

**Supplementary Materials for
Unconventional route to control the chemical doping of molecular
semiconductors through proton-coupled electron transfer in aqueous solutions**

Masaki Ishii, Yu Yamashita, Shun Watanabe, Katsuhiko Ariga, and Jun Takeya

Correspondence and requests for materials should be addressed to

Yamashita.Yu@nims.go.jp (Y.Y.)

Contents

1. Supplementary Methods and Discussion

1.1 Materials and doping methods

1.2 Characterization of doping

1.3 Effect of dissolved oxygen

1.4 Analysis of the X-ray photoelectron spectra

1.5 Application of our method to a wide pH range

2. Supplementary references

1 **1. Supplementary Methods and Discussion.**

2

3 **1.1 Materials and doping methods**

4 The polymeric semiconductor poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-
5 b]thiophene] (PBTET) is one of the most widely studied p-type organic semiconductors
6 (OSCs) and is known to exhibit high field-effect mobility. PBTET, with an estimated
7 molecular weight of 40,000-80,000 Da, was purchased from Sigma-Aldrich and used as
8 received. *o*-Dichlorobenzene (*o*DCB) was purchased from Tokyo Chemical Industry (TCI)
9 and used as a solvent for PBTET. 1,4-Benzoquinone (BQ) and hydroquinone (HQ)
10 were purchased from TCI as redox agents. Lithium bis(trifluoromethanesulfonyl)imide
11 (LiTFSI) and lithium bis(nonfluorobutanesulfonyl)imide (LiNFSI) were purchased from
12 TCI and used as dopant salts. Sulfuric acid (SA), phosphoric acid (H₃PO₄), potassium
13 dihydrogen phosphate (KH₂PO₄), dipotassium hydrogenphosphate (K₂HPO₄) and acetic
14 acid (CH₃COOH) were used for pH control and purchased from Nacalai Tesque. Potassium
15 hydroxide (PH) and potassium acetate (CH₃COOK) were used for pH control and purchased
16 from FUJIFILM Wako Pure Chemical Corporation. The deionized (DI) water used for
17 solution preparation was distilled and deionized using Purelab Option R7, Flex (ELGA).
18 The molecular structures of main compounds are shown in Figure 1 in the main text.

19 The PBTET thin films were fabricated on standard EAGLE XG glass substrates
20 for UV-vis-NIR spectroscopy and XRD analysis and on Cr/Au-patterned and covered
21 EAGLE XG glass substrates for conductivity and potential, XPS, and PYS measurements.
22 The thin films were deposited via spin-coating from a 1 wt% (0.5 wt% for the experiment
23 shown in Fig. 5 in the main text) *o*DCB solution at a spinning speed of 2000 rpm for 1 min.
24 The resulting films were annealed in a vacuum oven at 180 °C for 1 h and then cooled slowly
25 to room temperature. The film thickness was determined to be 42 ± 2 nm using a Dektak
26 surface profilometer. The PBTET films were washed with DI water and then doped by
27 immersion in aqueous dopant solutions at room temperature. The doping solutions were
28 prepared by dissolving BQ, HQ and/or dopant salts in pH-controlled aqueous solutions.
29 After 20 min of immersion, the films were removed from the solution, and the residual
30 solvent was blown away by a N₂ flow. The detailed conditions of the solution preparation
31 processes are listed in Table S1-S4. All doping (immersion) processes were performed under
32 ambient conditions, and the films obtained were subjected to several measurements under

1 atmospheric conditions.

	solution name	redox agent	salt
	BQ-LiNFSI	BQ 50 mM	LiNFSI 4 mM
	BQ-LiTFSI	BQ 50 mM	LiTFSI 100 mM
	LiNFSI	—	LiNFSI 4 mM
	LiTFSI	—	LiTFSI 100 mM
	BQ	BQ 50 mM	—

10 **Table S1:** Solution preparation conditions for the experiment shown in Fig. 1 in the main text.

	solution name	redox agent	salt	buffer (10 mM)
	pH 2	BQ 10 mM, HQ 10 mM	LiTFSI 100 mM	H ₃ PO ₄ -KH ₂ PO ₄
	pH 4	BQ 10 mM, HQ 10 mM	LiTFSI 100 mM	CH ₃ COOH-CH ₃ COOK

16 **Table S2:** Solution preparation conditions for the experiment shown in Fig. 4 in the main text.

17 The total solution volume was 5 mL.

1	solution name	redox agent	salt
2	BQ-LiNFSI	BQ 50 mM	LiNFSI 1 mM
3	BQ-LiTFSI	BQ 50 mM	LiTFSI 100 mM
4	DDQ-LiNFSI	DDQ 2 mM	LiNFSI 1 mM
5	DDQ-LiTFSI	DDQ 2 mM	LiTFSI 100 mM

6 **Table S3:** Solution preparation conditions for the experiment shown in Fig. 5 in the main text.
7

10	solution name	redox agent	salt	buffer (10 mM)
11	pH 1	BQ 10 mM, HQ 1 mM	LiNFSI 1 mM	—
12	pH 2	BQ 10 mM, HQ 1 mM	LiNFSI 1 mM	H ₃ PO ₄ -KH ₂ PO ₄
13	pH 3	BQ 10 mM, HQ 1 mM	LiNFSI 1 mM	H ₃ PO ₄ -KH ₂ PO ₄
14	pH 4	BQ 10 mM, HQ 1 mM	LiNFSI 1 mM	CH ₃ COOH-CH ₃ COOK
15	pH 5	BQ 10 mM, HQ 1 mM	LiNFSI 1 mM	CH ₃ COOH-CH ₃ COOK
16	pH 6	BQ 10 mM, HQ 1 mM	LiNFSI 1 mM	KH ₂ PO ₄ -K ₂ HPO ₄
17	pH 7	BQ 10 mM, HQ 1 mM	LiNFSI 1 mM	KH ₂ PO ₄ -K ₂ HPO ₄

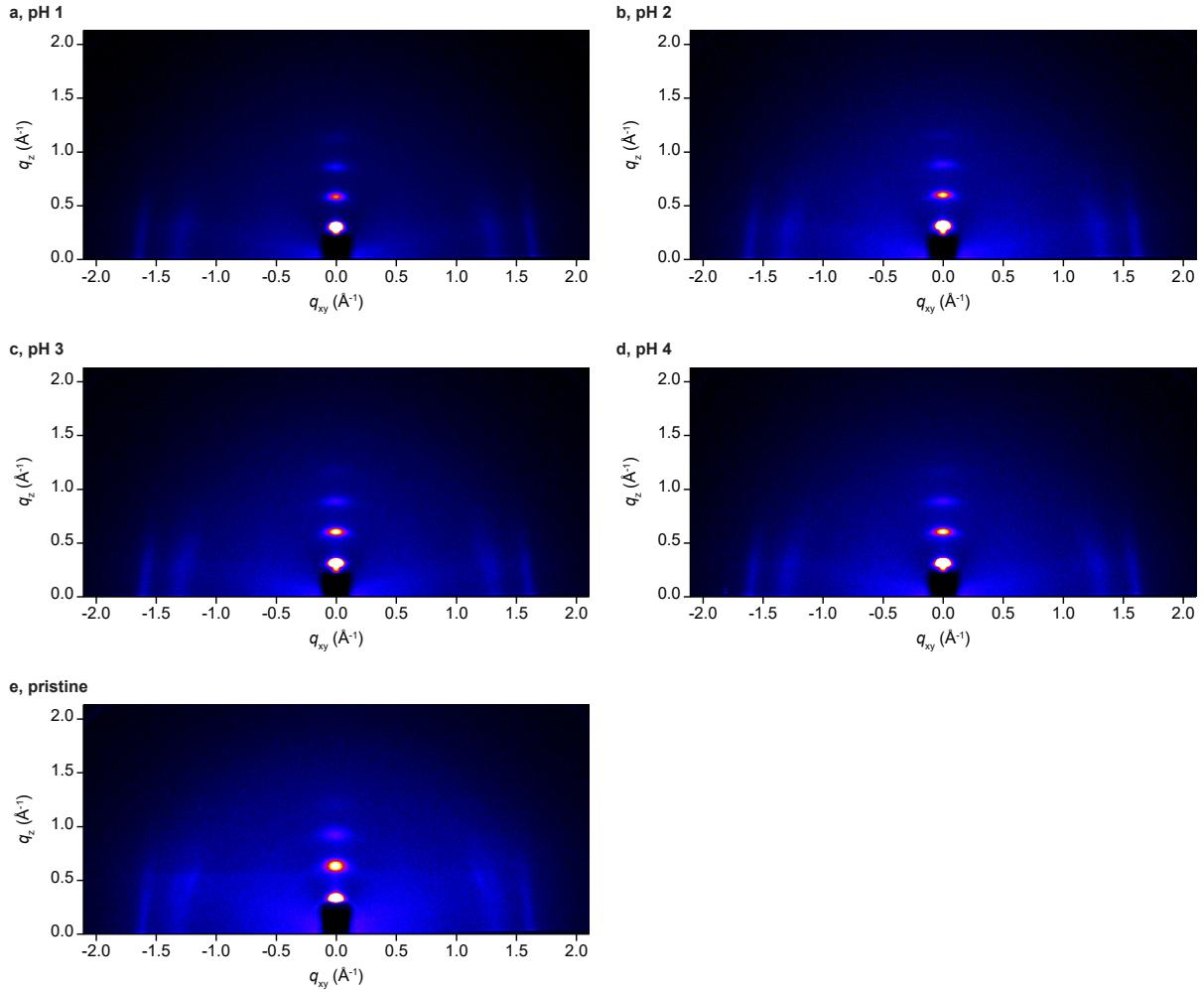
18 **Table S4:** Solution preparation conditions for the experiment shown in Extended Data Fig. 4
19

1 **1.2 Characterization of doping**

2 **UV-vis-NIR spectroscopy.** The UV-vis-NIR spectra of the thin films were acquired
3 from specimens on glass substrates in air using a JASCO spectrometer (V-670).

4

5 **X-ray diffraction (XRD) measurement.** Out-of-plane and in-plane XRD data were
6 acquired using a RIGAKU SmartLab with a MicroMax-007HF X-ray generator using Cu K α
7 radiation ($\lambda = 0.15418$ nm) in conjunction with a 0.1 mm-thick EAGLE XG glass substrate
8 to reduce substrate scattering. For the out-of-plane direction, $\theta - 2\theta$ method was employed.
9 For in-plane direction, data was acquired by converting two dimensional wide angle x-ray
10 scattering images. In particular, XRD spectra of PBT TT thin films in the in-plane direction
11 shown in Fig. 2e in the main text come from Fig. S1.


12 According to the XRD measurements, no apparent changes in morphology were observed
13 before and after doping, *i.e.*, the terrace structure due to the microcrystalline and lamellar
14 nature of PBT TT was maintained even after doping. In addition, because neither significant
15 broadening nor splitting was observed in the diffraction peaks, the incorporation of the
16 dopant was homogeneous over the entire bulk of the PBT TT thin film.

17

18 **Photoelectron yield spectroscopy (PYS) measurement.** PYS data were obtained
19 from thin films on Cr/Au-coated glass substrates using a SUMITOMO PYS-202 instrument.

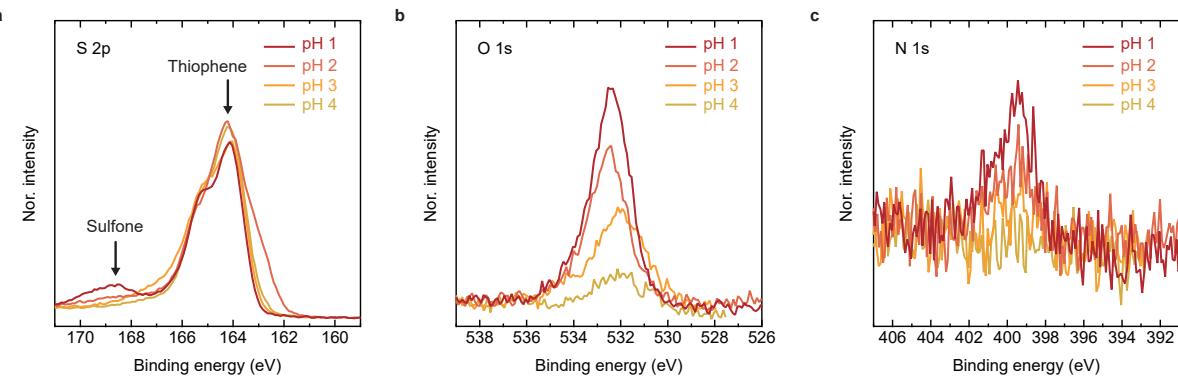
20

21 **Electrode potential measurement.** A PBT TT thin-film electrode was prepared on a
22 Cr/Au-patterned glass substrate by blade coating¹ with a shearing rate of $100 \mu\text{m s}^{-1}$ from
23 a 0.5 % *o*DCB solution. The electrode potential of PBT TT was measured from a system in
24 which a Ag/AgCl electrode was used as the reference electrode, as shown in Extended Data
25 Fig. 2a. The aqueous solutions used were composed of the BQ/HQ redox couple (10 mM)
26 and LiTFSI (100 mM). SA and PH were used for pH control.

Figure S1: Wide angle x-ray scattering images of PBTBT thin films immersed in aqueous solutions with BQ/HQ (both 10 mM) and LiTFSI (100 mM) at pH 1-4. The images were used for structural analyses especially in the in-plane direction (Fig. 2e in the main text).

1.3 Effect of dissolved oxygen

The equilibrium reaction of oxygen evolution shown in the Pourbaix diagram (Fig. 1b in the main text) is described as follows.



A high proton concentration promotes a leftward shift of the equilibrium when oxygen and electrons exist; that is, dissolved oxygen in aqueous solution may oxidize OSCs at low pH. In this section, we assessed whether dissolved oxygen perturbs the precise control of the doping level by a BQ/HQ redox couple. Extended Data Fig. 1a shows the conductivities of PBTTT thin films immersed in aqueous solutions with LiTFSI at 100 mM. The conductivity increased with decreasing solution pH, which was derived from oxidation by dissolved oxygen as a substitute for BQ/HQ. Note that the equilibrium of Equation (S1) is inclined to the right because our doping system consisted of a large amount of water. Considering that the oxygen amount in pure water is 8.11 mg L^{-1} at 25°C and 1 atm^2 , the molecular ratio of water to oxygen is estimated to be 2.2×10^5 . Therefore, the reduction reaction proceeds to a limited extent when the proton concentration is high, and a dopant anion prevents the reverse reaction. In fact, the increase in conductivity is significant when BQ is used as an oxidant instead of dissolved oxygen; for instance, the conductivity of the system may increase by as much as ca. 20000 times at pH 1. In addition, the effect of dissolved oxygen could be neglected by Ar bubbling (Extended Data Fig. 1b).

1.4 Analysis of the X-ray photoelectron spectra

X-ray photoelectron spectroscopy (XPS) was employed to evaluate the atomic composition of the doped PBTTT films. XPS was performed using a KRATOS ULTRA 2 instrument with monochromatic Al $K\alpha$ X-rays.

In the main text, we focused on the C 1s and F 1s spectra of TFSI^- doped PBT TT thin films to determine the F/C atomic ratio. The XPS narrow spectra of other atoms are described here to further describe the atomic composition of the doped PBT TT films (Fig. S2). The atomic amounts of O and N increased with decreasing solution pH, thus suggesting that TFSI^- was effectively introduced into the films based on our doping model. The increase in the intensity of the sulfone peak at pH 1 also supported the intercalation of TFSI^- into the PBT TT thin film.

Figure S2: XPS narrow spectra of the S 2p (a), O 1s (b) and N 1s (c) regions of the same PBTBT thin films shown in Fig. 3b-d in the main text.

1.5 Application of our method to a wide pH range

The doping efficiency of our method depends on several factors, such as the ionization potential (*IP*) and electron affinity (*EA*) of the materials and the interactions between the solid OSC and dopant anion. Thus, we can prepare OSC materials with the desired carrier density or *IP* by changing these parameters. In this section, we demonstrate pH-dependent conductivity changes over a wide pH range, from the neutral region, as an application of our doping method. Poly(3-hexylthiophene-2,5-diyl) (P3HT) was purchased from Sigma-Aldrich and used as a p-type OSC instead of PBTBT because of its lower *IP*. UV-vis-NIR spectroscopy and conductivity measurements (Extended Data Figs. 4a,b) showed that the doping level of P3HT was controlled by the solution pH, similar to the doping level of PBTBT shown in the main text. The doping reaction did not significantly disrupt the intrinsic crystalline structure of P3HT. Changes in *d*-spacing imply that dopant anions were intercalated between the layers of the lamellar structures by our doping method (Extended Data Figs. 4c,d). These results could lead to the development of a new type of resistive-based pH sensor. A system that does not require a bulky reference electrode and affords simple resistive measurements would contribute to the miniaturization of pH sensors.

1 **2. Supplementary References**

2

4 ¹ Yamamura, A. *et al.* Wafer-scale, layer-controlled organic single crystals for high-speed circuit
5 operation. *Science advances* **4**, eaao5758 (2018).

6 ² Truesdale, G. & Downing, A. Solubility of oxygen in water. *Nature* **173**, 1236–1236 (1954).

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32