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Table S1. Positive inter-correlation of SNI scores in DS, RS1, RS2 and ASD 

 Social Network Size Network Diversity # Embedded Networks 

DS    

Social Network Size  0.79 ** 0.91 ** 

Network Diversity   0.65 ** 

# Embedded Networks    

RS1    

Social Network Size  0.68 * 0.83 ** 

Network Diversity   0.25 

# Embedded Networks    

ASD    

Social Network Size  0.85 ** 0.86 ** 

Network Diversity   0.57 * 

# Embedded Networks    

RS2    

Social Network Size  0.80 ** 0.83 ** 

Network Diversity   0.70 ** 

# Embedded Networks    

** p ≤ 0.0001, * p < 0.005 
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Table S2. Behavioral performance in the why/how task (fMRI) 
 

Social Inferences (why) Factual Inferences (how) 
 

Faces Hands Faces Hands 

DS     

Accuracy [%] 93.18 (4.65) 94.29 (5.60) 95.46 (3.21) 95.50 (4.41) 

Response time [sec] 0.65 (0.14) 0.71 (0.12) 0.55 (0.11) 0.68 (0.11) 

d-prime 3.26 (0.75) 3.55 (0.87) 3.52 (0.67) 3.74 (0.70) 

RS1     

Accuracy [%] 90.07 (4.43) 94.88 (5.56) 97.41 (2.79) 93.32 (3.62) 

Response time [sec] 0.95 (0.14) 0.98 (0.16) 0.81 (0.13) 0.93 (0.14) 

d-prime 2.79 (0.54) 3.47 (0.82) 3.96 (0.67) 3.09 (0.55) 

ASD     

Accuracy [%] 88.93 (6.74) 90.63 (7.33) 96.50 (4.33) 91.63 (4.37) 

Response time [sec] 1.00 (0.18) 1.04 (0.17) 0.84 (0.15) 0.97 (0.15) 

d-prime 2.76 (0.73) 2.88 (0.90) 3.82 (0.86) 2.97 (0.55) 

RS2     

Accuracy [%] 89.80 (4.77) 94.96 (4.46) 96.63 (3.68) 96.43 (3.02) 

Response time [sec] 0.84 (0.10) 0.86 (0.09) 0.70 (0.08) 0.81 (0.09) 

d-prime 2.72 (0.53) 3.51 (0.78) 3.82 (0.76) 3.69 (0.66) 

Mean (± SD); Note that the why/how social inference task performed by the discovery sample (DS) 

differed in several details from the task version performed by the healthy replication sample (RS) and 

the ASD group. 
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Table S3. Block-specific question endings used in the why/how tasks 

 Stimulus category 

 Faces  Hands  Non-Social 
DS    
WHY (social 
inference) 

   

 Is the person… Is the person…  
 …admiring someone? …competing against others? - 
 …expressing self-doubt? …concerned with their 

health? 
- 

 …in an argument? …helping someone? - 
 …proud of themselves? …protecting themselves? - 
 
HOW (factual) 

   

 …looking at the camera? …lifting something? - 
 …looking to their side? …pressing a button? - 
 …opening their mouth? …reaching for something? - 
 …smiling? …using both hands? - 
RS1, RS2, and ASD 
WHY (social 
inference) 

   

 Is the person… Is the person… Is it a result of… 
 …being affectionate? …protecting themselves? …Spring season? 
 …expressing self-doubt? …helping someone? …a drought? 
 …proud of themselves? …doing their job? …a forest fire? 
 …celebrating something? …competing against others? …a hurricane? 
 …expressing gratitude? …expressing themselves? …a rainstorm? 
 …in an argument? …sharing knowledge? …going to result in a 

rainstorm? 
HOW (factual)    
 Is the person… Is the person… Is the photo showing… 
 …looking at the camera? …carrying something? …clouds? 
 …showing their teeth? …lifting something up? …colorful flowers? 
 …gazing up? …putting something on?  …dry ground? 
 …opening their mouth? …reaching for something?  …moving water? 
 …looking to the side? …using a writing utensil?  …palm trees? 
 …smiling? …using both hands?  …smoke? 
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Table S4. Brain regions decoding social inferences in Face blocks in the why/how fMRI task in DS 

Brain region Side k t  MNI  

    x y z 

pSTG/SMG (supramarginal gyrus) L 778 7.50 -56 -48 38 

pSTG R 83 6.31 48  -60   20 

SMG R 471 6.79 50  -44 42 

DMPFC L 493 9.59 -8   56   32 

DMPFC/SMA L 9 5.83 -8 32 52 

DMPFC R 284 7.19 6   52   28 

DLPFC L 331 8.94 -48   14   30 

DLPFC R 243 8.04 52   14   20 

VLPFC L 190 7.40 -48   32    8 

SFS L 34 5.62 -30 28  44 

SFS R 7 5.46 30   32   44 

Results are reported at a statistical threshold of p < 0.05, FWE corrected at voxel-level (cluster 

threshold of 5 voxels); only peak activations of clusters are reported; L = left hemisphere, R = right 

hemisphere, MNI = Montreal Neurological Institute, k = cluster size in voxels. 
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Table S5. Brain regions decoding social inferences in Hand blocks in the why/how task in DS 

Brain region Side k t  MNI  

    x y z 

pSTG (posterior superior temporal gyrus)  L 5077 19.09 -46  -66   24  

pSTG R 536 8.93 48 -62 22 

MTG (middle temporal sulcus) L 168 6.53 -62 -14 -12 

MTG  L 37 6.14 -54 6 -22 

MTG L 22 5.67 -44 12 -34 

DMPFC, extending to DLPFC, VLPFC and SFS L 2479 10.71 -30 16 52 

DMPFC R 166 7.60 4 58 24 

mOFC L 112 6.46 -8   56  -16 

mOFC R 45 5.73 2 54 -20 

PCC/Precuneus L/R 538 7.11 -6  -52   42 

Cerebellum L 680 10.33 26  -76 -40 

Results are reported at a statistical threshold of p < 0.05, FWE corrected at voxel-level (cluster 

threshold of 5 voxels); only peak activations of clusters are reported; L = left hemisphere, R = right 

hemisphere, MNI = Montreal Neurological Institute, k = cluster size in voxels. 
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Table S6. Univariate results of social inference [why vs how] in DS 

Brain region Side k t  MNI  

    x y z 

[why > how]       

pSTS L 267 15.29 -48 -66 34 

pSTS R 25 8.68 54 -64 30 

MPFC L 4750 15.15 -10 44 46 

Middle frontal gyrus L 63 9.93 -42 18 48 

Inferior frontal gyrus R 25 6.64 60 28 22 

VLPFC R 82 6.96 38 30 -16 

VLPFC to temporal pole and middle temporal gyrus L 2729 14.14 -60 -8 -22 

Temporal pole (to inferior temporal gyrus) R 688 9.82 52 10 -34 

Middle temporal gyrus L 100 8.39 -48 -34 -2 

PCC and Precuneus L 779 13.98 -8 -44 34 

Hippocampus L 18 7.19 -24 -20 -16 

Cerebellum R 581 11.7 26 -82 -40 

Cerebellum R 63 8.13 4 -56 -48 

Cerebellum L 108 7.67 -26 -78 -36 

[how > why]       

SMG (supramarginal gyus, to inferior parietal lobe) L 2577 12.39 -40 -40 42 

SMG R 1869 9.85 64 -30 36 

ITG (inferior temporal gyrus) L 155 12.79 -52 -60 -2 

ITG R 110 9.51 52 -56 -6 

Pre-SMA L 185 8.62 -26 -2 50 

Pre-SMA R 109 6.44 26 -2 50 

LPFC L 94 8.27 -48 4 24 

LPFC R 30 6.38 48 10 16 

Cerebellum L 19 7.26 -16 -70 -44 
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Results are reported at a statistical threshold of p < 0.05, FWE corrected at voxel-level (cluster 

threshold of 5 voxels) for the conjunction of face and hand blocks (inclusive masking function, SPM12); 

only peak activations of clusters are reported; L = left hemisphere, R = right hemisphere, MNI = 

Montreal Neurological Institute, k = cluster size in voxels.  
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Table S7. Shared neural code for social inferences [why vs. how] in the why/how task for ASD and 

RS1 (cross-sample decoding). 

 

  

ROI Decoding Accuracy [%] 

L_pSTS 62 [47, 53] * 

R_pSTS 55 [47, 52] * 

L_DMPFC 60 [47, 53] * 

R_DMPFC 60 [48, 52] * 

L_SFS 60 [48, 52] * 

L_DLPFC 61 [48, 53] * 

L_VLPPFC 62 [47, 53] * 

* p < 0.05, FDR corrected, permutation test; activation patterns in each ROI obtained for neurotypical 

individuals (RS1) allowed decoding social inferences in ASD, and vice versa. 
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Figure S1. Cross-stimulus-set decoding of social inferences in the why/how task in DS. 

Our predictive analyses collapsed across both stimulus sets of the why/how task (faces, hands). For each 

ROI, a supplemental decoding analysis further explored whether similar neural codes encode social 

inferences in both target categories of the task (hands/faces) in the DS group. The analyses approach 

matched the one described for the whole-brain searchlight decoding (see main manuscript) with two 

exceptions: First, neural pattern vectors were extracted for all voxels within a particular ROI. Second, the 

classifier was trained on data of one target condition (e.g. faces) and tested on data of the other (e.g. 

hands), and vice versa (2-fold cross-validation). Post hoc permutation tests further illustrated that 

decoding accuracies in ROIs (displayed as triangles that represent the average across 2 cross-validation 

steps), are unlikely achieved by chance (all p’s < 0.001, permutation tests, FDR corrected). Boxplots 

represent null distributions of classification accuracies in each ROI (1000 permutations). Central marks 

of boxplots indicate medians, which were found to be 50% (i.e., chance level, dotted line) for all clusters. 

Edges of boxes indicate the 25th–75th percentiles; whiskers extend to extreme data points; circles 

represent outliers. Our significant cross-target predictions of social (vs. factual) inferences in this 

analyses approach suggest that – at least part of – the neural code in each ROI is shared across target 

conditions (face/hands) in the why/how task.    
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Figure S2. Overlap of univariate and multivariate analyses of social inferences in the why/how task in 
DS.  
Univariate results: For each subject (discovery sample, DS), we contrasted neural responses obtained 

during [why > how] inferences using block-wise regressors estimated in GLM1, separately for each 

stimulus set in the why/how task (faces, hands). Individual contrast images were used in two group-

level analyses (simple t-tests against baseline as implemented in SPM12). Multivariate analyses of why 

vs. how task blocks (GLM1) were realized for each subject using a leave-two-block-out cross-validation 

approach (one why block, one how block in each fold), separately for each stimulus set. Individuals’ 

accuracy maps were then used in a group-level analyses, separately for each stimulus condition (simple 

t-tests against implicit chance level of 50% for binary classification, as implemented in SPM12). Results 

of both analyses are displayed at a statistical threshold of p < 0.05, whole-brain FWE corrected, cluster-

threshold of 5 voxels.  
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Figure S3. Correspondence of our pSTS ROI with previous pSTS findings.  

 

  

Red illustrates the pSTS ROI in our why/how task. The crosshair 
illustrates the peak coordinate (MNI space, [47.4, -58.8, 22.9]) 
of response in the theory-of-mind (TOM) task in the right 
hemisphere in Deen et al. (2015), Cerebral Cortex, 25: 4596-4609.

A B

Red illustrates the pSTS ROI in our why/how task. Green illustrates 
the cluster in the pSTS that encoded the monetary bene!ts for other 
people in an altruistic choice task - predictive information in this area
increased when people engaged in theory of mind (”think about how 
the other person will feel when confronted with your choice”) in 
Tusche et al. (2018), eLife 7: e31185. Yellow illustrates the overlap.
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Results S1. Stimulus-specific decoding of social inferences in the why/how task in DS. 

 

Are there brain regions that encoded social inferences significantly more – or less – depending on the 

stimulus set (hands/faces) in the why/how task? To address this question, we compared whole-brain 

decoding accuracy maps of social inferences obtained for face blocks and hand blocks of the why/how 

task (see Table S4 and Table S5 for details on predictive cluster obtained for each stimulus set). Formal 

comparisons of decoding maps for social inferences obtained in [Faces > Hands] did not yield significant 

results (p < 0.05, FWE corrected, cluster-threshold = 5 voxels; paired t-test as implemented in SPM12). 

The reverse contrast [Hands > Faces] identified a cluster in the left pSTS/ TPJ ([MNI -38, -66, 40], t = 6.50, 

936 voxels) and right Cerebellum ([MNI 28, -78, -40], t = 5.58, 119 voxels), suggesting that images of 

intentional hand actions more effectively elicited social inferences in both areas (reflected in higher 

decoding accuracies). Importantly, the identified cluster in the pSTS/TPJ overlapped with the pSTS cluster 

described in Table 2. Overall, these supplemental results demonstrate a close match of recruited brain 

areas and predictive information across stimulus categories. The findings also suggest that our data-

driven approach of defining ROIs did not systematically exclude brain areas selectively recruited for one 

but not the other stimulus set in the why/how task. 
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Methods S1. Detailed description of fMRI data preprocessing in RS2 (fmriPrep)  

Results included in this manuscript come from preprocessing performed using fMRIPrep 1.5.3 [1], 

which is based on Nipype 1.3.1 [2]. 

 

Anatomical data preprocessing 

A total of 6 T1-weighted (T1w) images were found within the input BIDS dataset. All of them were 

corrected for intensity non-uniformity (INU) with N4BiasFieldCorrection [3], distributed with ANTs 

2.2.0 [4]. The T1w-reference was then skull-stripped with a Nipype implementation of the 

antsBrainExtraction.sh workflow (from ANTs), using OASIS30ANTs as target template. Brain tissue 

segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was performed 

on the brain-extracted T1w using fast [5] from FSL 5.0.9. A T1w-reference map was computed after 

registration of 6 T1w images (after intensity non-uniformity correction) using mri_robust_template 

from FreeSurfer 6.0.1 [6]. Volume-based spatial normalization to one standard space 

(MNI152NLin6Asym) was performed through nonlinear registration with antsRegistration (ANTs 2.2.0), 

using brain-extracted versions of both T1w reference and the T1w template. The following template 

was selected for spatial normalization: FSL's MNI ICBM 152 non-linear 6th Generation Asymmetric 

Average Brain Stereotaxic Registration Model [RRID:SCR_002823; TemplateFlow ID: 

MNI152NLin6Asym]. 

 

Functional data preprocessing 

For each of the BOLD runs found per subject (across all tasks and sessions), the following preprocessing 

was performed. First, a reference volume and its skull-stripped version were generated using a custom 

methodology of fMRIPrep. A B0-nonuniformity map (or fieldmap) was estimated based on two (or 

more) echo-planar imaging (EPI) references with opposing phase-encoding directions, with 3dQwarp 

from AFNI 20160207 [7]. Based on the estimated susceptibility distortion, a corrected EPI (echo-planar 

imaging) reference was calculated for a more accurate co-registration with the anatomical reference. 

The BOLD reference was then co-registered to the T1w reference using flirt [8] from FSL 5.0.9, with the 

boundary-based registration cost-function [9]. Co-registration was configured with nine degrees of 

freedom to account for distortions remaining in the BOLD reference. Head-motion parameters with 
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respect to the BOLD reference (transformation matrices, and six corresponding rotation and 

translation parameters) are estimated before any spatiotemporal filtering using mcflirt [8] from FSL 

5.0.9. BOLD runs were slice-time corrected using 3dTshift from AFNI 20160207 [7]. The BOLD time-

series (including slice-timing correction when applied) were resampled onto their original, native space 

by applying a single, composite transform to correct for head-motion and susceptibility distortions. 

These resampled BOLD time-series will be referred to as preprocessed BOLD in original space, or just 

preprocessed BOLD. The BOLD time-series were resampled into standard space, generating a 

preprocessed BOLD run in MNI152NLin6Asym space. First, a reference volume and its skull-stripped 

version were generated using a custom methodology of fMRIPrep. Automatic removal of motion 

artifacts using independent component analysis (ICA-AROMA) [10] was performed on the preprocessed 

BOLD on MNI space time-series after removal of non-steady state volumes and spatial smoothing with 

an isotropic, Gaussian kernel of 6mm FWHM (full-width half-maximum). Corresponding "non-

aggresively" denoised runs were produced after such smoothing. Additionally, the "aggressive" noise-

regressors were collected and placed in the corresponding confounds file. Several confounding time-

series were calculated based on the preprocessed BOLD: framewise displacement (FD), DVARS and 

three region-wise global signals. FD and DVARS are calculated for each functional run, both using their 

implementations in Nipype [following the definitions by [11]. The three global signals are extracted 

within the CSF, the WM, and the whole-brain masks. Additionally, a set of physiological regressors 

were extracted to allow for component-based noise correction (CompCor) [12]. Principal components 

are estimated after high-pass filtering the preprocessed BOLD time-series (using a discrete cosine filter 

with 128s cut-off) for the two CompCor variants: temporal (tCompCor) and anatomical (aCompCor). 

tCompCor components are then calculated from the top 5% variable voxels within a mask covering the 

subcortical regions. This subcortical mask is obtained by heavily eroding the brain mask, which ensures 

it does not include cortical GM regions. For aCompCor, components are calculated within the 

intersection of the aforementioned mask and the union of CSF and WM masks calculated in T1w space, 

after their projection to the native space of each functional run (using the inverse BOLD-to-T1w 

transformation). Components are also calculated separately within the WM and CSF masks. For each 

CompCor decomposition, the k components with the largest singular values are retained, such that the 

retained components' time series are sufficient to explain 50 percent of variance across the nuisance 
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mask (CSF, WM, combined, or temporal). The remaining components are dropped from consideration. 

The head-motion estimates calculated in the correction step were also placed within the 

corresponding confounds file. The confound time series derived from head motion estimates and 

global signals were expanded with the inclusion of temporal derivatives and quadratic terms for each 

[13]. Frames that exceeded a threshold of 0.5 mm FD or 1.5 standardised DVARS were annotated as 

motion outliers. All resamplings can be performed with a single interpolation step by composing all the 

pertinent transformations (i.e. head-motion transform matrices, susceptibility distortion correction 

when available, and co-registrations to anatomical and output spaces). Gridded (volumetric) 

resamplings were performed using antsApplyTransforms (ANTs), configured with Lanczos interpolation 

to minimize the smoothing effects of other kernels. Non-gridded (surface) resamplings were 

performed using mri_vol2surf (FreeSurfer). 

Many internal operations of fMRIPrep use Nilearn 0.6.0 [RRID:SCR_001362], mostly within the 

functional processing workflow. 
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