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Table S1. Positive inter-correlation of SNI scores in DS, RS1, RS2 and ASD

Social Network Size

Network Diversity

# Embedded Networks

DS

Social Network Size
Network Diversity

# Embedded Networks
RS1

Social Network Size
Network Diversity

# Embedded Networks
ASD

Social Network Size
Network Diversity

# Embedded Networks
RS2

Social Network Size
Network Diversity

# Embedded Networks

0.79 **

0.68 *

0.85 **

0.80 **

0.91 **
0.65 **

0.83 **
0.25

0.86 **
0.57 *

0.83 **
0.70 **

** p <0.0001, * p < 0.005



Table S2. Behavioral performance in the why/how task (fMRI)

Social Inferences (why)

Factual Inferences (how)

Faces Hands Faces Hands
DS
Accuracy [%] 93.18 (4.65) 94.29 (5.60) 95.46 (3.21) 95.50 (4.41)
Response time [sec]  0.65 (0.14) 0.71(0.12) 0.55(0.11) 0.68 (0.11)
d-prime 3.26 (0.75) 3.55(0.87) 3.52(0.67) 3.74 (0.70)
RS1
Accuracy [%] 90.07 (4.43) 94.88 (5.56) 97.41 (2.79) 93.32 (3.62)
Response time [sec]  0.95 (0.14) 0.98 (0.16) 0.81(0.13) 0.93(0.14)
d-prime 2.79 (0.54) 3.47 (0.82) 3.96 (0.67) 3.09 (0.55)
ASD
Accuracy [%] 88.93 (6.74) 90.63 (7.33) 96.50 (4.33) 91.63 (4.37)
Response time [sec]  1.00 (0.18) 1.04 (0.17) 0.84 (0.15) 0.97 (0.15)
d-prime 2.76 (0.73) 2.88 (0.90) 3.82(0.86) 2.97 (0.55)
RS2
Accuracy [%] 89.80 (4.77) 94.96 (4.46) 96.63 (3.68) 96.43 (3.02)
Response time [sec] 0.84 (0.10) 0.86 (0.09) 0.70 (0.08) 0.81(0.09)
d-prime 2.72 (0.53) 3.51(0.78) 3.82(0.76) 3.69 (0.66)

Mean (+ SD); Note that the why/how social inference task performed by the discovery sample (DS)
differed in several details from the task version performed by the healthy replication sample (RS) and

the ASD group.



Table S3. Block-specific question endings used in the why/how tasks

Faces

Stimulus category

Hands

Non-Social

DS
WHY (social
inference)

HOW (factual)

RS1, RS2, and ASD
WHY (social
inference)

HOW (factual)

Is the person...
...admiring someone?
...expressing self-doubt?

..in an argument?
...proud of themselves?

...looking at the camera?
...looking to their side?
...opening their mouth?
..smiling?

Is the person...

...being affectionate?
...expressing self-doubt?
...proud of themselves?
...celebrating something?
...expressing gratitude?
..in an argument?

Is the person...

...looking at the camera?
...showing their teeth?
...gazing up?

...opening their mouth?
...looking to the side?
..smiling?

Is the person...

...competing against others?
...concerned with their
health?

...helping someone?
...protecting themselves?

...lifting something?
...pressing a button?
...reaching for something?
...using both hands?

Is the person...

...protecting themselves?
...helping someone?

...doing their job?
...competing against others?
...expressing themselves?
...sharing knowledge?

Is the person...

...carrying something?
...lifting something up?
...putting something on?
...reaching for something?
...using a writing utensil?
...using both hands?

Is it a result of...
...Spring season?

...a drought?

...a forest fire?

...a hurricane?

...a rainstorm?
..going to resultin a
rainstorm?

Is the photo showing...
...Clouds?
...colorful flowers?
..dry ground?
...moving water?
...palm trees?
...smoke?




Table S4. Brain regions decoding social inferences in Face blocks in the why/how fMRI task in DS

Brain region Side k t MNI

X y z
pPSTG/SMG (supramarginal gyrus) L 778 7.50 -56  -48 38
pSTG R 83 6.31 48 -60 20
SMG R 471 6.79 50 -44 42
DMPFC L 493  9.59 -8 56 32
DMPFC/SMA L 9 5.83 -8 32 52
DMPFC R 284 7.19 6 52 28
DLPFC L 331 8.94 -48 14 30
DLPFC R 243 8.04 52 14 20
VLPFC L 190 7.40 -48 32 8
SFS L 34 5.62 -30 28 44
SFS R 7 5.46 30 32 44

Results are reported at a statistical threshold of p < 0.05, FWE corrected at voxel-level (cluster

threshold of 5 voxels); only peak activations of clusters are reported; L = left hemisphere, R = right

hemisphere, MNI = Montreal Neurological Institute, k = cluster size in voxels.



Table S5. Brain regions decoding social inferences in Hand blocks in the why/how task in DS

Brain region Side k t MNI
X y z

pSTG (posterior superior temporal gyrus) L 5077 19.09 -46 -66 24
pSTG R 536 8.93 48 -62 22
MTG (middle temporal sulcus) L 168 6.53 -62 -14 -12
MTG L 37 6.14 -54 6 -22
MTG L 22 5.67 -44 12 -34
DMPFC, extending to DLPFC, VLPFC and SFS L 2479 10.71 -30 16 52
DMPFC R 166 7.60 4 58 24
mOFC L 112 6.46 -8 56 -16
mOFC R 45 5.73 2 54 -20
PCC/Precuneus L/R 538 7.11 -6 -52 42
Cerebellum L 680 10.33 26 -76 -40

Results are reported at a statistical threshold of p < 0.05, FWE corrected at voxel-level (cluster

threshold of 5 voxels); only peak activations of clusters are reported; L = left hemisphere, R = right

hemisphere, MNI = Montreal Neurological Institute, k = cluster size in voxels.



Table S6. Univariate results of social inference [why vs how] in DS

Brain region Side k t MNI

X y z
[why > how]
pSTS L 267 15.29 -48 -66 34
pSTS R 25 8.68 54 -64 30
MPFC L 4750 15.15 -10 44 46
Middle frontal gyrus L 63 9.93 -42 18 48
Inferior frontal gyrus R 25 6.64 60 28 22
VLPFC R 82 6.96 38 30 -16
VLPFC to temporal pole and middle temporal gyrus L 2729 1414 -60 -8 -22
Temporal pole (to inferior temporal gyrus) R 688 9.82 52 10 -34
Middle temporal gyrus L 100 8.39 -48  -34 -2
PCC and Precuneus L 779 1398 -8 -44 34
Hippocampus L 18 7.19 -24  -20 -16
Cerebellum R 581 11.7 26 -82 -40
Cerebellum R 63 8.13 4 -56 -48
Cerebellum L 108 7.67 -26 -78 -36
[how > why]
SMG (supramarginal gyus, to inferior parietal lobe) L 2577 1239 -40 -40 42
SMG R 1869 9.85 64 -30 36
ITG (inferior temporal gyrus) L 155 12.79 -52 -60 -2
ITG R 110 9.51 52 -56 -6
Pre-SMA L 185 8.62 -26 -2 50
Pre-SMA R 109 6.44 26 -2 50
LPFC L 94 8.27 -48 4 24
LPFC R 30 6.38 48 10 16
Cerebellum L 19 7.26 -16  -70 -44




Results are reported at a statistical threshold of p < 0.05, FWE corrected at voxel-level (cluster
threshold of 5 voxels) for the conjunction of face and hand blocks (inclusive masking function, SPM12);
only peak activations of clusters are reported; L = left hemisphere, R = right hemisphere, MNI =

Montreal Neurological Institute, k = cluster size in voxels.



Table S7. Shared neural code for social inferences [why vs. how] in the why/how task for ASD and

RS1 (cross-sample decoding).

ROI Decoding Accuracy [%]

L_pSTS 62 [47, 53] *
R_pSTS  55[47,52] *
L_ DMPFC 60 [47, 53] *
R_DMPFC 60 [48, 52] *
L_SFS 60 [48, 52] *
L DLPFC  61[48,53] *
L_VLPPFC 62 [47, 53] *

* p <0.05, FDR corrected, permutation test; activation patterns in each ROl obtained for neurotypical

individuals (RS1) allowed decoding social inferences in ASD, and vice versa.
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Figure S1. Cross-stimulus-set decoding of social inferences in the why/how task in DS.

Our predictive analyses collapsed across both stimulus sets of the why/how task (faces, hands). For each
ROI, a supplemental decoding analysis further explored whether similar neural codes encode social
inferences in both target categories of the task (hands/faces) in the DS group. The analyses approach
matched the one described for the whole-brain searchlight decoding (see main manuscript) with two
exceptions: First, neural pattern vectors were extracted for all voxels within a particular ROI. Second, the
classifier was trained on data of one target condition (e.g. faces) and tested on data of the other (e.g.
hands), and vice versa (2-fold cross-validation). Post hoc permutation tests further illustrated that
decoding accuracies in ROIs (displayed as triangles that represent the average across 2 cross-validation
steps), are unlikely achieved by chance (all p’s < 0.001, permutation tests, FDR corrected). Boxplots
represent null distributions of classification accuracies in each ROI (1000 permutations). Central marks
of boxplots indicate medians, which were found to be 50% (i.e., chance level, dotted line) for all clusters.
Edges of boxes indicate the 25th—75th percentiles; whiskers extend to extreme data points; circles
represent outliers. Our significant cross-target predictions of social (vs. factual) inferences in this
analyses approach suggest that — at least part of — the neural code in each ROl is shared across target
conditions (face/hands) in the why/how task.
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Figure S2. Overlap of univariate and multivariate analyses of social inferences in the why/how task in
DS.
Univariate results: For each subject (discovery sample, DS), we contrasted neural responses obtained

during [why > how] inferences using block-wise regressors estimated in GLM1, separately for each
stimulus set in the why/how task (faces, hands). Individual contrast images were used in two group-
level analyses (simple t-tests against baseline as implemented in SPM12). Multivariate analyses of why
vs. how task blocks (GLM1) were realized for each subject using a leave-two-block-out cross-validation
approach (one why block, one how block in each fold), separately for each stimulus set. Individuals’
accuracy maps were then used in a group-level analyses, separately for each stimulus condition (simple
t-tests against implicit chance level of 50% for binary classification, as implemented in SPM12). Results
of both analyses are displayed at a statistical threshold of p < 0.05, whole-brain FWE corrected, cluster-

threshold of 5 voxels.

Overlap

Multivariate Univariate

Social vs. factual inferences: hand actions Social vs. factual inferences: facial expressions
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Figure S3. Correspondence of our pSTS ROI with previous pSTS findings.

Red illustrates the pSTS ROl in our why/how task. The crosshair
illustrates the peak coordinate (MNI space, [47.4,-58.8, 22.9])

of response in the theory-of-mind (TOM) task in the right
hemisphere in Deen et al. (2015), Cerebral Cortex, 25: 4596-4609.

B

Red illustrates the pSTS ROl in our why/how task. Green illustrates
the cluster in the pSTS that encoded the monetary benefits for other
people in an altruistic choice task - predictive information in this area
increased when people engaged in theory of mind (“think about how
the other person will feel when confronted with your choice”) in
Tusche et al. (2018), eLife 7: e31185. Yellow illustrates the overlap.
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Results S1. Stimulus-specific decoding of social inferences in the why/how task in DS.

Are there brain regions that encoded social inferences significantly more — or less — depending on the
stimulus set (hands/faces) in the why/how task? To address this question, we compared whole-brain
decoding accuracy maps of social inferences obtained for face blocks and hand blocks of the why/how
task (see Table S4 and Table S5 for details on predictive cluster obtained for each stimulus set). Formal
comparisons of decoding maps for social inferences obtained in [Faces > Hands] did not yield significant
results (p < 0.05, FWE corrected, cluster-threshold = 5 voxels; paired t-test as implemented in SPM12).
The reverse contrast [Hands > Faces] identified a cluster in the left pSTS/ TPJ ([MNI -38, -66, 40], t = 6.50,
936 voxels) and right Cerebellum ([MNI 28, -78, -40], t = 5.58, 119 voxels), suggesting that images of
intentional hand actions more effectively elicited social inferences in both areas (reflected in higher
decoding accuracies). Importantly, the identified cluster in the pSTS/TPJ overlapped with the pSTS cluster
described in Table 2. Overall, these supplemental results demonstrate a close match of recruited brain
areas and predictive information across stimulus categories. The findings also suggest that our data-
driven approach of defining ROIs did not systematically exclude brain areas selectively recruited for one

but not the other stimulus set in the why/how task.
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Methods S1. Detailed description of fMRI data preprocessing in RS2 (fmriPrep)
Results included in this manuscript come from preprocessing performed using fMRIPrep 1.5.3 [1],

which is based on Nipype 1.3.1 [2].

Anatomical data preprocessing

A total of 6 T1-weighted (T1w) images were found within the input BIDS dataset. All of them were
corrected for intensity non-uniformity (INU) with N4BiasFieldCorrection [3], distributed with ANTs
2.2.0 [4]. The T1w-reference was then skull-stripped with a Nipype implementation of the
antsBrainExtraction.sh workflow (from ANTSs), using OASIS30ANTSs as target template. Brain tissue
segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was performed
on the brain-extracted T1w using fast [5] from FSL 5.0.9. A T1w-reference map was computed after
registration of 6 T1w images (after intensity non-uniformity correction) using mri_robust_template
from FreeSurfer 6.0.1 [6]. Volume-based spatial normalization to one standard space
(MNI152NLin6Asym) was performed through nonlinear registration with antsRegistration (ANTs 2.2.0),
using brain-extracted versions of both T1w reference and the T1w template. The following template
was selected for spatial normalization: FSL's MNI ICBM 152 non-linear 6th Generation Asymmetric
Average Brain Stereotaxic Registration Model [RRID:SCR_002823; TemplateFlow ID:
MNI152NLin6Asym)].

Functional data preprocessing

For each of the BOLD runs found per subject (across all tasks and sessions), the following preprocessing
was performed. First, a reference volume and its skull-stripped version were generated using a custom
methodology of fMRIPrep. A BO-nonuniformity map (or fieldmap) was estimated based on two (or
more) echo-planar imaging (EPI) references with opposing phase-encoding directions, with 3dQwarp
from AFNI 20160207 [7]. Based on the estimated susceptibility distortion, a corrected EPI (echo-planar
imaging) reference was calculated for a more accurate co-registration with the anatomical reference.
The BOLD reference was then co-registered to the T1w reference using flirt [8] from FSL 5.0.9, with the
boundary-based registration cost-function [9]. Co-registration was configured with nine degrees of

freedom to account for distortions remaining in the BOLD reference. Head-motion parameters with
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respect to the BOLD reference (transformation matrices, and six corresponding rotation and
translation parameters) are estimated before any spatiotemporal filtering using mcflirt [8] from FSL
5.0.9. BOLD runs were slice-time corrected using 3dTshift from AFNI 20160207 [7]. The BOLD time-
series (including slice-timing correction when applied) were resampled onto their original, native space
by applying a single, composite transform to correct for head-motion and susceptibility distortions.
These resampled BOLD time-series will be referred to as preprocessed BOLD in original space, or just
preprocessed BOLD. The BOLD time-series were resampled into standard space, generating a
preprocessed BOLD run in MNI152NLin6Asym space. First, a reference volume and its skull-stripped
version were generated using a custom methodology of fMRIPrep. Automatic removal of motion
artifacts using independent component analysis (ICA-AROMA) [10] was performed on the preprocessed
BOLD on MNI space time-series after removal of non-steady state volumes and spatial smoothing with
an isotropic, Gaussian kernel of 6mm FWHM (full-width half-maximum). Corresponding "non-
aggresively" denoised runs were produced after such smoothing. Additionally, the "aggressive" noise-
regressors were collected and placed in the corresponding confounds file. Several confounding time-
series were calculated based on the preprocessed BOLD: framewise displacement (FD), DVARS and
three region-wise global signals. FD and DVARS are calculated for each functional run, both using their
implementations in Nipype [following the definitions by [11]. The three global signals are extracted
within the CSF, the WM, and the whole-brain masks. Additionally, a set of physiological regressors
were extracted to allow for component-based noise correction (CompCor) [12]. Principal components
are estimated after high-pass filtering the preprocessed BOLD time-series (using a discrete cosine filter
with 128s cut-off) for the two CompCor variants: temporal (tCompCor) and anatomical (aCompCor).
tCompCor components are then calculated from the top 5% variable voxels within a mask covering the
subcortical regions. This subcortical mask is obtained by heavily eroding the brain mask, which ensures
it does not include cortical GM regions. For aCompCor, components are calculated within the
intersection of the aforementioned mask and the union of CSF and WM masks calculated in T1w space,
after their projection to the native space of each functional run (using the inverse BOLD-to-T1w
transformation). Components are also calculated separately within the WM and CSF masks. For each
CompCor decomposition, the k components with the largest singular values are retained, such that the

retained components' time series are sufficient to explain 50 percent of variance across the nuisance
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mask (CSF, WM, combined, or temporal). The remaining components are dropped from consideration.
The head-motion estimates calculated in the correction step were also placed within the
corresponding confounds file. The confound time series derived from head motion estimates and
global signals were expanded with the inclusion of temporal derivatives and quadratic terms for each
[13]. Frames that exceeded a threshold of 0.5 mm FD or 1.5 standardised DVARS were annotated as
motion outliers. All resamplings can be performed with a single interpolation step by composing all the
pertinent transformations (i.e. head-motion transform matrices, susceptibility distortion correction
when available, and co-registrations to anatomical and output spaces). Gridded (volumetric)
resamplings were performed using antsApplyTransforms (ANTs), configured with Lanczos interpolation
to minimize the smoothing effects of other kernels. Non-gridded (surface) resamplings were
performed using mri_vol2surf (FreeSurfer).

Many internal operations of fMRIPrep use Nilearn 0.6.0 [RRID:SCR_001362], mostly within the

functional processing workflow.
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