

Redox Gene Regulator Rex Divert Fermentation In Concert with Low Charge Export in *Streptococcus mutans*.

4 **Authors:** Divya Naradasu^{1†}, Takano Sotaro^{1†}, Shu Zhang², Toshinori Okinaga³,
5 Tatsuji Nishihara⁴, Kenneth H. Nealson⁵, Akihiro Okamoto^{1,6,7*}

Affiliations:

¹ International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.

² Interfacial Energy Conversion Group, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.

³ Department of Bacteriology, Osaka Dental University, 8-1 Kuzuha-hanazano-cho, Hirakata-city, Osaka, 573-1121, Japan.

⁴ Division of Infections and Molecular Biology, Department of Health Promotion, Science of Health Improvement, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, 803-8580, Japan.

⁵Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089, U.S.A.

⁶Center for Sensor and Actuator Material, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.

⁷ Graduate School of Chemical Sciences and Engineering, Hokkaido University, 5-8, Jonishi, Kita Ward, Sapporo, Hokkaido 060-0808, Japan.

*Corresponding author. E-mail: OKAMOTO.Akihiro@nims.go.jp

† Authors equally contributed to the study.

1 **This file includes:**

2 **Supplementary figures**

3 Supplementary Fig. 1. Scanning electron microscope image of *S. mutans* cells attached on the
4 electrode surface.

5 Supplementary Fig. 2. Quantification of riboflavin reduced, and charge transported by *S. mutans*
6 in the presence of glucose in an anaerobic cuvette.

7 Supplementary Fig. 3. Evidences for direct electron transfer by *S. mutans*

8 Supplementary Fig. 4. Efflux changes in ethanol and L-lactate when altering the flux of key
9 metabolic reactions.

10 Supplementary Fig. 5. Effect of labeled $^{15}\text{NH}_4\text{Cl}$ on current production of *S. mutans*.

11 Supplementary Fig. 6. Time course of the electrolyte pH during the electrochemical operations.

12 Supplementary Fig. 7. High sensitivity of Rex to NAD^+ generation in *S. mutans*.

13

14 **Supplementary tables**

15 Supplementary Table. 1. List of differentially expressed genes associated with metabolism in
16 electrode attached *S. mutans* under SA vs OCV conditions with fold change 1.5.

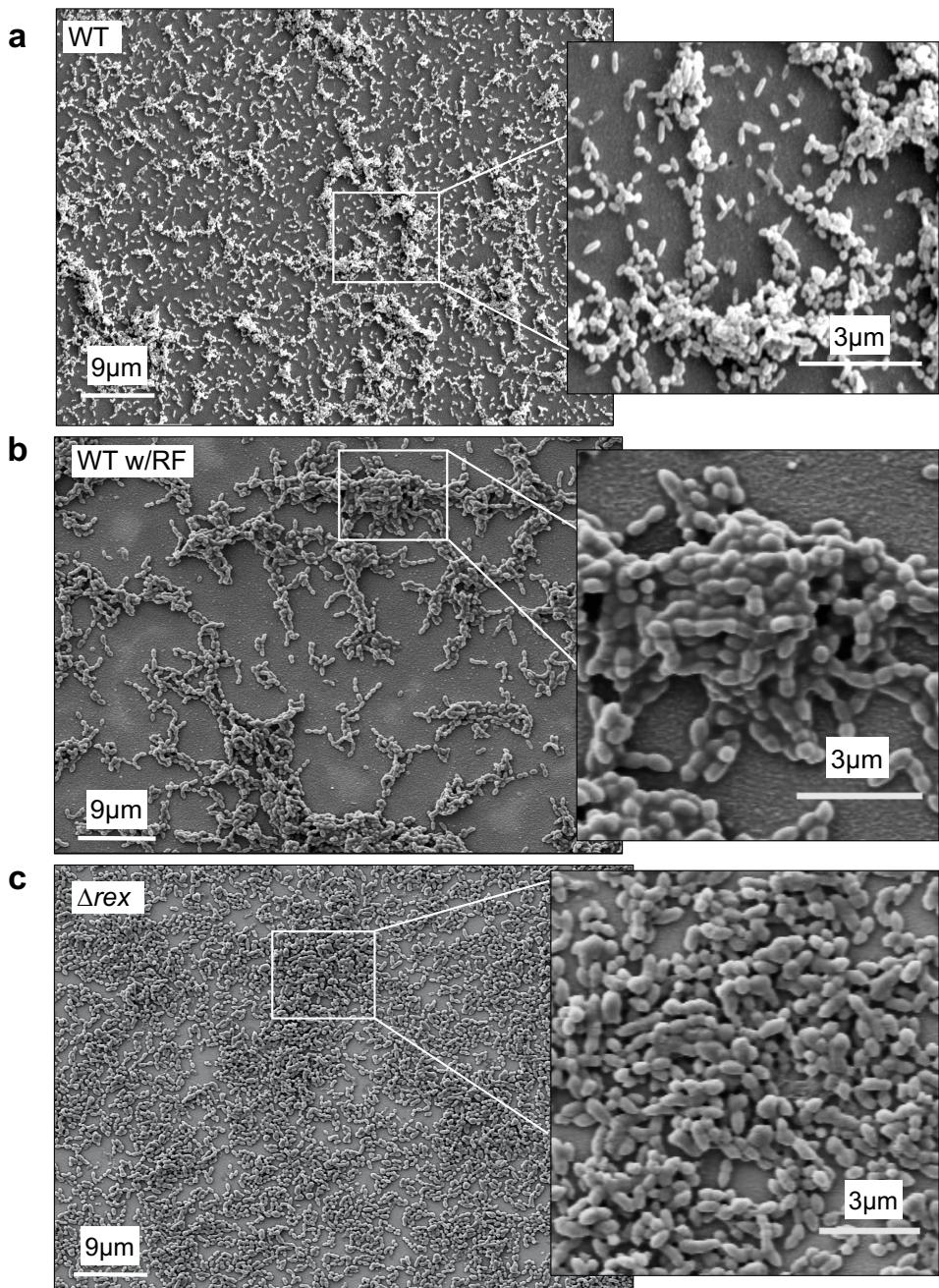
17 Supplementary Table. 2. Assimilation of $^{15}\text{N}\%$ (ratio of ^{15}N to total nitrogen) in *S. mutans* wild
18 type (WT) and Δrex under single-potential amperometry (SA) and open circuit voltage (OCV)
19 conditions with and without riboflavin (RF).

20 Supplementary Table. 3. Percentage of cells with low $^{15}\text{N}\%$ incorporation (<10%) in *S. mutans*
21 wild type (WT) and Δrex under single-potential amperometry (SA) and open circuit voltage (OCV)
22 conditions without/with riboflavin (RF).

23 Supplementary Table. 4. List of differentially expressed genes associated with metabolism of *S.*
24 *mutans* wild type (WT) and *rex* mutant with fold change 1.5.

25 Supplementary Table. 5. List of EET-capable bacteria, their potential EET mechanism and their
26 gene names assigned as redox regulator Rex in the database of National Center for Biotechnology
27 Information.

28 Supplementary Table. 6. List of amino acid sequence of Rossman-like folding identified by the
29 Cofactory v.1.0 and their length.

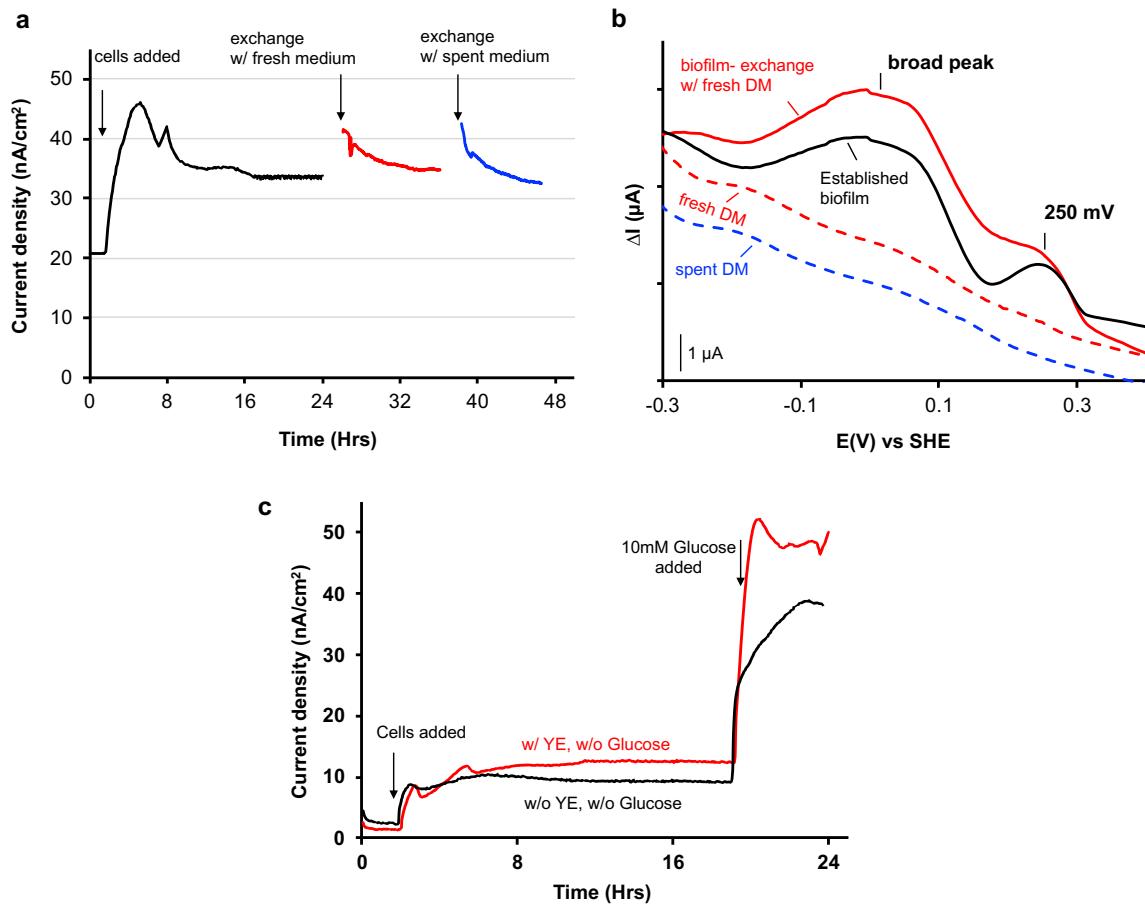

30

31 **Supplementary text**

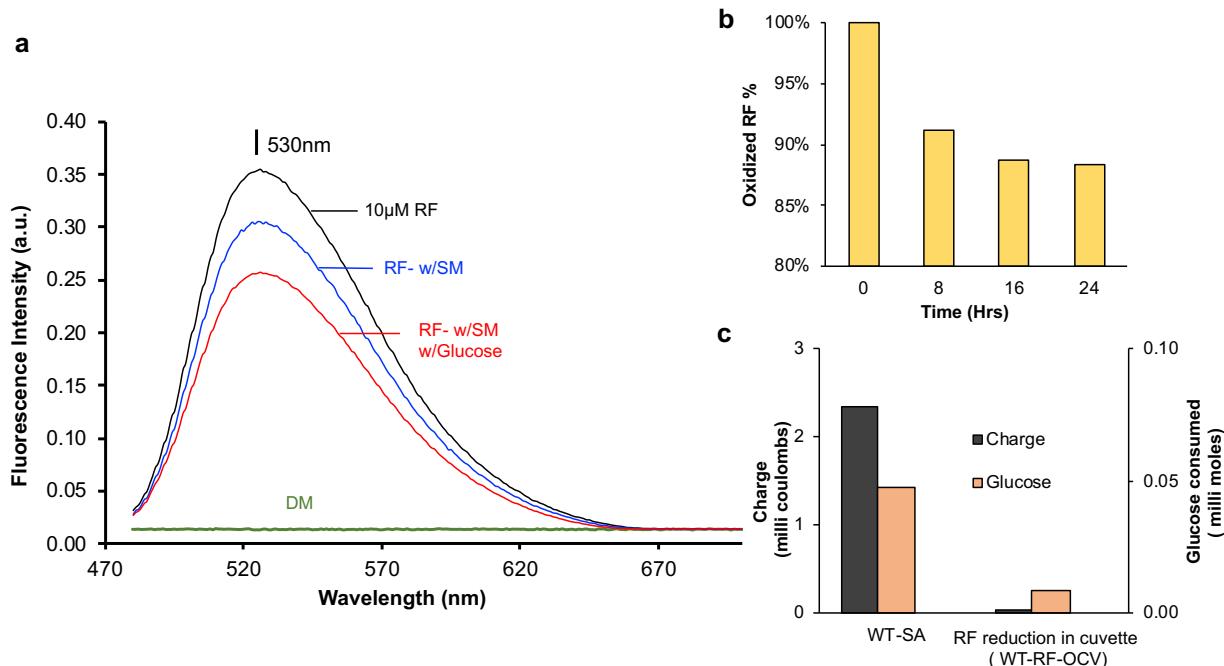
32

33

1


2

3 **Supplementary Fig. 1 | Scanning electron microscope images of *S. mutans* cells attached on**
 4 **the electrode surface. a) *S. mutans* WT b) WT in the presence of riboflavin (RF) and c) Rex**
 5 **deleted *S. mutans* (Δ rex) after 24 hours of current production with 10 mM glucose at +0.4 V**
 6 **(versus SHE), cells were intact on the electrode surface.**


7

8

9

1
2 **Supplementary Fig. 2 | Evidences for direct electron transfer by *S. mutans*.** **a)** Supernatant
3 replacement during the current production of *S. mutans* at +0.4 V (versus SHE). At the indicated
4 times, the medium was removed and replaced with sterile defined medium containing 10 mM
5 glucose (red line) or cell free spent medium (blue line), leading to no decrease in current production.
6 The same tendency was confirmed in three individual experiments. **b)** Baseline-subtracted
7 differential pulse voltammograms in the presence of *S. mutans* before (black solid line) and after
8 medium exchange (red solid line). Data for sterile DM (red dotted line) and cell free spent medium
9 (blue dotted line) are also represented. **c)** Effect of the removal of yeast extract (YE) on the current
10 production of *S. mutans*. In the absence of YE, the glucose oxidation current production after the
11 addition of 10 mM glucose reached to the value approximately 15 % smaller than that in the
12 presence of YE. Because YE provides essential nutrients for protein synthesis, a little less current
13 production is explainable by not only shuttling of riboflavin contained in the YE but also less
14 cellular protein synthesis for direct electron transport mechanism.

1

2 **Supplementary Fig. 3 | Quantification of reduced riboflavin, and charge transported by *S.***

3 ***mutans* in the presence of glucose in an anaerobic cuvette. (a)** Emission spectrum of oxidized

4 riboflavin (RF) measured by excitation at 450 nm, showing the fluorescence intensity peak of 10

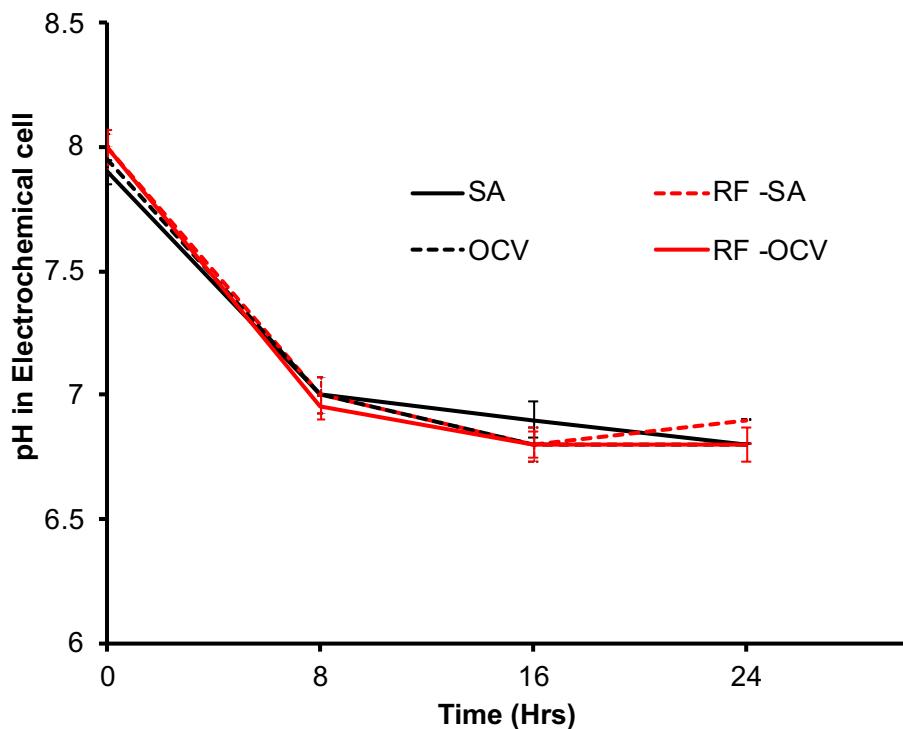
5 μ M RF (black line) at 530 nm. Upon the addition of *S. mutans* (SM) to 3 mL of deaerated DM at

6 $OD_{600} = 0.1$ (blue line), and subsequent addition of 10 mM glucose. **(b)** The time course of oxidized

7 RF fluorescence intensity (red line) in cuvette measured at every 8 hours. **(c)** The graph showing

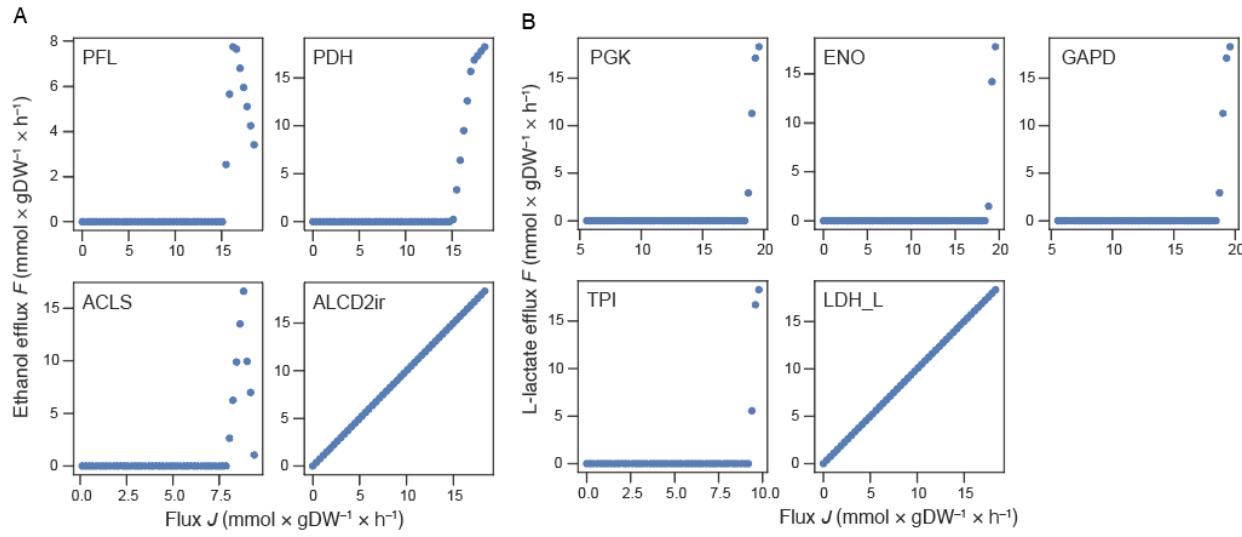
8 the charge estimated from RF reduction and amount of glucose consumed after 24 hours in the

9 cuvette, from which we estimated the columbic efficiency in the open circuit condition with SM


10 in the presence of RF (WT-RF-OCV) in Figure 3A.

11

12



1
 2 **Supplementary Fig. 4 | Effect of labeled $^{15}\text{NH}_4\text{Cl}$ on current production of *S. mutans*.** Current
 3 production of *S. mutans* vs. time measurements conducted in anaerobic reactor equipped with ITO
 4 electrodes (surface area: 3.14 cm^2) poised at $+0.4\text{ V}$ (versus SHE) containing DM with labeled and
 5 unlabeled NH_4Cl as sole N source in the presence and absence of $10\text{ }\mu\text{M}$ riboflavin (RF) with 10
 6 mM glucose. The solid and dotted arrows indicate the timing of cell addition to the reactor with
 7 ^{15}N and ^{14}N labeled medium, respectively.
 8
 9
 10

1
 2 **Supplementary Fig. 5 | Time course of the electrolyte pH during the electrochemical**
 3 **operations under single-potential amperometry (SA) and open circuit voltage (OCV)**
 4 **conditions in the presence and absence of riboflavin (RF).** We measured pH at every 8-hour
 5 time interval during the electrochemical measurement. The data shown are mean values \pm standard
 6 deviations of two individual experiments.
 7

1

2

3 **Supplementary Fig. 6 | Efflux changes in ethanol and L-lactate when altering the flux of**

4 **key metabolic reactions.** (a) Changes in efflux of ethanol by altering a flux in pyruvate formate-
 5 lyase (PFL), pyruvate dehydrogenase (PDHcr), acetolactate synthase (ACLS) or alcohol
 6 dehydrogenase (ALCD2ir) from its lower to upper limit. (b) Changes in L-lactate efflux by altering
 7 a flux in phosphoglycerate kinase (PGK), enolase (ENO), glyceraldehyde-3-phosphate
 8 dehydrogenase (GAPD), triose-phosphate isomerase (TPI) or L-lactate dehydrogenase (LDH_L)
 9 from its lower to upper limit. J and F corresponds to those in Fig. 4A.

10

11

12

13

14

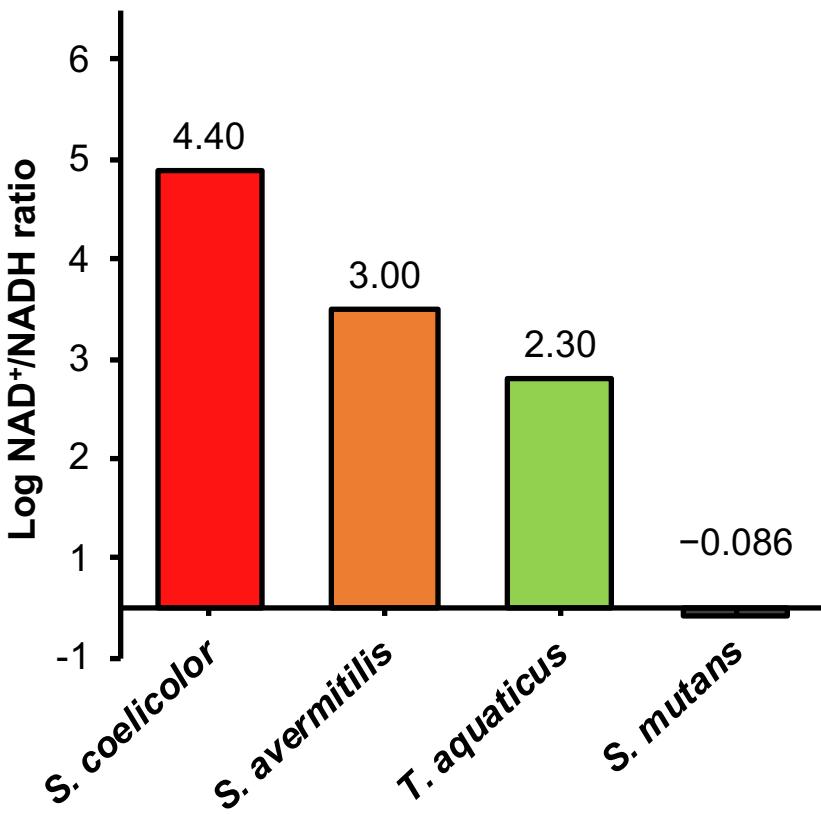
15

16

17

18

19


20

21

22

23

24

3
 4 **Supplementary Fig. 7 | High sensitivity of Rex to NAD⁺ generation in *S. mutans*.** The minimum
 5 logarithmic NAD⁺/NADH ratio to form 100% Rex–DNA complexes in *S. mutans* determined by
 6 the amount of glucose consumed and lactate produced (See supplementary text). Data for *S.*
 7 *coelicolor*, *S. avermitilis*, and *T. aquaticus* were from references 36,37,38.
 8
 9

1 **Supplementary Table. 1** | Assimilation of ^{15}N % (ratio of ^{15}N to total nitrogen) in *S. mutans* wild
2 type (WT) and Δrex under single-potential amperometry (SA) and open circuit voltage (OCV)
3 conditions with and without riboflavin (RF). The data shown are the concurrent results of two
4 individual experiments with standard errors of means (SEM).

5
6
7

$^{15}\text{N}/\text{N}_{\text{total}} (\%)$		
Condition (total number of cells)	Mean%	SEM%
WT-OCV (n=231)	13	0.46
WT-SA(n=209)	16.44	0.36
WT RF-OCV(n=220)	13.82	0.28
WT RF-SA(n=216)	13.01	0.24
Δrex -OCV(n=200)	10.92	0.4
Δrex -SA (n=200)	9.42	0.3

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

1 **Supplementary Table. 2** | Percentage of cells with low $^{15}\text{N}\%$ incorporation (<10%) in *S. mutans*
2 wild type (WT) and Δrex under single-potential amperometry (SA) and open circuit voltage (OCV)
3 conditions without/with riboflavin (RF).

4

Condition (total number of cells)	No of low active cells <10%	% of low active cells to total no of cells
WT-OCV (n=231)	83	42%
WT-SA(n=209)	8	4%
WT RF-OCV(n=220)	45	23%
WT RF-SA(n=216)	25	13%
Δrex -OCV(n=200)	95	47.5%
Δrex -SA (n=200)	92	46%

5
6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

1 **Supplementary Table. 5** | List of EET-capable bacteria and Archaea, their potential EET
 2 mechanism and their gene names assigned as redox regulator Rex in the database of National
 3 Center for Biotechnology Information.

EET mechanism	Organism	rex Gene name
Flavin based complex	<i>Streptococcus dysgalactiae</i>	SDSE_0916
	<i>Granulicatella elegans</i>	HMPREF0446_01247
	<i>Trichococcus pasteurii</i>	TPAS_2663
	<i>Pisciglobus halotolerans</i>	SAMN04489868_12010
	<i>Alkalibacterium gilvum</i>	SAMN04488113_13626
	<i>Lactococcus lactis</i>	LL1060
	<i>Lactococcus garvieae</i>	LCGL_1020
	<i>Bacillus circulans</i>	C2I06_21170
	<i>Caldanaerobius fijiensis</i>	SAMN02746089_00712
	<i>mahella australiensis</i>	Mahau_0374
	<i>Clostridium intestinalis</i>	CINTURNW_0232
	<i>Romboutsia weinsteini</i>	CHL78_017725
	<i>Cellulosilyticum lentocellum</i>	Cole_3033
	<i>Faecalibacterium prausnitzii</i>	FPR_01980
	<i>Streptococcus suis</i>	SSGZ1_0943
	<i>Clostridium botulinum</i>	CBO3306
	<i>Eremococcus coleocola</i>	HMPREF9257_0586
	<i>Oenococcus oeni</i>	OEOE_1398
	<i>Carnobacterium maltaromaticum</i>	BN424_1284
	<i>Lactobacillus plantarum</i>	lp_0725
	<i>Vagococcus lutrae</i>	T233_01518
	<i>Enterococcus saccharolyticus</i>	OMQ_00682
	<i>Enterococcus faecalis</i>	EF_2638
	<i>Enterococcus faecium</i>	A5810_002288
	<i>Listeria Monocytogenes</i>	LMOf2365_2104
Cytochrome mediated EET	<i>Thermincola potens</i>	TherJR_2553
Fermentation associated EET	<i>Enterococcus avium</i>	OMU_04218
	<i>Klebsiella pneumoniae</i>	BU230_13650
Cytochrome mediated EET in Archaea	<i>Methanosarcinales archaeon</i>	DRN98_10615

1 **Supplementary Table. 6 | List of amino acid sequence of Rossman-like folding identified by**
 2 **Cofactory v.1.0 and their length.**

Rossman like folding sequence identified by Cofactory v.1.0	Sequence length
> <i>Streptomyces coelicolor</i> QDWPVVIVGIGNLGAALANYGGFASRGFRVAALIDADPGMAGKP	44
> <i>Streptomyces avermitilis</i> QDWPVVIVGIGNLGAALANYGGFASRGFRVAALIDADPAMAGKPV	45
> <i>Thermus aquaticus</i> WGLCIVGMGRLGSALADYPGFGESFELRGFFDVPDKVGR	37
> <i>Klebsiella pneumoniae</i> ITRVALIGVGNLGTAFHLHYNFTKNNNTKIEMAFDVSEE	35
> <i>Faecalibacterium prausnitzii</i> TILIGCGRLGKAVSRFITTDTNGYKLIAAFDVAENEVGKEISGI	41
> <i>Streptococcus mutans</i> STTNVLLVGVGNIGRALLNYRFHERNKMKIAMAFDTDDNEQVGQ	41
> <i>Streptococcus suis</i> ITNVMLVGVGNMGRALLHYRFHERNKMKIVMAFEADDNPA	37
> <i>Enterococcus avium</i> QLTNVALVGVGNLGSALLKFKFHQSNSIRVSCAFDVKE	35
> <i>Enterococcus faecium</i> QLTNVALIGVGNLGSALLKYKFHQSNRISIRCAFVNNEEVG	39
> <i>Enterococcus saccharolyticus</i> QMTNVALIGVGNLGSALLKYKFHQSNRISIRVSAAFDVNPDI	37
> <i>Enterococcus faecalis</i> EEKRIVALIGCGNLGKALLKNNFRRNENLNIVCAFNDNSALVGT	41
> <i>Vagococcus lutrae</i> RLTNVALIGVGNLGNALLNYGFHQGNNIRISAAFDVKED	36
> <i>Listeria monocytogenes</i> KQTNVALIGVGNLGTALLHYNFMKNNNIKIVAADFVDPAKVGSVQQ	43
> <i>Eremococcus coleocola</i> RLTSVGLVGVGNLGNALLNYNFRKNHNIRISAGFDINPEIVGTIHS	43
> <i>Lactobacillus plantarum</i> LTNVALIGVGNLGHALLNFNFHKNSNVRISAAFDVNEAIANTVQS	42
> <i>Oenococcus oeni</i> KLNKVAVVGTGNLGQALMKYNFVHSSNIQIVMGFDVDPKKELKI	42
> <i>Clostridium botulinum</i> NPYNIIIGAGNIGQALANYTRFSKLGFnVKAMFDTNPKLIGL	40
> <i>Cellulosilyticum lentoceum</i> QNYKMIIVGVGNLQAIANSTSFSKRGFKLIGLFDVNPRIGMS	41
> <i>Romboutsia weinsteinii</i> SYNAILVGAGNGLQAIANYSGFRKAGFEIKALFDANPKMIGL	39

3
 4
 5
 6

1 **Supplementary Text:**
2
3 As described in Figure 5A, the NADH redox sensor Rex represses the transcription of pyruvate
4 dehydrogenase upon sensing a NAD⁺/NADH ratio and Rex-DNA complex formation, resulted in
5 the suppression and enhancement of the ethanol and lactate production, respectively. In our SA
6 conditions, we detected significant amount of lactate but no ethanol as an end product. Therefore,
7 we assumed that 100% activation of Rex-DNA complex formation in the SA conditions of *S.*
8 *mutans*, and approximated the intracellular NAD⁺/NADH ratio that corresponds to 100%
9 activation of Rex-DNA complex formation by using lactate and glucose concentration at 8, 16,
10 and 24 hour in our SA conditions in the presence or absence of RF. Eight hour data in the presence
11 of riboflavin gave the minimum value of -0.09 among calculated logarithmic NAD⁺/NADH ratios
12 (Supplementary Fig. 7). We then compared the ratio with those corresponding to 100% activation
13 of Rex-DNA complex in purified Rex proteins from *S. coelicolor*, *S. avermitilis*, and *T. aquaticus*
14 (references 36,37,38).

15