.9 mL) at a constant
rate using a syringe pump over 4 h. The reaction mixture was stirred for 15 min after the addition had
completed, cooled to rt and diluted with CH,Cl, (5 mL). The solution was washed with EDTA-NHj3 solution
(0.1 M, 2 x 5 mL) then brine (10 mL), dried (MgS0a) and concentrated in vacuo. Chromatography (petrol-
Et,O 100 : 0 to 100 : 0) gave macrocycle S17 (16 mg, 41%) as a white foam.

1H NMR (500 MHz, CD,Cl,) 6 8.15 (s, 1H, H,), 8.04 (s, 1H, Ha), 7.73 (s, 1H, He), 7.61 (ddd, J = 8.1, 2.1, 0.9, 1H,
Hy), 7.52 (t,J = 2.2, 1H, H)), 7.45 (t, J = 8.2, 1H, Hg), 7.37 (t, J = 8.2, 1H, Hp), 7.36 — 7.24 (m, 5H, Ha, Hy, Ho),
7.04 (t,J = 2.2, 1H, H,), 7.00 — 6.93 (m, 2H, Hy, Ha), 6.97 — 6.91 (m, 1H, Hs), 6.45 (dt, J = 2.3, 0.8, 2H, H, Hy),
6.35 (t, J = 2.3, 1H, Ho), 4.65 (s, 2H, Hy), 4.09 (t, J = 6.2, 2H, H;), 4.04 (t, ) = 6.2, 2H, H,), 3.97 (app q, J = 6.2,
4H, Hn, Hy), 1.94 — 1.78 (m, 8H, Hy, Hm, Hy, Hy), 1.72 — 1.63 (m, 4H, H, Hu), 0.94 (s, 9H, Hs), 0.10 (s, 6H, H,).

13C NMR (126 MHz, CD,Cl,) 6 160.7, 160.7, 160.6, 160.4, 148.3, 145.0, 144.4, 138.5, 138.2, 136.9, 131.1,
130.9, 130.9, 129.6, 128.8, 128.3, 122.0, 121.0, 120.8, 115.2, 114.2, 113.3, 112.1, 107.8, 107.0, 105.2,
103.8, 100.6, 68.8, 68.8, 68.3, 68.2, 65.3, 65.2, 29.4, 29.4, 29.3, 29.1, 23.4, 23.3, 18.7, -5.2.

HR-ESI-MS (+ve): m/z = 835.3956 [M + Na]* calc. for C47HseNe¢NaOsSi 835.3974.
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Figure S114: 'H NMR (CD,Cl,, 500 MHz, 298 K) of S17.
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Figure S115: JMOD NMR (CDCl,, 126 MHz, 298 K) of S17.
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Figure S116: COSY NMR (CD,Cl,, 298 K) of S17.
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Figure S117: HSQC NMR (CDCl,, 298 K) of 517.

S86

Chemical shift (ppm)

Chemical shift (ppm)



11

lt 1
I L

g8

0100

10.0 9.0 8.0 7.0 6.0

Figure S118: HMBC NMR (CD,Cl,, 298 K) of S17.
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Non-Interlocked macrocycle S19

OH

CH,0SiMe,Bu q
P, r
n S
(0] O m o O t
i u )
o o TBAF j "o

k
0
x
i
OO T Gy, O
N NN N 86% g N NN N 4
= = 7 = = @
== e '\(' B
I I

d

a c
b

S$17 S$19

To a solution of macrocycle $17 (16 mg, 0.020 mmol, 1 eq.) in THF (0.3 mL) at 0 °C was added TBAF (1 M in
THF, 30 pL, 0.030 mmol) and the reaction mixture stirred at rt for 1 h. The solution was diluted with
EtOAc (5 mL), washed with H,0 (2 x 5 mL) then brine (5 mL), dried (MgSQ4) and concentrated in vacuo.
Chromatography (petrol-EtOAc 100 : 0 to O : 100) gave macrocycle $S19 (12 mg, 86%) as a white foam.

1H NMR (500 MHz, CD,Cl,) & 8.15 (s, 1H, Hp), 8.03 (s, 1H, Hg), 7.73 (s, 1H, He), 7.61 (ddd, J = 8.0, 2.1, 0.9,
1H, Hr), 7.52 (t, J = 2.2, 1H, Hi), 7.45 (t, J = 8.2, 1H, Hy), 7.37 (t, J = 8.2, 1H, H,), 7.34 — 7.25 (m, 5H, Hap,c),
7.04 (t,J=2.2, 1H, H,), 6.97 (dtd, J = 8.4, 2.3, 0.9, 2H, Hy, H,), 6.93 (ddd, J = 8.0, 2.1, 0.9, 1H, H,), 6.49 — 6.47
(m, 2H, H, Hy), 6.39 (app t, J = 2.3, 1H, Ho), 4.58 (s, 2H, Hy), 4.09 (t, J = 6.3, 2H, H;), 4.04 (t, J = 6.2, 2H, H.,),
3.99 (t,J = 6.0, 2H, Hnor Hs), 3.98 (t, J = 6.4, 2H, H, or Hs), 1.92 — 1.80 (m, 8H, H, Hm, H: H,), 1.71 - 1.63 (m,
4H, Hy Hy).

13C NMR (126 MHz, CD,Cl;) & 160.9, 160.8, 160.7, 160.4, 148.2, 145.0, 144.1, 138.5, 138.2, 136.9, 131.2,
131.0, 130.9, 129.6, 128.8, 128.3, 122.1, 121.0, 120.8, 115.2, 114.2, 113.3, 112.1, 107.8, 107.0, 105.9,
104.4,101.1, 68.8, 68.7, 68.3, 68.2, 65.5, 29.34, 29.3, 29.3, 29.1, 23.4, 23.3.

HR-ESI-MS (+ve): m/z = 699.3293 [M + H]* calc. for Ca1Ha3sNgO5 699.3289.
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Figure S119: 'H NMR (CD,Cl,, 500 MHz, 298 K) of S19.
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Figure $120: JIMOD NMR (CD,Cl,, 126 MHz, 298 K) of S19.
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Figure S121: COSY NMR (CD,Cl,, 298 K) of S19.
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Figure S122: NOESY NMR (CD,Cl,, 298 K) of S19.
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Figure S123: HSQC NMR (CDCl,, 298 K) of $19.
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Figure S124: HMBC NMR (CDCl,, 298 K) of S19.
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6. CO-CONFORMATIONAL ISOMERISM OF CATENANE 5

6.1. Co-Conformational Exchange Between (Eco-c)-5 and (Zco-c)-5

CH,OH co-conformational CH,OH
geometric isomers

(Smp’Eco—c)'s

Scheme S4: Proposed co-conformational exchange process.

'H NMR analysis of the as-synthesised samples of catenane 5 (e.g., Figure S125a) revealed a single set of
signals that could be assigned to a single co-conformational isomer of the product. This was assigned as
the Eco.c isomer on the basis of the solid-state structure of catenane 4. However, on standing at rt overnight
in CDCly, additional signals consistent with catenane 5 appeared (Figure S125b), which suggested the
appearance of the Z.,.c co-conformational isomer in slow exchange with the as-synthesised Eco.c isomer

(Figure S125).

8 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 6.2 6
Chemical shift (ppm)

Figure S125: 1H NMR (CD,Cl,, 500 MHz, 298 K) of 5 (Top) t = 0 h after dissolution; (Bottom) t = 18.5 h after dissolution.

To monitor the isomerisation process more accurately, catenane (Smp)-5 (3 mg) was dissolved in CD,Cl,
(0.6 mL) and transferred to an NMR tube, which was capped and further sealed with Parafilm. The 'H NMR
spectrum of the sample was recorded over 68 hours with the probe held at a constant temperature of
303 K, after which no further change was observed (Figure S126). The same experiment was repeated for

(Rmp)-5 and rac-5 with consistent results.
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Figure S126: Stack plot of 'H NMR (CD,Cl,, 500 MHz, 303 K) of (Smp)-5 measured over 68 h.

We tentatively assigned the new signal that appears at 9.52 ppm (Figure $127) to He of (Zco-c)-5 on the basis
of HSQC- and HMBC-NMR analysis (Figure $128). Similarly, the new signal observed at 7.73 ppm (Figure
$127) can be tentatively assigned as Hy of (Zco-c)-5 (Figure S128). Both sets of signals allowed the ratio of
(Eco-c)-5 and (Zeo-c)-5 at steady state to be assigned as approximately 4 : 1 (Figure S127). We note that,
although there is evidence of decomposition (additional small signals similar to catenane 5), LC-MS analysis
confirmed that catenane 5 remained intact (no non-interlocked macrocycles or fragments thereof were

observed).
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Figure S127: Example of *H NMR (CD,Cl,, 500 MHz, 303 K) of (Smp)-5 measured 68 h after dissolution.
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Figure S128: Partial HSQC-NMR (left) and HMBC-NMR (right) (CD,Cl,, 298 K) spectra of the mixture obtained by heating
catenane 5 at 303 K for 68 h demonstrating that the pairs of signals at 9.52 and 9.15 ppm correlate to the same 13C signals,
consistent their assignment as He of (Zeoc)-5 and Hp of (Eco-c)-5 respectively. Similarly, the signals at 7.73 and 7.65 ppm
correlate with the same 13C, consistent with their assignment as Hy of (Zeo-c)-5 and (Eco-c)-5 respectively.

Further evidence for the assighment of the new species observed by *H NMR as the Z..c isomer of 5 was
obtained by CSP-HPLC. Analysis of the samples of (Smp)-5 and (Rmp)-5 that had been heated until a steady
state was achieved revealed a new minor peak with the same value of m/z as observed for the as-
synthesised catenane but different retention times in each enantiomeric samples. Furthermore, the heated
sample of rac-5 revealed the appearance of two new minor peaks that correspond to the two new minor
peaks observed in the enantiomeric products. We note that the ratio of (Eco-c)-5 and (Zco-c)-5 obtained by
CSP-HPLC analysis (9 : 1) differs from that obtained by *H NMR (80 : 20). However, these measurements
were conducted under very different conditions (solvent, temperature, presence of base in the case of the
CSP-HPLC), which will affect both the rate of co-conformational isomerisation and position of the co-
conformational equilibrium itself. We also note that although the UV-vis extinction coefficients of
enantiomers are necessarily identical, those of diastereomers are not (although they are expected to be
similar). Thus, uncalibrated CSP-HPLC is not accurate for assessment of ratios and so we choose to rely on

'H NMR analysis for the determination of (Eco-c)-5 and (Zeo-c)-5, which is quantitative.
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Figure S129: CSP-HPLC (loaded in Et,0, Chiralpak IK, 40 °C, 125 BarG, isocratic 50 : 50 MeOH : CO; [0.1% v/v NHs], 4 mL.mint,
1 mL injected) of (Smp)-5 (top), (Rmp)-5 (middle) and rac-5 (bottom) after heating at 30 € showing the appearance of new
peaks (15.95, 18.66, and 14.69 and 17.30 min respectively) which contain species with same m/z as the major isomer (larger

peaks) of (E)-5 (example MS spectra included at bottom for rac-5).
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CSP-HPLC analysis also indicated that the enantiopurity of (Smp)-5 and (Rmp)-5 was reduced after heating
(93% and 91% ee respectively based on the peaks assigned as Ecc) compared to the as-synthesised
compounds (both 98% ee). This suggests that catenane 5 undergoes a slow racemisation process under
these conditions, which is consistent with double bond isomerisation. This could also account for the
appearance of the Z..c isomer, although the appearance of the enantiomer of E...c, as observed by CSP-
HPLC requires both double bond isomerism and co-conformational exchange (see section 5 for a more
detailed discussion). Furthermore, the degree of co-conformational exchange is much larger than the
degree of racemisation, suggesting that although double bond isomerisation could account for the

appearance of the Z..c isomer, it cannot be the dominant process.

To unambiguously demonstrate that macrocycle S20 can shuttle over the benzylic alcohol moiety (i.e., that
(Ecoc)-5 and (Zeo-c)-5 can exchange by shuttling) we synthesised pseudo-rotaxane rac-(E)-S29, which, as
expected disassembled slowly under the same conditions (Figure $S130). Although signals corresponding to
the non-interlocked axle clearly appear during the disassembly process, those corresponding to non-
interlocked macrocycle $20 were not observed. Filtration of the sample over K,COs revealed the expected
mixture of axle (E)-S32 and macrocycle $20, suggesting that, as with catenane 5, solvent decomposition to

produce acidic biproducts takes place under these conditions.
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Figure S130: a. Disassembly process of pseudo-rotaxane rac-(E)-S29. b. Stack plot of tH NMR (CD,Cl,, 500 MHz, 303 K) of the
reaction mixture containing pseudo-rotaxane rac-S29 at the time points indicated, after filtration over K,COs; and the
corresponding non-interlocked components.
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6.2. Compounds leading to pseudo-rotaxane rac-(E)-S29

@ [Cu(CH3CN)4]PFg
| |

Ng + | iProEtN "Bu,NF
Z X - N NN g — > N
TIPS N- N
s21 (E/z)-s3 (2)-522 (2)-s23

Scheme S5: Synthetic route to compound (2)-S23.
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Scheme S6: Synthetic route to compound S26.
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Scheme S7: Synthetic route to compound rac-(E)-S29.
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Scheme S8: Synthetic route to compound (E)-S32.
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Triazole S22

i
@ [Cu(CH3CN)4]PFg
| DIPEA
N3 + /Q —_—— .
Z X, /

s|~< CHyCly, 1t, 16 h
P 27%

s8 (E/2)-83 (2)-522

To a solution of (E/2)-S3 (349 mg, 1.13 mmol), azide S8 (267 mg, 1.15 mmol), [Cu(CH3CN)4]PFs (103 mg,
0.276 mmol) in CH,Cl; (6 mL) was added DIPEA (1.5 mL, 8.9 mmol). The solution was stirred for 16 h at rt,
then diluted with CH,Cl; (50 mL), washed with EDTA-NHjs solution (0.1 M, 30 mL), and the aqueous phase
extracted with CH,Cl; (3 x 40 mL). The combined organic phases were dried (MgS0O4) and concentrated in

vacuo. Chromatography (petrol-CH,Cl; 100:0 to 4:6) afforded (2)-S22 as a yellow oil (167 mg, 27%).

1H NMR (400 MHz, CDCls) 8 7.87 (s, 1H, Hg), 7.54-7.50 (m, 2H, H.), 7.49 (s, 3H, Hy, H;), 7.35-7.25 (m, 3H,
H., Hy), 7.22 (s, 1H, Hg), 1.37 (s, 18H, Hi), 1.19-1.15 (m, 21H, He, Hy).

13C NMR (101 MHz, CDCl5) 6 153.0, 145.2, 139.1, 136.7, 136.0, 129.6, 128.5, 128.3, 123.0, 121.8, 115.2,
113.3, 108.3, 90.6, 35.3, 31.4, 18.9, 11.5.

HR-ESI-MS (+ve): m/z = 540.3764 [M + H]* (calc. for C3sHsoN3Si 530.3769).
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Figure $131: 'H NMR (CDCls, 400 MHz, 298 K) of (2)-S22.
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Figure S132: JMOD NMR (CDCls, 101 MHz, 298 K) of (2)-522.
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Figure S133: COSY NMR (CDCls, 298 K) of (2)-522.
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Figure S134: NOESY NMR (CDCls, 298 K) of (2)-S22.
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Figure S135: HSQC NMR (CDCls, 298 K) of (2)-S22.
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Figure S136: HMBC NMR (CDCls, 298 K) of (2)-522.

Alkyne S23
b [
h a
d
| TBAF g f/\)\
AN LA,
NEN s|~< THF, 1t, 16 h NEN
99%
(2)-s22 (2)-523

To a stirred solution of (2)-S22 (68 mg, 0.13 mmol) in anhydrous THF (1.7 mL) was added TBAF (1 M in THF,
0.25 mL, 0.25 mmol) and the resulting solution stirred for 16 h at rt. Sat. NH4Cl(zq) was added, and the
aqueous phase was extracted with Et,0 (3 x 20 mL). The combined organic phases were dried (MgS0.) and
concentrated in vacuo. Chromatography (petrol-CH,Cl, 100:0 to 0:100) gave (2)-S23 as a yellow oil (48 mg,
99%).

1H NMR (400 MHz, CD,Cly) 6 7.75 (s, 1H, Hf), 7.52 (t, J = 1.7, 1H, H)), 7.44 (d, J = 1.7, 2H, Hg), 7.41 — 7.37 (m,
2H, H.), 7.35 = 7.27 (m, 3H, Ha, Ho, Ha), 3.19 (d, J = 0.6, 1H, H), 1.36 (s, 18H, Hn).

13C NMR (101 MHz, CD,Cl,) 6 153.3, 144.4, 140.4, 136.9, 136.2, 129.5, 128.9, 128.8, 123.6, 122.1, 115.8,
113.1,84.6,77.4,35.5,31.4.

HR-ESI-MS (+ve): m/z = 384.2438 [M + H]* calc. for Ca6H3oN3 384.2434.
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Figure S137: 'H NMR (CDCl,, 400 MHz, 298 K) of (2)-S23.

210 200 190 180 170 160 150 140 130 120 110 100 90 80
Chemical shift (ppm)

70 60 50 40 30 20 10 O -10

Figure S138: JMOD NMR (CD,Cl, 101 MHz, 298 K) of (2)-523.
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Figure S139: COSY NMR (CD-Cl,, 298 K) of (2)-523.
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Figure $140: NOESY NMR (CD,Cl,, 298 K) of (2)-523.
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Figure S141: HSQC NMR (CDCl,, 298 K) of (2)-S23.
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Figure S142: HMBC NMR (CD,Cly, 298 K) of (2)-523.
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Compound S24

1,5-Dibromopentane g a i k
OO OH K,CO4 \f/OvO OMBr
—_—_— e j
Acetone, 70 °C ¢ b
0“0~ 0“~07d
S8 S24

Phenol S8 (93 mg, 0.41 mmol) and K>COs (0.28 g, 2.1 mmol) were suspended in acetone (4 mL). After 10
min of stirring at rt, 1,5-dibromopentane (0.17 mL, 1.2 mmol) was added and the reaction mixture was
heated at 70 °C overnight. After being cooled at rt, the reaction mixture was filtered over Celite®, the solids
washed with acetone and the filtrate concentrated in vacuo. Chromatography (petrol-Et,0 100:0to 7 : 3)

afforded compound S24 as a colorless oil (123 mg, 80%).

1H NMR (400 MHz, CDCls) § 7.30 (dd, J = 2.3, 1.3, 1H, H, Hc), 7.21 (dd, J = 2.4, 1.4, 1H, Hp), 6.78 (t, J = 2.3,
1H, Ha), 5.23 (s, 2H, He), 3.99 (t, J = 6.3, 2H, Hn), 3.90 (s, 3H, Ha), 3.73 (q, J = 7.1, 2H, Hy), 3.44 (t, J = 6.8, 2H,
H1), 1.94 (dg, J = 7.9, 6.8, 2H, Hy), 1.87 — 1.78 (m, 2H, H), 1.67 — 1.59 (m, 2H, H;), 1.23 (t, J = 7.1, 3H, Hy).

13C NMR (101 MHz, CDCls) 6 166.9, 160.1, 158.4, 132.2, 110.0, 108.6, 108.3, 93.3, 68.1, 64.6, 52.4, 33.7,
32.6, 28.5, 25.0, 15.3.

HR-ESI-MS (+ve): m/z = 397.0620 [M + Na]* calc. for C1gH23BrNaOs 397.0621.
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Figure S143: 'H NMR (CDCls, 400 MHz, 298 K) of S24.
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Figure S144: JMOD NMR (CDCls, 101 MHz, 298 K) of 524.
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Figure S145: COSY NMR (CDCls, 298 K) of S24.
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Figure S146: HSQC NMR (CDCls, 298 K) of S24.
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Figure S147: HMBC NMR (CDCls, 298 K) of S24.
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Compound S26

HO\©/N3

sS4 a f h k
~ 00 O~ Br KCOs oo OO Conc. HCI  HO o\e/\g/\i/o |
—_— R —_— )
Acetone, 70 °C \9/ © 1:1 MeOH/CH,Cl, b~¢c ) m
_ RT, overnight ~d N
oo 0= 0” Na 70% o2s e 3
s24 s25 S26

Phenol S4 (49 mg, 0.37 mmol) was dissolved in acetone (0.5 mL) and K,CO3 (225 mg, 1.63 mmol) was added.
After 5 min of stirring at rt, bromide $24 (123 mg, 0.33 mmol), dissolved in acetone (2.5 mL), was added
and the reaction mixture was heated at 70 °C overnight. After being cooled at rt, the reaction mixture was
filtered over Celite®, the solids washed with acetone and the filtrate concentrated in vacuo.
Chromatography (petrol-Et,0 100 : 0 to 3 : 1) afforded compound $25 which was contaminated with excess
phenol S4.

This material was dissolved in 1:1 MeOH/CH,Cl; (3 mL) and concentrated HCl (0.05 mL) was added. The
reaction mixture was stirred overnight at rt. The reaction mixture was quenched with sat. NaHCOz3(aq) (20
mL). The aqueous phase was extracted with CH,Cl, (3 x 15 mL), the combined organic layers dried (Na;S0a),
and concentrated in vacuo. Chromatography (petrol-Et,O 100 : 0 to 6 : 4) gave S26 as a yellow oil that
solidified on standing over three days at rt (90.5 mg, 75%).

IH NMR (400 MHz, CDCls) § 7.24 (t, J = 8.2, 1H, H)), 7.15 (dd, J = 2.3, 1.3, 1H, Hy), 7.10 (dd, J = 2.4, 1.3, 1H,
Hc), 6.68 (ddd, J = 8.3, 2.4, 0.9, 1H, Hcorm), 6.63 (ddd, J = 8.0, 2.1, 0.9, 1H, Hcorm), 6.60 (t, J = 2.3, 1H, Ha),
6.55 (t,J = 2.2, 1H, H;), 4.00 (t, J = 6.3, 2H, He), 3.98 (t, J = 6.4, 2H, Hi), 3.90 (s, 3H, Hq), 1.86 (dq, J = 8.1, 6.5,
4H, Hy 1), 1.66 (m, 2H, Hg).

13C NMR (101 MHgz, CDCls) 6 166.9, 160.5, 160.4, 156.8, 141.4, 132.3, 130.6, 111.4, 111.3, 109.2, 108.0,
107.1, 105.7, 68.2, 68.0, 52.4, 29.0, 29.0, 22.8.

HR-ESI-MS (-ve): m/z = 370.1413 [M - H] calc. for C1gH20N305 370.1408.
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Figure S148: 'H NMR (CDCls, 400 MHz, 298 K) of S26.
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Figure S149: JIMOD NMR (CDCl3, 101 MHz, 298 K) of S26.
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Figure S150: COSY NMR (CDCls, 298 K) of S26.
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Figure S151: HSQC NMR (CDCls, 298 K) of S26.
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Figure S152: HMBC NMR (CDCls, 298 K) of $26.

Compound S27
a c e j o o
HO OO K,COg3 SN0 OO p
+ AN —— b d ik om
Acetone, 80 °C, 17 h f h n q
COOMe N3 93% o> o~ 9 N3
S26 S27

To a stirred solution of $26 (0.30 g, 0.81 mmol) and 1-bromobutane (0.26 mL, 2.4 mmol) at 80 °C in
acetone (8.0 mL) was added K,COs (0.56 g, 4.1 mmol), and the resulting mixture stirred for 17 h. The
mixture was cooled to rt, filtered through Celite® and concentrated in vacuo. Chromatography (petrol-Et,0

100 :0to 89 : 11) gave S27 as a pale-yellow oil (322 mg, 93%).

1H NMR (400 MHz, CDCls) § 7.23 (t, J = 8.1, 1H, H,), 7.19 — 7.13 (m, 2H, H;, Hy), 6.68 (ddd, J = 8.3, 2.4, 0.8,
1H, Hy), 6.66 — 6.59 (M, 2H, He, Ho), 6.55 (t, J = 2.2, 1H, Hy,), 4.02 (t, J = 6.3, 2H, Hx), 3.98 (t, J = 6.4, 4H, Hq,
H;), 3.90 (s, 3H, Hg), 1.90 — 1.81 (m, 4H, H;, Hy), 1.80 — 1.72 (m, 2H, H.), 1.69 — 1.60 (m, 2H, Hy), 1.54 — 1.44
(m, 2H, Hy), 0.97 (t, J = 7.4, 3H, H.).

13C NMR (101 MHz, CDCl5) § 167.1, 160.4, 160.3, 160.2, 141.4, 132.0, 130.6, 111.4, 111.3, 107.9, 107.7,
106.8, 105.6, 68.2 (x2), 68.0, 52.3, 31.4, 29.1 (x2), 22.9, 19.4, 14.0.

HR-ESI-MS (+ve): m/z = 450.1997 [M + Na]* calc. for Ca3H29N3NaOs 450.1999.
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Figure S153: 'H NMR (CDCls, 400 MHz, 298 K) of S27.
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Figure S154: JMOD NMR (CDClz, 101 MHz, 298 K) of $27.
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Figure S155: COSY NMR (CDCls, 298 K) of $27.
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Figure S156: HSQC NMR (CDCls, 298 K) of S27.
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Figure S157: HMBC NMR (CDCls, 298 K) of S27.
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Rotaxane rac-(Rco-mp,E)-S28

A\ WA
NV COOMe
NH @\
-\ N\
] NN n
By \N \: 0 (o} 0"Bu
HN 7
<!
By N AYS!
S20 N X N~
[Cu(CH5CN)4]PFg |
SN0 OO Ns PryEN
_— rac-(Roo.mp:E)-S28
LooMe DCM, rt, 15 h
S27 73% O"Bu
I o NaN NN o o
Z N <N
N3N { )
Bu
(2)-523 (E)-S30

To a stirred solution of macrocycle $20 (12 mg, 0.025 mmol), [Cu(CH3CN)4]PFs (8.7 mg, 0.023 mmol), alkyne
(2)-S23 (24 mg, 0.062 mmol) and 'Pr EtN (21.5 uL, 0.123 mmol) at rt in CH,Cl> (0.4 mL) was added azide S27
(26 mg, 0.062 mmol) in CH,Cl; (0.6 mL) and the resulting mixture stirred at rt for 15 h. Sat. EDTA-NH3(aq)
(2 mL) was added and the mixture stirred for 1 h at rt. The mixture was diluted with H,0 (20 mL) and the
aqueous layer extracted with CHxCl; (3 x 10 mL). The combined organic layers were dried (Na;SO4) and
concentrated in vacuo. Chromatography (CH,Cl,-MeOH 100 : 0 to 9 : 1) afforded rac-(Rco-mp, E)-S28 as an

off-white foam (23 mg, 73%). An analytical sample of axle (E)-S30 was also obtained as a yellow oil.

14 NMR (400 MHz, CD,Cl,) § 9.37 (s, 1H, Hy), 7.73 (s, 1H, Hu), 7.62 — 7.55 (m, 2H, He, Hs), 7.52 (t, J = 7.7, 1H,
Hg), 7.43 (t,J= 1.7, 1H, H,), 7.38 = 7.03 (m, 19H, Hs, Ho, Hn, Hp, Hy, Hy, Hu, Hy, Ha, He, Ho, Hg, Ho, Hy), 6.73 (d,
J=8.3,2H, Hy), 6.67 (ddd, J = 8.2, 2.4, 1.0, 1H, H,), 6.61 (t, J = 2.3, 1H, H.), 6.40 (d, J = 8.8, 2H, He), 6.27 (d,
J=8.5,2H, Hu), 4.22 — 4.02 (m, 3H, Hr, 1 of HL), 3.97 (t, J = 6.5, 2H, Hg), 3.95 — 3.83 (m, 6H, H, H;, 1 of Hy),
3.71(d,J=13.3, 1H, 1 of Hoorp), 3.65 — 3.48 (m, 3H, 1 of Hoorp, Hoorp), 3.44 (dt, J =9.2, 6.5, 1H, 1 of Hm),
3.33(dt,J=9.2,6.5, 1H, 1 of Hr), 2.09 — 1.55 (m, 14H, He, H;, Hi, Ha, Hy, Hy, Hx), 1.56 — 1.41 (m, 4H, Hy, H)),
1.38 — 1.22 (m, 20H, H,, H,), 0.98 (t, ) = 7.4, 3H, H.).

13C NMR (101 MHz, CD,Cl;) & 167.1, 160.7, 160.6, 160.5, 160.0, 159.6, 159.5, 158.2, 157.3 (X2), 157.0,
152.8, 147.3, 144.4, 138.5, 137.6, 137.4, 137.2, 136.6, 132.4, 132.0, 129.7 (X2), 129.3, 129.1, 128.4, 128.4
(x2), 127.5, 123.2, 123.0, 121.6, 121.4, 120.8, 120.6, 120.3, 114.7, 114.5 (X2), 114.1, 111.8, 108.4, 107.9,
107.8, 106.6, 105.3, 68.5, 68.5, 67.9, 67.5, 65.7, 54.0 (x2,HMBC), 52.5, 35.4, 31.7, 31.5, 29.7, 29.4, 29.2,
284, 26.2, 26.1, 22.8, 19.6, 14.0.

LR-ESI-MS (+ve): m/z = 1290.7 [M + H]* calc. for CgoHg2N9O7 1290.7.
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Figure S158: IH NMR (CD,Cl,, 400 MHz, 298 K) of rac-(E)-S28.
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Figure S159: JMOD NMR (CD,Cl,, 101 MHz, 298 K) of rac-(E)-S28.
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Figure S160: COSY NMR (CD,Cl,, 298 K) of rac-(E)-S28.
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Figure S161: NOESY NMR (CD,Cl,, 298 K) of rac-(E)-S28.

S117

Chemical shift (ppm)

Chemical shift (ppm)



Lo
)

L] o 8@

- ?‘”;ﬁ 'lw

).

100 90 80 70 60 50 40 30 20 10 00 -10
Chemical shift (ppm)
Figure S162: HSQC NMR (CDCl,, 298 K) of rac-(E)-S28.
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Figure 5163: HMBC NMR (CD,Cly, 298 K) of rac-(E)-528.
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Figure S164: LRMS - Observed (top) and calculated (bottom) isotopic pattern for rac-(E)-S28 CgoHg2NoO5.

X
NNN
z NN
\N\©/O\/\/\/O\g\/\/
r
b
~o"No

1H NMR (400 MHz, CDCl,) & 8.24 (s, 1H, Hy), 8.00 (s, 1H, Hs), 7.70 — 7.69 (s, 1H, Hu), 7.53 (t, J = 1.8, 1H, H,),
7.44 —7.43 (m, 2H, H,), 7.42 (t, J = 8.1, 1H, H,), 7.37 (t, J = 2.3, 1H, Hy), 7.35 — 7.25 (m, 6H, H, H:, Hy, H.),
7.14 (dq, J = 2.5, 1.4, 2H, H Hy), 6.98 (ddd, J = 8.3, 2.5, 1.0, 1H, Ho), 6.65 (t, J = 2.4, 1H, Hc), 4.09 (t, J = 6.4,
2H, Hn), 4.02 (t, J = 6.4, 2H, Hi), 3.98 (t, J = 6.5, 2H, Ha), 3.86 (s, 3H, H), 1.94 — 1.83 (m, 4H, H;, Hy), 1.80 —
1.60 (M, 4H, He, Hy), 1.54 — 1.43 (m, 2H, Hb), 1.36 (s, 18H, Hy), 0.97 (t, J = 7.4, 3H, Ha).

13C NMR (101 MHz, CD,Cl,) 6 167.1, 160.7, 160.6, 160.6, 153.3, 148.3, 144.7, 138.5, 137.2, 136.9, 132.4,
131.0, 130.9, 129.6, 128.8, 128.2, 123.6, 122.6, 121.2, 121.1, 115.8, 115.2, 112.6, 108.0, 107.9, 107.1,
106.6, 68.7, 68.6, 68.5, 52.4, 35.5, 31.6, 31.4, 29.3, 29.3, 23.0, 19.6, 14.0.

HR-ESI-MS (+ve): m/z = 811.4538 [M + H]* calc. for CagHsgNeOs 811.4541; m/z = 833.4359 [M + Na]* calc.
for CagHssNgNaOs 833.4361
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Figure S165: H NMR (CDCl,, 400 MHz, 298 K) of (E)-S30.
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Figure S166: JMOD NMR (CD,Cl, 101 MHz, 298 K) of (E)-S30.
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Figure S167: COSY NMR (CD-Cl,, 298 K) of (E)-S30.
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Figure 5168: NOESY NMR (CD2Cl,, 298 K) of (E)-S30.
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Figure S169: HSQC NMR (CDCl,, 298 K) of (E)-S30.
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Figure S170: HMBC NMR (CD,Cla, 298 K) of (£)-S30.
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Pseudo-rotaxane rac-(E)-S29

COOMe E
OWO/Ej\O”Bu 0NN 0"Bu

Bu e
/@\ ij LiAIH,
B ——
t N N
Bu Ms ) } > / THF, 0°C, 30 min \ § > 7\
N ¢ N 46% N

rac-(E)-S29 rac-(E)-S29

Methyl ester-rotaxane rac-(E)-$28 (11 mg, 0.0085 mmol) was dissolved in THF (1.0 mL), cooled to 0 °C and
LiAlH4 (1 M in THF, 0.08 mL, 0.08 mmol) was added dropwise. After 30 min, the reaction mixture was
guenched by slow addition of EtOAc (0.2 mL), stirred at 0 °C for 5 min and warmed to rt. Sat. Rochelle
salt(aq) (1 mL) was added and the mixture stirred for 10 min. H,O (10 mL) was added, the layers separated,
and the aqueous layer extracted with CH,Cl; (3 x 10 mL). The combined organic layers were dried (Na;SOa4)
and concentrated in vacuo. Chromatography (CH,Cl,-MeOH 99:1 to 9:1) gave kinetically trapped

pseudorotaxane rac-(E)-S29 as a colourless film (5 mg, 46%).

N:N
% O\/\/\/O \/\/
HO”?

1H NMR (400 MHz, CD,Cly) 6 9.34 (s, 1H, Hy), 7.72 (s, 1H, Hu), 7.60 (t, J = 7.8, 1H, Hs), 7.57 (s, 1H, HJ), 7.52
(t,J=7.7,1H, Hg), 7.43 (t, J = 1.7, 1H, Hy), 7.35 (dd, J = 7.8, 0.9, 1H, Hc), 7.32 = 7.25 (m, 3H, Hq, Hn, Ha), 7.25
—7.10 (m, 9H, Hy, Hu, Hy, Hy, Ha, Hs), 7.12 - 7.03 (d, 3H, Hp, Hp), 6.72 (d, J = 8.5, 2H, Hy), 6.67 (ddd, J = 8.3,
2.4,0.9, 1H, Ho), 6.48 — 6.45 (m, 2H, H, Hy), 6.41 (d, J = 8.8, 2H, He), 6.31 (t, J = 2.3, 1H, H.), 6.27 (d, J = 8.6,
2H, Hw), 4.54 (s, 2H, Hg), 4.20 — 4.03 (m, 3H, H, 1 of Hy), 3.95 — 3.90 (m, 3H, Hy, 1 of Hy,), 3.83 (dt, J = 9.3,
6.4, 1H, 1 of H), 3.76 (dt, J = 9.3, 6.4, 1H, 1 of H;) 3.68 (d, J = 13.3, 1H, 1 of Ho), 3.63 — 3.46 (m, 3H, 1 of Ho,
Hp), 3.44 (dt, J = 9.3, 6.5, 1H, 1 of Hr), 3.33 (dt, J = 9.3, 6.5, 1H, 1 of Hm), 2.05 — 1.40 (m, 16H, Hy, He, H;, Hi,
Ha, Hy, Hy, Hy), 1.37 = 1.25 (m, 22H, Hy, H,, H)), 0.97 (t, J = 7.4, 3H, Ha).

13CNMR (101 MHz, CD,Cl,) § 160.9, 160.8, 160.0, 159.6, 159.5, 158.1, 157.5 (x2), 157.1, 152.8, 147.4, 145.8,
144.4,144.3, 138.5, 137.6, 137.4, 137.3, 136.6, 132.1, 129.7 (x2), 129.4, 129.2, 128.5, 128.4, 127.5, 123.5,
123.1,123.0,121.7, 121.4, 120.8, 120.6, 120.3, 114.8, 114.6, 114.5, 114.1, 111.9, 105.4 (x2), 105.3, 100.7,
68.2, 68.1, 67.9, 67.6, 65.7, 65.4, 54.1 (x2), 35.4, 31.8, 31.5, 29.7, 29.5, 29.2, 29.2, 28.5, 26.2, 26.1, 22.8,
19.7, 14.0.

LR-ESI-MS (+ve): m/z = 1262.7 [M + H]* calc. for C;5H92NgOg 1262.7.
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Figure S171: IH NMR (CD,Cl,, 400 MHz, 298 K) of rac-(E)-S29.
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Figure S172: JMOD NMR (CD,Cl,, 101 MHz, 298 K) of rac-(E)-529.
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Figure S173: COSY NMR (CD,Cl,, 298 K) of rac-(E)-S29.
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Figure S174: NOESY NMR (CD,Cl,, 298 K) of rac-(E)-S29.
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Figure S175: HSQC NMR (CD,Cl,, 298 K) of rac-(E)-S29.
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Figure S176: HMBC NMR (CD,Cly, 298 K) of rac-(£)-529.
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Figure S177: LRMS - Observed (top) and calculated (bottom) isotopic pattern for rac-(E)-S29 C79Hg1NoOs.
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Azide S31

a c e j o o
HO OO0 K,CO4 SN0 OO p
+ /\/\Br —_— b d i k m
Acetone, 80 °C, 16 h N h n q
OH N3 88% g “oH N
S12 S31

To a stirred solution of S12 (0.15 g, 0.44 mmol) and 1-bromobutane (0.14 mL, 1.3 mmol) at 80 °C in
acetone (4.4 mL) was added K,COs (0.30 g, 2.2 mmol), and the resulting mixture stirred for 29 h. The
mixture was cooled to rt, filtered through Celite® and concentrated in vacuo. Chromatography ("hexane-

Et,0 100:0 to 1:1) gave compound S31 as a pale yellow oil (153 mg, 88%).

1H NMR (400 MHz, CDCls) & 7.24 (t, J = 8.2, 1H, H,), 6.68 (ddd, J = 8.3, 2.4, 0.9, 1H, H), 6.63 (ddd, J = 8.1,
2.2,0.9, 1H, H,), 6.55 (t, J = 2.2, 1H, H,), 6.52 — 6.49 (m, 2H, Hj, H), 6.38 (t, J = 2.3, 1H, He), 4.62 (d, J = 4.1,
2H, Hg), 3.98 (app. td, J = 6.4, 1.3, 4H, H;, Hin), 3.95 (t, J = 6.5, 2H, Hy), 1.89 — 1.81 (m, 4H, H,, H)), 1.79 — 1.70
(m, 2H, Hc), 1.68 — 1.60 (m, 2H, Hy), 1.53 — 1.44 (m, 2H, Hy), 0.97 (t, J = 7.4, 3H, H.).

13C NMR (101 MHz, CDCl5) 6 160.7, 160.6, 160.4, 143.4, 141.4, 130.6, 111.4, 111.3, 105.7, 105.3, 105.2,
100.7, 68.1, 67.9 (x2), 65.6, 31.5, 29.1, 29.1, 22.9, 19.4, 14.0.

HR-ESI-MS (+ve): m/z = 422.2045 [M + Na]* calc. for C2oH29N3NaO4 422.2050.
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Figure S178: 'H NMR (CDCls, 400 MHz, 298 K) of S31.
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Figure $179: JMOD NMR (CDCl;, 101 MHz, 298 K) of S31.
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Figure S180: COSY NMR (CDCls, 298 K) of $31.
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Figure S181: HSQC NMR (CDCls, 298 K) of S31.
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Figure $182: HMBC NMR (CDCls, 298 K) of S31.
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Non-interlocked axle (E)-S32

N\ _Z [CU(CH,CN)PFs v (( =\
‘/ﬁ/ ’ "PrSZEtN4 ° 2 NEN N
_——— w%’\.‘ n 7 J e c a
N3 OO O~ DCM, rt, 14 h 30 /) NN OO O~
(Z)'323 \© \@/ 73% v , s r (:@: m k i h\gf d b
1 o (E)-S32 ’ HO™*
Alkyne (2)-S23 (25 mg, 0.065 mmol), azide S31 (24 mg, 0.059 mmol), [Cu(CH3CN)4]PFs (4 mg, 0.01 mmol)
and TBTA (4 mg, 0.008 mmol) were dissolved in CH,Cl; (1.0 mL), EtsN (41 uL, 0.24 mmol) was added and
the reaction mixture stirred at 30C for 15 h. The reaction mixture was diluted in EtOAc (40 mL) and the
organic layer washed with EDTA-NH3(q) (0.1 M, 3 x 40 mL), H,O (40 mL), NH4Cl (1 M, 3 x 40 mL) and
brine (40 mL). The organic layer was dried (Na;SO4) and concentrated in vacuo. Chromatography ("hexane-

Et,0 100 : 0 to 8 : 2) afforded (E)-S32 as a pale red powder (42 mg, 90%).

1H NMR (400 MHz, CD,Cly) 6 8.22 (s, 1H, Hy), 8.00 (s, 1H, Hs), 7.68 (s, 1H, Hw), 7.52 (t, J = 1.7, 1H, H,), 7.43
(d,J=1.7,2H, Hy), 7.42 (t, J = 8.2, 1H, H,), 7.36 (t, J = 2.2, 1H, Hy), 7.35 — 7.24 (m, 6H, Hq, Hy, Hu, H.), 6.98
(ddd, J = 8.3, 2.5, 1.0, 1H, Ho), 6.50 - 6.46 (m, 2H, Hs, Hy), 6.35 (t, J = 2.3, 1H, He), 4.58 (d, J = 5.5, 2H, H,),
4.08 (t,J= 6.4, 2H, Hn), 3.98 (t,J = 6.4, 2H, H)), 3.93 (t, J = 6.5, 2H, Hy), 1.93 — 1.81 (m, 5H, How, H;, H), 1.77
—1.62 (M, 4H, H, Hy), 1.52 — 1.42 (m, 2H, Hy), 1.35 (s, 18H, H,), 0.96 (t, J = 7.4, 3H, Ha).

13C NMR (101 MHz, CD,Cl;) 6 161.0, 160.9, 160.6, 153.4, 148.3, 144.7, 144.1, 138.6, 137.2, 137.0, 131.1,
130.9, 129.6, 128.9,128.2, 123.6, 122.6, 121.2,121.1, 115.8, 115.3, 112.6, 107.2, 105.3, 105.3, 100.7, 68.8,
68.2, 68.2, 65.5, 35.5, 31.7, 31.4, 29.4, 29.3, 23.0, 19.7, 14.0.

HR-ESI-MS (+ve): m/z = 783.4593 [M + H]* calc. for CagHsoNeO4 783.4592.
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Figure S183: 1H NMR (CD,Cl,, 400 MHz, 298 K) of (E)-S32.
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Figure S184: JMOD NMR (CD,Cl, 101 MHz, 298 K) of (E)-S32.
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Figure S185: COSY NMR (CD-Cl,, 298 K) of (E)-S32.
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Figure S186: NOESY NMR (CD2Cl,, 298 K) of (E)-S32.

5133

2.0

1.5

1.0

0.5

Chemical shift (ppm)

Chemical shift (ppm)



[

)

=TT

i

85 80 75 7.0 65 6.0

Figure S187: HSQC NMR (CDCl,, 298 K) of (E)-S32.
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7. RACEMISATION OF CATENANE 5
7.1. Racemisation of catenane 5

As noted above, the enantiomers of catenane 5 underwent racemisation when heated in CD,Cl; (Scheme
S9); CSP-HPLC analysis indicated that the enantiopurity fell from 98% ee for both to (Smp)-5 and (Rmp)-5 to
93% and 91% ee respectively, based on the peaks assigned as Eco-c (Figure S129). Further heating of (Rmp)-
5 (323 K, CD,Cl;) in an NMR tube fitted with a J Young tap sealed NMR tube led to further erosion of
stereopurity; after 4 days the stereopurity of (Eco-c)-5 was found to fall to 86% ee from 91% ee and after a
further 6 days a value of 83% ee was obtained (Figure 189). The loss of enantipurity was accompanied by
noticeable decomposition; a small but significant peak was observed that contains the molecular ion

corresponding to non-interlocked bipyridine macrocycle S20.

q
CH,OH  mechanical enantiomers CH,OH

shuttling
~

double bond
Ph "rotation"

(Smp+Eco-c)-5 (Rmp:Eco-c)5

Scheme S9: The racemisation process observed and schematic of the processes that must take place for this to occur.
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Figure 189: CSP-HPLC (loaded in Et,0, Chiralpak IK, 40 °C, 125 BarG, isocratic 50 : 50 MeOH : CO, (0.1% v/v NH3), 4 mL.mint,
1 mL injected ) of (Rmp,Eco-c)-5 after heating for 10 days at 323 K. The peak at 3.89 was found to contain a mass ion whose
m/z corresponds to non-interlocked macrocycle S20.

Interestingly, CSP-HPLC analysis of the samples heated at 323 K also indicated the disappearance of the
minor Ze,. diastereomer (Figure 189). 'H NMR analysis of samples after heating at 323 K corroborated the
disappearance of (Z..c)-5 (Figure $190); signals attributed to this species were present after heating the
sample at 303 K but largely absent after heating at 323 K. We also observed changes in the chemical shift

of the protons in the bipyridine macrocycle (e.g. Hu, Hwn, Ho, Hp) close to the amine unit, as well as changes
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in the signal attributed to benzylic protons H, of the triazole containing ring. We hypothesised that the
observed changes may be due to the slow evolution of DCI by decomposition of the solvent. In keeping
with this, filtration of the sample obtained after 10 days heating at 323 K through solid K,CO3 restored the

appearance of the *H NMR spectrum of catenane 5.
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Figure $190: Stack plot of *H NMR (CD,Cl, 500 MHz, 298 K) of (Rmp,Eco-c)-4 measured a) before heating at 30 °C, b) the same
sample after 144 h at 30 °C, c) the same sample after 10 days at 50 °C and d) the same sample after filtration over K,COs.

CD analysis of the samples of (Rmp)-5 after heating at 303 K for 6 days followed by 4 and 6 further days of
heating at 323 K showed the expected slow decrease in the CD intensity (Figure S191). However,
counterintuitively, the intensity of the CD signal obtained for the as-synthesised sample (98% ee) was lower
than these samples assessed to have lower enantiopurity. Once again, this contradiction was explained by
the protonation of catenane 5 on heating in CD,Cl,; when the sample obtained after heating at 323 K for
10 days was filtered through solid K,COs its intensity fell, suggesting that protonation of 5 increases its CD
response. Furthermore, addition of AcOH (1 drop) to this sample led to a significant increase in its CD signal,

which was once again reversed on addition of NEt; (2 drops).
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Figure S191: a) Evolution of the circular dichroism spectrum of (Rmp,Eco-c)-4 (Orange curve) unheated, (Blue curve) after 6 days
at 30 °C, (Red curve) after 10 days at 50 °C and (Green curve) after 10 days at 50 °C and filtration over K,COs3, 21 uM in CH3CN,
293 K; b) Evolution of the circular dichroism spectrum of (Rmp,Eco-c)-4 (Green curve) after 10 days at 50 °C and filtration over
K,CO;3, followed by successive addition of (Red curve) acetic acid and (Orange curve) triethylamine, 21 uM in CH3CN, 293 K.

Taken together, the above experimental data confirms that catenane 5 undergoes a slow racemisation
process on heating in CD,Cls. This process slows over time and the co-conformational equilibrium also shifts
to favour the E..c isomer. We tentatively propose that all of these observations can be attributed to the
evolution of DCl by decomposition of the solvent. The racemisation process itself can be rationalised by
the reversible protonation of the alkene to produce a cation what can undergo single bond rotation to
generate the opposite geometric isomer (Scheme S10). This could occur with or without reversible trapping
of the stabilised cation by adventitious H,O (see below). The shift in the co-conformational equilibrium can
also be attributed to protonation of catenane 5, which would also alter the rate of racemisation;
protonation of the amine unit, which is expected to be thermodynamically favourable, can also be expected

to alter the kinetics of double bond protonation.

CH,OH CH,OH
o o
(3 (2
+D* H*

o) fort) o

@\ HN ~ HN
Ny }/—\\ " 27\\
NN NG

Ph

Ph
(Smvaco-c)'s
\‘, 1\ -D* (or H*)

1 enantiomers
H

CH,OH

("?m[:nzco-c)'5

Scheme S10: Tentative mechanism of isomerisation for catenane 5
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In addition to the evidence presented above for the evolution of DCl in situ (changes in the *H NMR and CD
spectra of catenane 5 after filtration through K,COs), further support for this proposal was found through
the synthesis and analysis of model rotaxane (Rmp,Eco-c)-536 (Scheme S11) The bipyridine macrocycle of
(Rmp,Eco-c)-S36 cannot exchange between the triazole compartments of the axle due to the steric bulk of
the styrene moiety. However, on standing in CDCl; a second set of signals that are consistent with the
(Rmp,Zco-c)-S36 isomer were observed to appear, which is consistent with double bond isomerisation, which
interestingly corresponds to inversion of both the co-conformational covalent stereogenic unit and the
mechanical stereogenic unit. Further heating of this sample did not cause any further change, consistent

with an equilibrium having been established.

(RmpEcoc)-S34 (SmpZco-c)-S34

Scheme S11: Tentative mechanism of isomerisation for catenane 5

Furthermore, during attempts to grow crystals suitable for x-ray diffraction from (S,Rmp,Eco-c)-S34, the
precursor to (Rmp,Eco-c)-536, we were surprised to obtain a structure that contains the product of double
bond isomerisation (S,Smp,Zco-c)-S34 and hydration (S,Sce-mp)-S39) (see Section 3 for further details). The
observation of these species lends support to the proposal that racemisation of catenane 5 may occur via

reversible double bond hydration.

observed by SCXRD

[BUHOHzc—?n VI BU ipexane, Bu
N %EL CH2Cl2,
Bu AR By MeOH, rt Bu
Ny %\\ B e,
oy W
|
(S.Rmp:Eco-c)-534 (S:Sco-mp)-S39 (S:SmpZeo-c)-S34

Scheme S12: Observed conversion of (S,Rmp,Eco-c)-S34 t0 (S,Smp,Zco-c)-534 and (S,Rco-mp)-S39.
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7.2. Synthesis of rotaxane (Rmp,Eco-c)-S36

Ny N O | 1) [Cu(CH3CN),]PFg
Z YN >
By d NN 2) TMSCHN, N
s21 \_/JJ
0 (2)-s23 (S,SmpEo0-c)833

DMSO, (COCl),

Ph
(SrRmvaco-c)'S35 (Sv"?mprEco-c)'S:',’4

(Rinp+Eco-c)-836
Scheme S13: Synthesis of rotaxane (Rmp,Eco-c)-S36
Rotaxane (S,Smp,Eco-c)-S33

Bn \_: n 1) [Cu(CH4CN)4]PFg
- < .
HOC— FN N iPrEtN

[Bu 1
NeNo Bu CH,Cly, t, 64 h
N2 7z Y N; >
B | \-/_/J By 2) TMSCHN,
o)
s21
(2) (S

1:1THF-MeOH, rt, 18.5 h
42% oys
-S23 )-2 (S,Smp:Eco-c)-833

Macrocycle (S5)-2 (50 mg, 0.080 mmol), alkyne (2)-S23 (51 mg, 0.13 mmol), azide $21 (28 mg, 0.12 mmol)
and [Cu(CH3CN)s]PFs (28 mg, 0.075 mmol) were dissolved in CH,Cl> (3.0 mL) and 'PrEtN (69.5 ulL,
0.399 mmol) was added. The dark orange solution was stirred 64 h at rt before being quenched by addition
of sat. EDTA-NH3(aq) (3 mL) and stirring in air for 3.5 h. The reaction mixture was diluted with H,O (30 mL)
and the aqueous layer extracted with CH>Cl, (3 x 15 mL). The combined organic layers were dried (Na;SOa4)
and concentrated in vacuo. The residue was dissolved in THF-MeOH (1 : 1, 5.0 mL) and TMSCHN; (2 M in
hexanes, 0.21 mL, 0.42 mmol) was added. The reaction mixture was stirred at rt for 18.5 h then
concentrated in vacuo. Chromatography (petrol-acetone 100 : 0 to 9 : 1) gave [2]rotaxane (S,Smp,Eco-c)-S33

as a yellow foam (42 mg, 42%, 95 : 5 dr Figure S193).
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1H NMR (400 MHz, CDCls) & 9.88 (s, 1H, Ha), 8.42 (s, 1H, H)), 7.63 (t, J = 7.8, 1H, Hg), 7.43 (s, 1H, H.), 7.39 —
7.35 (m, 2H, Hy, Ha), 7.34 = 7.28 (m, 6H, He, H;, Hc, Hx), 7.25 (dd, J = 7.8, 1.1, 1H, Hy), 7.23 — 7.09 (m, 9H, Hs,
H:, Hg, Hn, Hs, Hr), 7.02 (dd, J = 7.7, 1.1, 1H, Hw), 6.96 (d, J = 8.8, 2H, Hp), 6.87 (dd, J = 7.8, 1.7, 2H, Hg), 6.72
(d, J = 8.4, 2H, Hy), 6.49 (d, J = 8.8, 2H, Hg), 6.00 (d, J = 8.5, 2H, Hy), 4.40 (td, J = 9.2, 8.7, 4.5, 1H, 1 of Hy),
4.06 (m, 2H, 1 of He, 1 of HL), 3.93 — 3.85 (m, 2H, 1 of Hr, 1 of Ho), 3.75 (d, J = 11.8, 1H, 1 of Hy), 3.65 (s, 3H,
Hu), 3.38 (dd, J = 11.6, 3.0, 1H, Hp), 3.33 (d, J = 11.9, 1H, 1 of Hy), 3.20 (t, J = 12.3, 1H, 1 of Hq), 2.87 (d, J =
13.2, 1H, 1 of Ho), 2.68 (dd, J = 13.1, 3.0, 1H, 1 of Ha), 2.32 — 2.19 (m, 1H, 1 of Hy), 2.15 — 2.03 (m, 1H, 1 of
Hy), 2.02 — 1.58 (m, 7H, He, Hy, 1 of H), 1.58 — 1.45 (m, 1H, 1 of Hy), 1.25 (s, 18H, Hi), 1.14 (s, 18H, Ha).

13C NMR (101 MHz, CDCl5) 6 171.5, 159.8, 159.4, 158.3, 157.9, 157.8, 157.7, 152.3, 150.5, 147.2, 144.8,
138.3, 137.3, 137.0, 136.5, 136.3, 136.1, 131.0, 130.1, 129.9, 129.6, 129.1, 129.0, 128.4, 127.9, 127.6,
127.1,126.6,126.3,122.7,122.2,121.5,121.2,121.0, 120.6, 120.5, 120.1, 114.8, 113.8, 113.3, 113.2, 67 .4,
65.1, 63.2,57.2,55.3,51.1, 37.6, 35.1, 35.0, 31.6, 31.4, 29.7, 29.1, 28.1, 25.7, 25.7.

LR-ESI-MS (+ve): m/z = 1256.8 [M + H]* calc. for Cg1Hy93sNgO4 1256.7.
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Figure $192: 'H NMR (CDCls, 400 MHz, 298 K) of (S,Smp,Eco-c)-533 (95 : 5 dr).
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Figure $193: Partial IH NMR (CDCls, 400 MHz, 298 K) of (S,Smp,Ecoc)-S33 (95 : 5 d.r.).
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Figure $194: JMOD NMR (CDCls, 101 MHz, 298 K) of (S,Smp,Ecoc)-533 (95 : 5 d.r.).
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Figure 195: COSY NMR (CDCls, 298 K) Of (S,Smp,Eco)-533 (95 : 5 d.r.).
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Figure 196: HSQC NMR (CDCls, 298 K) of (S,Smp, Eco-c)-533 (95 : 5 d.r.).

S142

r10
r20
r30
r40
r50
r60
r70
r80
r90
r100
r110
r120
r130
r140
r150
r160
r170
r180
r190
-200

Chemical shift (ppm)

Chemical shift (ppm)



= e o - o

-+ @

% o 0™ o e o ®

= b

= : ’ : A

= ] L] ® o C
o

10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0

Chemical shift (ppm)

Figure 197: HMBC NMR (CDCls, 298 K) of (S,Smp,Eco-c)-S33 (95 : 5 d.r.).
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Figure 198: LRMS - Observed (top) and calculated (bottom) isotopic pattern for (S,Smp,Eco-c)-S33 Cg1Ho3NgOa.
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Figure 199: CSP-HPLC of S33 (loaded in Et,0). SSWhelk, "hexane-EtOH 80 : 20, flowrate 1 mLmin. (top) (S,Smp,Eco-c)-S33
(11.28 min, 95.2%), (S,Rmp,Ecoc)-533 (14.34 min, 4.8%); (bottom) (RAC)-(S,SmpsEcoc)-533: (S,Smp,Ecoc)-S33 (11.27 min, 47.9%),

(R,SmprEco-c)-533 (13.13 min, 2.2%), (S,Rmp,Ecoc)-533(14.34 min, 2.2%), (R,Rmp,Ecoc)-533 (16.64 min, 47.7%).
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Figure 200: Circular dichroism spectra (23.9 uM in CHCls, 298 K) of (S,Smp,Eco-c)-S33 (95:5 d.r.).
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Rotaxane (S,Rmp,Eco-c)-S34

LiAIH,

—_—
THF, 0Ctort, 1h
75%

(S:Smp:Eco-c)-S33 (S:Rmp:Eco-c)-S34

Rotaxane (S,S5mp,Ecoc)-S33 (61 mg, 0.048 mmol) was dissolved in THF (5.0 mL), the solution cooled to 0 °C
before a LiAlH4 (1 M in THF, 0.15 mL, 0.15 mmol) was added dropwise. The reaction mixture was stirred at
0 °C for 5 min then 1 h at rt. The reaction mixture was cooled at 0 °C before addition of H,0 (20 mL). The
aqueous layer was extracted with CH,Cl; (3 x 10 mL) and the combined organic layers dried (Na,SO4) and
concentrated in vacuo. Chromatography ("hexane-EtOAc 100 : 0 to 7 : 3) gave (S,Rmp,Eco-c)-S34 as a beige
foam (44 mg, 75%).

1H NMR (400 MHz, CDCl3) 6 9.84 (s, 1H, Ha), 7.99 (s, 1H, Hi), 7.74 (t, J = 7.7, 1H, Hg), 7.66 (d, J = 1.7, 2H, He),
7.54 (d,J = 1.7, 2H, H)), 7.52 (dd, J = 7.9, 0.9, 1H, Ha), 7.50 (t, J = 7.8, 1H, Hx), 7.46 (t, J = 1.7, 1H, Hy), 7.36
(dd, J=7.9,0.9, 1H, Hw), 7.31 — 7.18 (m, 6H, Hy, Hy, Hc, Hs, Hr), 7.15 (d, J = 8.7, 2H, Hp), 7.09 — 6.96 (m, 5H,
H:, Hn Hg), 6.87 —6.83 (m, 2H, Hg), 6.76 (d, J = 8.5, 2H, Hy), 6.71 (s, 1H, He), 6.35 (d, J = 8.7, 2H, He), 6.29 (d,
J=8.6,2H, Hw), 4.14 — 4.02 (m, 3H, Hr, 1 of Hy), 3.86 (d, J = 12.1, 1H, 1 of Hy), 3.84 —3.79 (m, 2H, 1 of Hy, 1
of Ho), 3.59 (d, J = 12.0, 1H, 1 of Hy), 3.35 (t, J = 10.0, 1H, 1 of Hy), 3.20 (dt, J = 17.1, 7.1, 2H, How, 1 of Hy),
3.13(d,J=13.1, 1H, Ho), 3.04 (dd, J = 13.2, 4.1, 1H, 1 of Hg), 3.01 — 2.89 (m, 1H, Hp), 2.41 (dd, J = 13.2, 10.0,
1H, 1 of Hq), 1.98 — 1.47 (m, 10H, He, Hy, Hi, Hy, Hy), 1.38 (s, 18H, H), 1.17 (s, 18H, Ha).

13C NMR (101 MHz, CDCl5) 6 159.5, 159.3, 159.2, 158.9, 157.9, 157.6, 152.6, 151.4, 147.0, 144.0, 139.5,
137.6, 137.2, 137.1, 137.0, 136.8, 131.4, 129.9, 129.8, 129.5, 129.2, 128.6, 128.5, 128.1, 127.6, 126.7,
126.3, 125.6, 122.5, 122.3 (x2), 122.0, 121.6, 121.0, 120.2, 120.0, 114.9, 114.7, 114.6, 114.0, 67.8, 65.4,
61.4,60.5, 56.7,53.3, 35.3, 35.1, 31.8, 31.6, 31.4, 29.2, 29.1, 28.1, 25.6, 25.5.

LR-ESI-MS (+ve): m/z = 1228.8 [M + H]* calc. for CgoHg3sNgO4 1228.7.
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Figure 201: TH NMR (CDCls, 400 MHz, 298 K) of (S,Rmp,Eco-c)-534.
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Figure 202: JMOD NMR (CDCls, 101 MHz, 298 K) of (S,Rmp,Ecoc)-S34.

S146



NN L.. — -
-

r10

10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0
Chemical shift (ppm)

Figure 203: COSY NMR (CDCls, 298 K) of (S,Rmp,Eco-c)-S34.
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Figure 204: HSQC NMR (CDCls, 298 K) of (S,Rmp, Ecoc)-S34.
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Figure 205: HMBC NMR (CDCls, 298 K) Of (S,Rmp, Eco-c)-S34.
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Figure 206: LRMS - Observed (top) and calculated (bottom) isotopic pattern for (S,Rmp, Eco-c)-S34 CgoHa3NgOs.
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Figure 207: CSP-HPLC of (S,Smp,Ecoc)-S34 (loaded in Et,0). SSWhelk, "hexane-EtOH 80 : 20, flowrate 1 mLmin-1. (Top)
(S,Rmp,Eco-c)-S34 (12.16 min, > 99.9%); (Middle) rac-(S,Rmp,Eco-c)-S34 : (S,Rmp,Eco-c)-534 (12.22 min, 48.8%), (R,Smp,Eco-c)-S34
(17.02 min, 51.2%).
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Figure 208: Circular dichroism spectra (27.1 uM in CHCls, 298 K) of (S,Rmp,Eco-c)-S34.
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Rotaxane (Rmp,Eco-c)'S36

N
(COCl),, DMSO AcOH N:N\
CH,Cl,, 3 h CHCIg, t, 16
(S,Ruo,Eooc)-534 78Ctort, 3h (S,Ruo,Eooc)-S35 S1% (RuupsEvo.c)-S36
»Rmp:Eco-c. »RmpsEco-c. mp>Eco-c.

DMSO (0.12 mL, 1.7 mmol) was added dropwise to a solution of oxalyl chloride (0.07 mL 0.8 mmol) in CH,Cl>
(3.0 mL) at -78 °C and the reaction mixture was stirred for 10 min. An aliquot of this solution (1.0 mL) was
added to rotaxane (S,Rmp,Eco-c)-534 (84 mg, 0.26 mmol) was dissolved in CH,Cl, (0.5 mL) at -78 °C followed
by EtsN (0.14 mL, 1.0 mmol) and the reaction mixture was stirred for 5 min before the flask was removed
from the -78 °C bath. After 3 hours at rt, the reaction was diluted with CH,Cl, (30 mL) and the organic layer
washed with sat. NaHCOs (20 mL). The layers were separated, and the aqueous layer was extracted with
CH,Cl2 (2 x 10 mL). The combined organic layers were dried (Na;SO.) and concentrated in vacuo. The
residue, containing aldehyde rotaxane (S,Rmp,Eco-c)-S35, was dissolved in CHCl; (10 mL) and glacial AcOH
(1.0 mL) was added. The reaction mixture was stirred overnight at rt then diluted with CH,Cl; (20 mL),
washed with NaHCO3sat) (20 mL), and the aqueous layer extracted with CHxCl; (2 x 10 mL). The combined
organic layers were dried (Na,S0O4) and concentrated in vacuo. Two rounds of chromatography (1°: petrol-
acetone 95 : 5 to 15 : 85; 2": "hexane-Et,0 1 : 1 to 0 : 100) gave rotaxane (Rmp,Eco-c)-S36 as a pale yellow
foam (38 mg, 51%).

J K

1H NMR (400 MHz, CDCl3) § 9.72 (s, 1H, Ha), 7.71 (s, 1H, H;), 7.55 — 7.50 (m, 4H, Hc, Hs, Hr), 7.48 (s, 1H, He),

7.39 (t,J= 1.7, 1H, Hy), 7.33 = 7.28 (m, 2H, Hc, Ha), 7.19 (dd, J = 7.9, 1.0, 1H, Hs), 7.18 — 7.10 (m, 8H, Ho, Hs,
Hq, Hy, Hj), 7.09 (dd, J = 7.8, 0.9, 1H, Ha), 7.04 (d, J = 8.6, 2H, Hp), 6.72 (d, J = 8.5, 2H, Hy), 6.40 (d, J = 8.7,
2H, He), 6.28 (d, J = 8.5, 2H, Hy), 4.26 —4.16 (m, 2H, 1 of H, 1 of Hy), 4.08 (dt, J= 10.1, 6.1, 1H, 1 of H¢), 3.97
(dt, J=9.3,4.9, 1H, 1 of H), 3.72 (d, J = 13.6, 1H, 1 of Ho), 3.59 (d, J = 14.5, 1H, 1 of Hp), 3.56 (d, J = 14.5,
1H, 1 of Hp), 3.51 (d, J = 13.6, 1H, 1 of Ho), 2.16 — 1.56 (m, 10H, He, H, Hi, Hy, Hy,), 1.30 (s, 18H, H)), 1.12 (s,
18H, H.).

13C NMR (101 MHz, CDCl5) 6 160.6, 159.9, 159.3, 157.8, 157.3, 156.8, 152.3, 151.1, 147.1, 144.4, 137.2,
137.1, 137.1, 136.7, 136.5, 131.6, 130.2, 129.5, 129.3, 129.2, 128.1, 128.0, 127.0, 123.2, 123.1, 122.4,
121.5,121.1,120.4,120.3,120.2, 119.9, 114.6, 114.3, 113.9, 113.8, 67.7, 65.6, 54.1, 54.0, 35.2, 35.0, 31.5,
31.4,29.4,29.2,28.2,25.7 (x2).

LR-ESI-MS (+ve): m/z = 1094.7 [M + H]* calc. for C71Hg3sNsO, 1094.7.
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Figure 209: TH NMR (CDCls, 400 MHz, 298 K) of (Rmp,Eco-c)-S36.
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Figure 210: JMOD NMR (CDCls, 101 MHz, 298 K) of (Rmp,Eco.c)-536.
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Figure 211: COSY NMR (CDCls, 298 K) of (Rmp,Eco-c)-S36.
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Figure 212: HSQC NMR (CDCls, 298 K) of (Rmp,Eco-c)-S36.
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Figure 213: HMBC NMR (CDCls, 298 K) Of (Rmp, Eco.c)-S36.
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Figure 214: NOESY NMR (CDCl3, 298 K) of (Rmp,Eco-c)-S36.
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Figure 215: LRMS - Observed (top) and calculated (bottom) isotopic pattern for (Rmp,Eco-c)-S36 C71Hg3NgO».
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Figure 216: CSP-HPLC of S36 (loaded in Et,0). SSWhelk, "hexane-EtOH 85 : 15, flowrate 1 mLmin-1. (top) (Rmp,Eco-c)-S36
(10.92 min, 96.0%); (bottom) (Rac)-(Rmp,Eco-c)-S36: (Rmp,Eco-c)-536 (10.82 min, 50.0%), (Smp,Eco-c)-S36 (12.24 min,
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Figure 217: Circular dichroism spectra (26.7 uM in CHCls, 298 K) of (Rmp,Eco-c)-S36 (96 : 4 e.r.).

raC'(Rmp,Eco-c)'sss

/\
Cu(CH4CN),IPFe
\/H/ PrzEtN
CH ,Clo. 1t, 16 h

73%

(2)-s23
$20 rac-(RipsEco-c)-S36

Macrocycle $20 (18 mg, 0.037 mmol), alkyne (2)-S23 (15 mg, 0.039 mmol) and [Cu(CH3CN)4]PFs (13 mg,
0.034 mmol) were dissolved in CHxCl, (0.5 mL). Azide $21 (10 mg, 0.043 mmol) was added as a solution in
CH,Cl, (1.0 mL), followed by N'Pr;Et (31.0 uL, 0.178 mmol). The dark red solution was stirred overnight at
rt then sat. EDTA-NH3(aq) (2 mL) was added and the mixture stirred under air for 3 h. The reaction mixture
was diluted with H,0 (20 mL), the phases separated and the aqueous layer extracted with CH,Cl; (3 x 10
mL). The combined organic layers were dried (Na;SO4) and concentrated in vacuo. Chromatography
(CH2Cl,-MeOH 100 : 0 to 9 : 1) gave rac-(Rmp,Eco-c)-S36 as pale yellow powder (29 mg, 73%). All analytical
data (with the exception of CSP-HPLC) were identical to those obtained for (Rmp,Eco-c)-536.
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8. SINGLE CRYSTAL X-RAY DIFFRACTION ANALYSIS OF CATENANE RAC-(S,Swe,Eco-c)-4 AND ROTAXANE S36
8.1. Catenane rac-(S,Smp,Eco-c)-4

Suitable single crystals of rac-(S,Smp,Eco-c)-4 Were grown by slow evaporation of a Et,0 solution in the fridge.
Data were collected at 100 K using a Rigaku 007HF diffractometer with Arc)Sec VHF Varimax confocal
mirrors, a UG2 goniometer and HyPix 6000HE detector. Cell determination, data collection, data reduction,
cell refinement and absorption correction were performed with CrysAlisPro. The crystal structure was
solved using Olex2* with SHELXT*? dual methods and refined against F2 with SHELXL® refinement package
using anisotropic thermal displacement parameters for all non-hydrogen atoms. H atoms were placed in
calculated position and refined using a riding model. Data Intensity fell off sharply at higher angles and so

data were processed with a 0.88A resolution limit.

Responses to A and B alerts raised by CheckCIF (also embedded in the CIF file):
PROBLEM (A alert): Solvent accessible void(s) in structure.

RESPONSE: The void was investigated but no significant electron density was found.
PROBLEM (B alert): The value of sine(theta_max)/wavelength is less than 0.575.

RESPONSE: The diffraction intensity fell off sharply with increasing resolution and so the max data
resolution was cut to F?/sigma F? > 2 during data processing.

Figure S218: Solid state structure of catenane rac-(S,Smp,Eco-c)-4. shown as ball and stick mode with H-atoms omitted for
clarity.
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Compound
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group

a/A

b/A

c/A

af°

8/°

v/°

Volume/A3

z

pcalc/g cm3
u/mm-t

F(000)

Crystal size/mm3
Radiation

20 range for data collection/®

Index ranges

Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F2

Final R indexes [I>=20 (1)]
Final R indexes [all data]
Largest diff. peak/hole / e A3
CCDC Deposition Number

(S,Smp,Eco-c)-4
C87H99N9035i

1426.84

100(2)

trigonal

R-3

56.6971(14)

56.6971(14)

12.7862(3)

90

90

120

35595.5(19)

18

1.198

0.751

13716.0

0.05 x 0.02 x 0.005

CuKq (A = 1.54178)

5.400 to 122.278
-64<h<50,-64<k<64,-143<1<14
47912

12150 [Rint = 0.1147, Rsigma = 0.0795]
12150/0/952

1.028

R;=0.0683, wR, =0.1668
R;=0.1218, wR, =0.1980
0.440/-0.550

2207578
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8.2. Crystals grown from rac-(S,Rmp,Eco-c)-S34
Single crystals were grown by slow diffusion of "hexane into 9 : 1 CH,Cl,-MeOH solution of rac-
(S,Rmp,Eco-c)-S34 at rt. Data were collected at 100 K using a Rigaku 007HF diffractometer with HF Varimax
confocal mirrors, a UG2 goniometer and HyPix 6000HE detector. Cell determination, data collection, data
reduction, cell refinement and absorption correction were performed with CrysAlisPro. The crystal
structure was solved using Olex2! with SHELXT*? dual methods and refined against F? with SHELXL'3
refinement package using anisotropic thermal displacement parameters for all non-hydrogen atoms. H
atoms were placed in calculated position and refined using a riding model. Two tBu groups are disordered
over two positions (ca.64:36 and ca. 62:38). Thermal restraints have been applied to all disorder
components and 1,2 and 1,3 equal distance geometric restraints have been applied to all equivalent atom
pairs of the disorder components. Solvent masking was applied to eliminate the electronic contribution

equivalent to two solvent pentane per asymmetric unit.

Figure S219: Solid state structure of the asymmetric unit obtained, shown as ball and stick mode with H-atoms and solvent
pentane omitted and minor disorder components 'ghosted' for clarity.

The solid-state structure did not contain rac-(S,Rmp,Eco-c)-S34. Instead, the asymmetric unit contains one
molecule of (S,Smp,Zco-c)-S34, the product of double bond isomerisation of (S,Rmp,Eco-c)-S34 (Figure S220,
note that double bond isomerisation inverts both mechanical stereolabels), one molecule of (S,Rco-c,Sco-mp)-
$39, the product of hydration of (S,Rmp,Eco-c)-S34 (Figure S221) and one molecule of (R,Sco-c,Rco-mp)-S39, the
product of hydration of (R,Smp,Eco-c)-S34 (Figure S222). The unit cell contains the enantiomeric structure,

giving rise to a racemic crystal.
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Responses to A and B alerts raised by CheckCIF (also embedded in the CIF file):
PROBLEM (B alert): Large reported max. (positive) residual density = 0.87 eA-3
RESPONSE: This arises due to unmodelled minor disorder of the macrocycle linker.
PROBLEM (B alert): Short inter D-H..H-D - HOON..HOOS = 1.96.

RESPONSE: This arises from intra- and inter-molecular H-bonded hydroxyl groups of a single
rotaxane of the structure which are geometrically close.

Ph

(Scho-chco-mp)'s'39

Figure S221: The structure of (S,Rco-c,Sco-mp)-S39 observed in the asymmetric unit.

(Rvsco-ccho-mp)'S39

Figure $222: The structure of (R,Sco-c,Rco-mp)-S39 observed in the asymmetric unit.
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Compound Rac-(Smp,Eco-c)-S36
Empirical formula Ca64H339N27011

Formula weight 4066.60

Temperature/K 100(2)

Crystal system Triclinic

Space group P-1

a/k 23.4801(3)

b/A 23.6834(2)

c/A 24.6001(3)

al 75.3860(10)

8/° 70.3060(10)

v/° 67.9000(10)

Volume/A3 11809.2(3)

z 2

Peaic/g cm3 1.144

u/mm-1 0.541

F(000) 4400.0

Crystal size/mm3 0.25%0.20%0.15

Radiation CuKy (A =1.54178)

20 range for data collection/® 6.438 to 154.070

Index ranges -29<h<29,-28<k<22,-30<1<30
Reflections collected 209037

Independent reflections 46453 [Rint = 0.0399, Rsigma = 0.024]
Data/restraints/parameters 46453/49/2727
Goodness-of-fit on F2 1.015

Final R indexes [I>=20 (l)] R:=0.0617, wR,=0.1679
Final R indexes [all data] R;=0.0726, wR, =0.1787
Largest diff. peak/hole / e A3 0.874/-0.638

CCDC Deposition Number 2207579
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9. PROPOSED METHOD FOR ASSIGNING STEREOCHEMISTRY OF THE MECHANICAL BOND.

Methods to assign the absolute stereochemistry of interlocked molecules are still in development.
However, we have previously proposed methods!* for the assignment of absolute stereochemistry in
mechanically planar chiral catenanes and chiral rotaxanes by using Cahn-Ingold-Prelog-derived atom

priorities to assign the orientation of the covalent subcomponents:

1) Following to the Cahn-Ingold-Prelog (CIP) rules, identify the highest priority atom on one ring and label
itas"A"
2) Moving outward from A determine the highest priority atom (CIP) that can be used to define an

orientation of the ring (typically a ligand of A) and label it as "B". The orientation of the ring is defined by

the vector A — B, which, where relevant, passes through the intervening atoms (i.e., follows the bonds).

3) Repeat the process on the second subcomponent to identity its orientation.

4) Orient the assembly with the A — B vector of the axle (rotaxanes) or either ring for (catenanes) passing

through the cavity of the other ring away from the observer.

5) The direction of the A— B vector of the ring parallel to the plane of the observer defines the stereolabel:

clockwise = Rmp, counterclockwise = Smp. The "mp" subscript is included to indicate that the

stereodescriptor refers to a mechanically planar stereogenic unit.

9.1. Catenane3
Catenane 3 contains three stereogenic units which are fixed by the method of synthesis as shown (Figure
223a) and whose configuration could be determined by single crystal x-ray diffraction analysis of catenane

4 by making use of the known configuration of the fixed covalent stereogenic centre (Section 3).

The most obvious source of stereochemistry is the covalent stereogenic unit of the bipyridine macrocycle.
Given that this is fixed in the starting material, (S)-2 gives rise to catenane 3 which contains an S-configured
covalent stereogenic centre. Less obvious (and more unusual) *° is the co-conformational covalent
geometric stereogenic unit. The double bond in triazole-containing macrocycle has no defined
configuration when considered in isolation but in catenane 3 the position of the bipyridine macrocycle can
desymmetrize the double bond, giving rise to co-conformational geometric isomerism. Catenane 3 is
formed as a single geometric isomer as bipyridine ring is installed on one side of the double bond due to
the structure of (2)-1 and it cannot move between the two triazole-containing compartments. However, a
second isomer is technically possible (Figure 223b). As with co-conformational point stereochemistry,® we
assign the geometry of the double bond in catenane 3 by considering the bipyridine macrocycle to be an
additional substituent of the atoms in the compartment it encircles. Thus, the Ec.-c isomer is produced from
(2)-1, where the "co-c" subscript highlights that the configuration of this covalent stereogenic unit relies

on the co-conformation of the molecule.
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a. CH,0SiMe,Bu b. CH,0SiMe,Bu

A,

A,

(Svavaco-c)'3 (S:Rmpvzco-c)'3
CH,0SiMe,Bu

Figure 223: a. the structure of catenane (S,Rmp,Ecoc)-3 produced from the reaction of (2)-1 and (S)-2 as depicted in the
manuscript with the highest priority alkene substituent indicated in bold. b. The (S,Rmp,Zco-)-3 co-conformational covalent
geometric isomer of 3 with the highest priority alkene substituent indicated in bold. c. The components of 3 with atoms A
and B labelled. d. Catenane 3 redrawn such that the A->B vector of the bipyridine ring passes through the triazole ring away
from the observer, confirming that the stereochemistry of 3 produced from (5)-2 is Rmp.

To assign the mechanical planar stereogenic unit we apply the rules outlined above. This approach results
in the atom priorities shown (Figure 223c). We note that the assignment of atom B in the triazole-
containing ring is non-trivial. Exploring outwards from the Si atom (atom A), the first atoms that could allow
us to assign direction in the macrocycle are the carbons ortho to the benzylic ether moiety. To differentiate
between these two atoms, we explore outwards until we reach the quaternary triazole carbons. At this
point we identify that, according to CIP, to differentiate between double bond substituents bonded to the
same carbon we consider their relationship to the substituents on the other alkene carbon; the group that
is arranged cis to the highest priority substituent of the other carbon is assigned a higher priority. Thus, the
ortho C that leads to the triazole cis to the Ph substituent of the double bond is assigned higher priority,
and so labelled as atom B. Finally, we orient catenane 3 so that the A>B vector of the bipyridine
macrocycle passes through the triazole-containing macrocycle away from the observer (Figure 223d) and
note that the A->B vector associated with the triazole-containing macrocycle is oriented in a clockwise
direction, leading to the assignment of the mechanical planar stereogenic unit as Rmp (the subscript

identifies the origin of the stereochemistry.

Thus, we can assign the configuration of catenane 3 produced by reaction of (Z)-1 and (S)-2 to be

(S,Rmp,Ecoc)-3.
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9.2. Catenane4
Based on the arguments presented above, (S,Rmp,Eco-c)-3 leads to a product (Figure 224a) with S covalent
configuration and Ec..c co-conformational configuration (neither are affected by the reduction of the ester).
The mechanical planar stereogenic unit is assigned as above but reduction of the ester moiety of the
bipyridine macrocycle leads to a change in atom priorities (Figure 224b) such that the A= B vector of the
bipyridine macrocycle is inverted compared with catenane 3. Thus, although the relative orientation of the
triazole and bipyridine macrocycles is unchanged, when viewed with the A= B vector of the bipyridine ring
passing through the triazole macrocycle away from the observer, the A>B vector of the triazole
macrocycle is oriented in an anticlockwise direction (Figure 224c), resulting in an Sy, stereolabel. Thus, we

can assign the configuration of catenane 4 produced from (S,Rmp,Eco-c)-3 to be (S,Smp,Eco-c)-4.
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Figure 224: a. the structure of catenane (S,Smp,Eco-c)-4 produced from (S)-2 as depicted in the manuscript. b. The bipyridine
macrocycle with atoms A and B labelled. d. Catenane 4 with the A=>B vector of the bipyridine ring passing through the
triazole ring away from the observer, confirming that the stereochemistry of 4 produced from (S)-2 is Smp.

9.1. Catenane S16
Catenane S16 is assigned exactly as for catenane 4 (Figure 225). Thus, we can assign the configuration of

catenane S16 produced from (S,Smp,Eco-c)-4 to be (S,Smp,Eco-c)-S16.

a. CH,0SiMe,Bu b. CH,0SiMe,Bu
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Figure 225: a. the structure of catenane (S,Smp,Eco-)-S16 produced from (S)-2 as depicted in the manuscript. b. The bipyridine
macrocycle with atoms A and B labelled. d. Catenane $16 with the A->B vector of the bipyridine ring passing through the
triazole ring away from the observer, confirming that the stereochemistry of $16 produced from (S)-2 is Smp.

9.2. Catenane 5
Unlike catenanes 3 and 4, the bipyridine macrocycle of catenane 5 can move between the two triazole
containing compartments, giving rise to a dynamic mixture of Ec.c (shown in Figure 226b) and Z.c co-
conformations (see section 5), whose double bond configuration is defined as described above. There is
also no fixed covalent stereogenic unit. Thus, the only fixed stereogenic unit of catenane 5 arises due to

the mechanical planar unit. Removal of the silyl group from the triazole-containing macrocycle results in a
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change in atom priorities (Figure 226b). Using these atom priorities (Figure 226c), we can assign the product

of (5,Smp,Eco-c)-84 as (Rmp)-5 which preferentially adopts the (Rmp,Eco-c)-5 co-conformation (see section 5).

c. Ph
HO I
N* N

N \N
N "\
0) (0] ) (0] )
( 2 \/\(1\2 (/rr\/ \/\(\Lz ©/ — \©
\ o) o) higher priority ~0 =\ /N
’ ! O

o] "N )
N N double bond \
HN @ substituent /@ (\L)\/\ N N )
) eiopg
N 7 N
N 4 N O NN 0
K | OH
o)

N

Ph

(Rmp:Ecoc)-5 (Rmp)-5

Figure 226: a. the structure of catenane (S,Smp,Eco-c)-4 produced from (S)-2 as depicted in the manuscript. b. The bipyridine
macrocycle with atoms A and B labelled. d. Catenane 3 with the A>B vector of the bipyridine ring passing through the
triazole ring away from the observer, confirming that the stereochemistry of 3 produced from (S)-2 is Smp.

9.3. Rotaxane S28
Rotaxane $28 (Figure 227) contains a covalent stereogenic unit (the double bond) and the mechanical
stereogenic unit that arises due to the relative orientation of the axle and macrocycle. It was synthesised
as a racemate (hence referred to as rac-(E)-S28 above) but we thought it would be useful to demonstrate
its stereochemical assignment, particularly in light of the additional complications faced when assigning

the stereochemistry of S29.
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Figure 227: The structure of the enantiomers of rotaxane (E)-S28 produced in equal quantities from S20 including the axle
atom labels and vectors used for stereochemical assignment.

9.4. Pseudo-rotaxane S29
Reduction of rotaxane S28 (Figure 228) gives rise to pseudo-rotaxane $29, which slowly dethreads to give
the corresponding non-interlocked components. Although S$29 is not mechanically interlocked, it is
kinetically quite stable, requiring several days to completely dethread. Although S29 is formed as racemic
mixture, it would be helpful to be able to assign its stereochemistry. This can be done using the methods
used for rotaxane S29, although it should be noted that, because $29 is not permanently interlocked, the
"mp" suffix, is not particularly appropriate and so we have prefixed the label with "co-" to indicate it

depends on co-conformation.
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Figure 228: The structure of pseudo-rotaxane (Rmp,E)-S29 produced from (Rmp,E)-S28 including the axle atom labels and
vectors used for stereochemical assignment.

9.5. Rotaxane S33
Rotaxane $33 (Figure 229) was synthesised using macrocycle (S)-2 in high stereopurity. If we assume that
the relative orientation of the azide and alkyne components of the axle and macrocycle are as in catenane
4, and by taking note that the quaternary triazole C cis to the Ph group has higher priority than that cis to

the H atom, we can assign the major stereoisomer as (S,Smp,Eco-c)-S34.

Ph
(Svsmp’Eco-c)'S33

Figure 229: The structure of rotaxane $33 including the axle atom labels used for stereochemical assignment.

9.6. Rotaxane S34

Rotaxane $34 (Figure 230) was produced by reduction of the ester moiety of rotaxane $33. This changes

the atom priorities in the macrocycle, resulting in the product being assigned as (S,Rmp,Eco-c)-S34.
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Figure 230: The structure of rotaxane S34 indicating the vectors used for stereochemical assignment.

9.7. Rotaxane S36

Removal of the auxiliary unit from S34 to generate S36 (Figure 231) does not change the atom priorities

and thus (S,Rmp,Eco-c)-S34 is converted to (Rmp,Eco-c)-536.
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Figure 231: The structure of rotaxane $36 indicating the vectors used for stereochemical assignment.
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9.8. Rotaxane S39
Hydration of the double bond of rotaxane S34, as observed during attempts to grow crystals for SCXRD
analysis, removes the covalent orientation of the axle and so the mechanical planar chiral stereogenic unit
is converted to a co-conformational mechanical planar chiral stereogenic unit in S39 (i.e., the
stereochemistry relies on the position of the macrocycle along the axle. For similar reasons, the hydration
reaction introduces a co-conformational covalent stereogenic unit as the OH can be added to either face
of the axle. Both are fixed due to the steric bulk of the benzyl group. To assign the axle orientation of S39,
we consider the macrocycle as a substituent of all of the atoms in the compartment of the axle it occupies.
This leads to the atom priorities shown, and thus the Rmpisomer of $34 is converted stereospecifically to
the Sco-mp isomer of $39, whereas the co-conformational covalent stereogenic unit can be formed as either

Rco-mp OF Sco-mp (Shown as undefined), depending on which face of the alkene the water approaches from.

7~ \!

(S.Rmp+Eco-c)-534

Figure 232: The structure of rotaxane S39 indicating the vectors used for stereochemical assignment.
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