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Supplementary Fig. 1 | Scanning electron microscope images of S. mutans cells attached on 3 

the electrode surface. a) S. mutans WT b) WT in the presence of riboflavin (RF) and c) Rex 4 

deleted S. mutans (∆rex) after 24 hours of current production with 10 mM glucose at +0.4 V 5 

(versus SHE), cells were intact on the electrode surface. 6 
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 1 
Supplementary Fig. 2 | Evidences for direct electron transfer by S. mutans. a) Supernatant 2 

replacement during the current production of S. mutans at +0.4 V (versus SHE). At the indicated 3 

times, the medium was removed and replaced with sterile defined medium containing 10 mM 4 

glucose (red line) or cell free spent medium (blue line), leading to no decrease in current production. 5 

The same tendency was confirmed in three individual experiments. b) Baseline-subtracted 6 

differential pulse voltammograms in the presence of S. mutans before (black solid line) and after 7 

medium exchange (red solid line). Data for sterile DM (red dotted line) and cell free spent medium 8 

(blue dotted line) are also represented. c) Effect of the removal of yeast extract (YE) on the current 9 

production of S. mutans. In the absence of YE, the glucose oxidation current production after the 10 

addition of 10 mM glucose reached to the value approximately 15 % smaller than that in the 11 

presence of YE. Because YE provides essential nutrients for protein synthesis, a little less current 12 

production is explainable by not only shuttling of riboflavin contained in the YE but also less 13 

cellular protein synthesis for direct electron transport mechanism.  14 
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Supplementary  Fig. 3 |  Quantification of reduced riboflavin, and charge transported by S. 2 

mutans in the presence of glucose in an anaerobic cuvette. (a) Emission spectrum of oxidized 3 

riboflavin (RF) measured by excitation at 450 nm, showing the fluorescence intensity peak of 10 4 

µM RF (black line) at 530 nm. Upon the addition of S. mutans (SM) to 3 mL of deaerated DM at 5 

OD600 = 0.1 (blue line), and subsequent addition of 10 mM glucose. (b) The time course of oxidized 6 

RF fluorescence intensity (red line) in cuvette measured at every 8 hours. (c) The graph showing 7 

the charge estimated from RF reduction and amount of glucose consumed after 24 hours in the 8 

cuvette, from which we estimated the columbic efficiency in the open circuit condition with SM 9 

in the presence of RF (WT-RF-OCV) in Figure 3A.   10 
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Supplementary  Fig. 4 |  Effect of labeled 15NH4Cl on current production of S. mutans. Current 3 

production of S. mutans vs. time measurements conducted in anaerobic reactor equipped with ITO 4 

electrodes (surface area: 3.14 cm2) poised at +0.4 V (versus SHE) containing DM with labeled and 5 

unlabeled NH4Cl as sole N source in the presence and absence of 10 µM riboflavin (RF) with 10 6 

mM glucose. The solid and dotted arrows indicate the timing of cell addition to the reactor with 7 

15N and 14N labeled medium, respectively.  8 
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Supplementary Fig. 5 | Time course of the electrolyte pH during the electrochemical 3 

operations under single-potential amperometry (SA) and open circuit voltage (OCV) 4 

conditions in the presence and absence of riboflavin (RF). We measured pH at every 8-hour 5 

time interval during the electrochemical measurement. The data shown are mean values ± standard 6 

deviations of two individual experiments. 7 
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Supplementary  Fig. 6 |  Efflux changes in ethanol and L-lactate when altering the flux of 3 

key metabolic reactions. (a) Changes in efflux of ethanol by altering a flux in pyruvate formate-4 

lyase (PFL), pyruvate dehydrogenase (PDHcr), acetolactate synthase (ACLS) or alcohol 5 

dehydrogenase (ALCD2ir) from its lower to upper limit. (b) Changes in L-lactate efflux by altering 6 

a flux in phosphorglycerate kinase (PGK), enolase (ENO), glyceraldehyde-3-phosphate 7 

dehydrogenase (GAPD), triose-phosphate isomerase (TPI) or L-lactate dehydrogenase (LDH_L) 8 

from its lower to upper limit. J and F corresponds to those in Fig. 4A. 9 
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 3 
Supplementary Fig. 7 | High sensitivity of Rex to NAD+ generation in S. mutans. The minimum 4 

logarithmic NAD+/NADH ratio to form 100% Rex–DNA complexes in S. mutans determined by 5 

the amount of glucose consumed and lactate produced (See supplementary text). Data for S. 6 

coelicolor, S. avermitilis, and T. aquaticus were from references 36,37,38. 7 
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Supplementary  Table. 1 | Assimilation of 15N% (ratio of 15N to total nitrogen) in S. mutans wild 1 

type (WT) and ∆rex under single-potential amperometry (SA) and open circuit voltage (OCV) 2 

conditions with and without riboflavin (RF). The data shown are the concurrent results of two 3 

individual experiments with standard errors of means (SEM). 4 

 5 
  6 

 7 

 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 

 22 

 23 

 24 

15N/Ntotal (%)
Condition 

(total number of cells) Mean% SEM%

WT-OCV (n=231) 13 0.46

WT-SA(n=209) 16.44 0.36

WT RF-OCV(n=220) 13.82 0.28

WT RF-SA(n=216) 13.01 0.24

∆rex-OCV(n=200) 10.92 0.4

∆rex-SA (n=200) 9.42 0.3



 
 

11 
 

Supplementary  Table. 2 | Percentage of cells with low 15N% incorporation (<10%) in S. mutans 1 

wild type (WT) and ∆rex under single-potential amperometry (SA) and open circuit voltage (OCV) 2 

conditions without/with riboflavin (RF). 3 
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Condition 
(total number of cells)

No of low active 
cells <10%

% of low active cells to 
total no of cells

WT-OCV (n=231) 83 42%

WT-SA(n=209) 8 4%

WT RF-OCV(n=220) 45 23%

WT RF-SA(n=216) 25 13%

∆rex-OCV(n=200) 95 47.5%

∆rex-SA (n=200) 92 46%
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Supplementary  Table. 5 | List of EET-capable bacteria and Archaea, their potential EET 1 

mechanism and their gene names assigned as redox regulator Rex in the database of National 2 

Center for Biotechnology Information. 3 

 4 

EET mechanism Organism rex Gene name

Flavin based 
complex 

Streptococcus dysgalactiae SDSE_0916
Granulicatella elegans HMPREF0446_01247
Trichococcus pasteurii TPAS_2663
Pisciglobus halotolerans SAMN04489868_12010
Alkalibacterium gilvum SAMN04488113_13626
Lactococcus lactis LL1060

Lactococcus garvieae LCGL_1020
Bacillus circulans C2I06_21170
Caldanaerobius fijiensis SAMN02746089_00712
mahella australiensis Mahau_0374
Clostridium intestinale CINTURNW_0232
Romboutsia weinsteinii CHL78_017725
Cellulosilyticum lentocellum Clole_3033
Faecalibacterium prausnitzii FPR_01980
Streptococcus suis SSGZ1_0943
Clostridium botulinum CBO3306
Eremococcus coleocola HMPREF9257_0586
Oenococcus oeni OEOE_1398
Carnobacterium maltaromaticum BN424_1284
Lactobacillus plantarum lp_0725
Vagococcus lutrae T233_01518

Enterococcus saccharolyticus OMQ_00682
Enterococcus faecalis EF_2638
Enterococcus faecium A5810_002288
Listeria Monocytogenes LMOf2365_2104

Cytochrome 
mediated EET Thermincola potens TherJR_2553

Fermentation 
associated EET

Enterococcus avium OMU_04218
Klebsiella pneumoniae BU230_13650

Cytochrome 
mediated EET 

in Archaea
Methanosarcinales archaeon DRN98_10615
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Supplementary  Table. 6 | List of amino acid sequence of Rossman-like folding identified by 1 

Cofactory v.1.0 and their length. 2 

  3 
 4 
 5 
 6 

Rossman like folding sequence identified by Cofactory v.1.0 Sequence length
>Streptomyces coelicolor
QDWPVVIVGIGNLGAALANYGGFASRGFRVAALIDADPGMAGKP 44
>Streptomyces avermitilis 
QDWPVVIVGIGNLGAALANYGGFASRGFRVAALIDADPAMAGKPV 45
>Thermus aquaticus
WGLCIVGMGRLGSALADYPGFGESFELRGFFDVDPEKVGR 37
>Klebsiella pneumoniae 
ITRVALIGVGNLGTAFLHYNFTKNNNTKIEMAFDVSEE 35
>Faecalibacterium prausnitzii 
TILIGCGRLGKAVSRFITTDTNGYKLIAAFDVAENEVGKEISGI 41
>Streptococcus mutans 
STTNVLLVGVGNIGRALLNYRFHERNKMKIAMAFDTDDNEQVGQ 41
>Streptococcus suis    
ITNVMLVGVGNMGRALLHYRFHERNKMKIVMAFEADDNPA 37
>Enterococcus avium 
QLTNVALVGVGNLGSALLKFKFHQSNSIRVSCAFDVKE 35
>Enterococcus faecium 
QLTNVALIGVGNLGSALLKYKFHQSNSIRISCAFDVNEEIVG 39
>Enterococcus saccharolyticus
QMTNVALIGVGNLGSALLKYKFHQSNSIRVSAAFDVNPDI 37
>Enterococcus faecalis 
EEKRIALIGCGNLGKALLKNNFRRNENLNIVCAFDNDSALVGTT 41
>Vagococcus lutrae 
RLTNVALIGVGNLGNALLNYGFHQGNNIRISAAFDVKED 36
>Listeria monocytogenes  
KQTNVALIGVGNLGTALLHYNFMKNNNIKIVAAFDVDPAKVGSVQQ 43
>Eremococcus coleocola
RLTSVGLVGVGNLGNALLNYNFRKNHNIRISAGFDINPEIVGTIHS 43
>Lactobacillus plantarum
LTNVALIGVGNLGHALLNFNFHKNSNVRISAAFDVNEAIANTVQS 42
>Oenococcus oeni
KLNKVAVVGTGNLGQALMKYNFVHSSNIQIVMGFDVDPKKKELKI 42
>Clostridium botulinum 
NPYNIIIIGAGNIGQALANYTRFSKLGFNVKAMFDTNPKLIGL 40
>Cellulosilyticum lentocellum
QNYKMIIVGVGNLGQAIANSTSFSKRGFKLIGLFDVNPRLIGMS 41
>Romboutsia weinsteinii
SYNAILVGAGNLGQAIANYSGFRKAGFEIKALFDANPKMIGL 39
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Supplementary Text: 1 

 2 

As described in Figure 5A, the NADH redox sensor Rex represses the transcription of pyruvate 3 

dehydrogenase upon sensing a NAD+/NADH ratio and Rex-DNA complex formation, resulted in 4 

the suppression and enhancement of the ethanol and lactate production, respectively. In our SA 5 

conditions, we detected significant amount of lactate but no ethanol as an end product. Therefore, 6 

we assumed that 100% activation of Rex-DNA complex formation in the SA conditions of S. 7 

mutans, and approximated the intracellular NAD+/NADH ratio that corresponds to 100% 8 

activation of Rex-DNA complex formation by using lactate and glucose concentration at 8, 16, 9 

and 24 hour in our SA conditions in the presence or absence of RF. Eight hour data in the presence 10 

of riboflavin gave the minimum value of -0.09 among calculated logarithmic NAD+/NADH ratios 11 

(Supplementary Fig. 7). We then compared the ratio with those corresponding to 100% activation 12 

of Rex-DNA complex in purified Rex proteins from S. coelicolor, S. avermitilis, and T. aquaticus 13 

(references 36,37,38).  14 

 15 


