

## Supplementary Information

# Experimental disclosing the composition- and structure-dependent deep-level defect in photovoltaic antimony trisulfide materials

Weitao Lian<sup>1</sup> Chenhui Jiang<sup>1</sup>, Yiwei Yin<sup>1</sup>, Rongfeng Tang<sup>1</sup>, Gang Li<sup>1</sup>, Lijian Zhang<sup>1</sup>, Bo Che<sup>1</sup> and Tao Chen<sup>1\*</sup>

<sup>1</sup>Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China

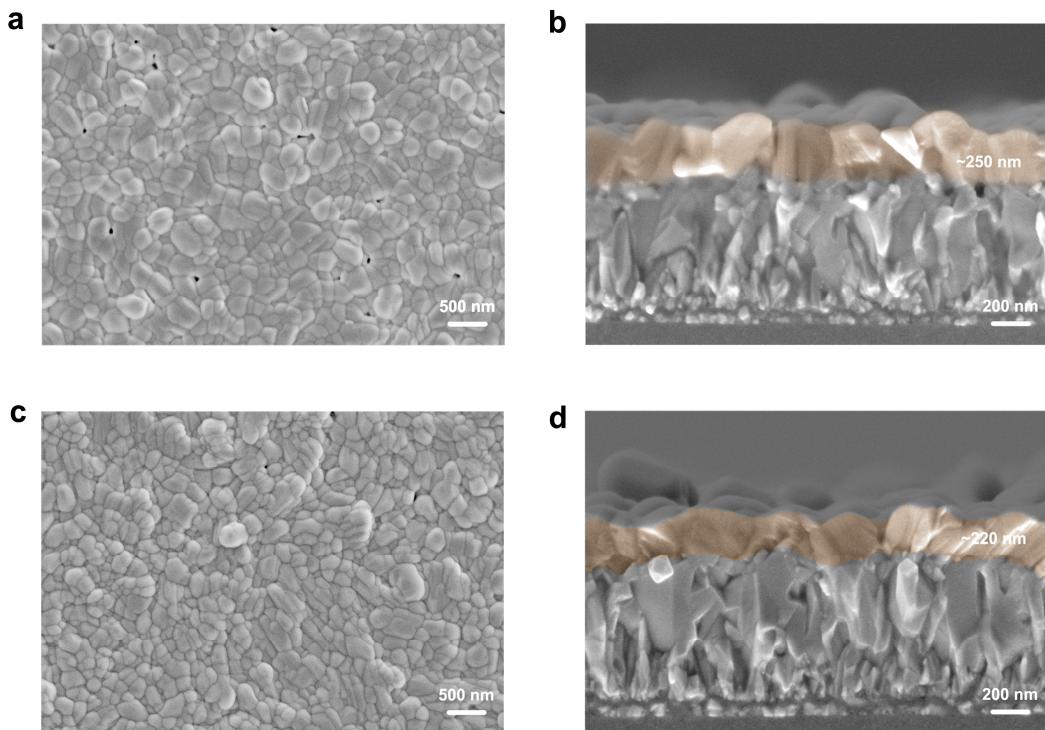
\*E-mail: tchenmse@ustc.edu.cn

23 Supplementary Table 1 Characterisation of the element composition of Sb-rich and S-  
24 rich films deposited on soda-lime glass via energy dispersive X-ray spectroscopy (EDS).

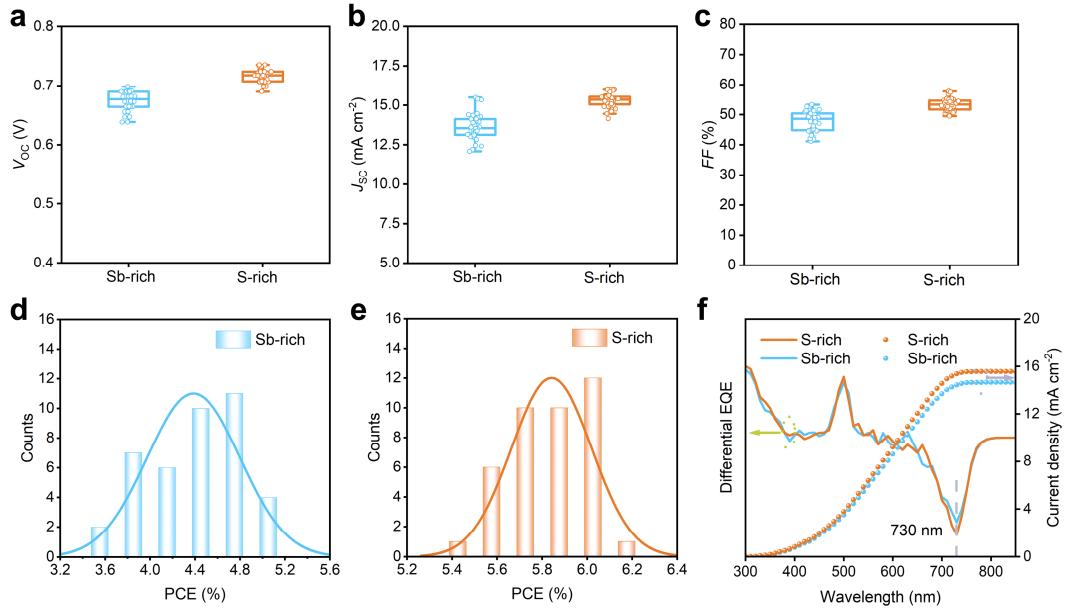
| Films   | Sb at% | S at% | S/Sb | S/Sb (average) |
|---------|--------|-------|------|----------------|
| Sb-rich | 43.70  | 56.30 | 1.29 |                |
|         | 43.90  | 56.10 | 1.28 |                |
|         | 43.30  | 55.90 | 1.29 | 1.28           |
|         | 43.80  | 56.20 | 1.28 |                |
|         | 44.10  | 55.90 | 1.27 |                |
|         | 38.40  | 61.60 | 1.60 |                |
|         | 39.80  | 60.20 | 1.51 |                |
|         | 38.20  | 61.80 | 1.62 | 1.55           |
|         | 39.90  | 60.10 | 1.51 |                |
|         | 39.80  | 60.20 | 1.51 |                |

25  
26 Supplementary Table 2 Fitting results of TAS monitored at 545 nm wavelength.

| Films   | $A_1$ | $t_1(\text{ns})$ | $A_2$ | $t_2(\text{ns})$ | $\tau(\text{ns})$ |
|---------|-------|------------------|-------|------------------|-------------------|
| Sb-rich | 0.40  | 0.31             | 0.60  | 3.99             | 3.8               |
| S-rich  | 0.09  | 0.38             | 0.91  | 18.69            | 18.7              |


27  
28  
29  
30

31 Supplementary Table 3 Photovoltaic parameters of optimal Sb-rich and S-rich  $\text{Sb}_2\text{S}_3$   
32 devices.


| Devices | $V_{\text{oc}}$ (V) | $J_{\text{sc}}$ (mA.cm $^{-2}$ ) | $FF$  | $\eta$ (%) | $R_s$ ( $\Omega$ ) | $R_{\text{sh}}$ ( $\Omega$ ) |
|---------|---------------------|----------------------------------|-------|------------|--------------------|------------------------------|
| S-rich  | 0.74*               | 15.6                             | 52.9  | 6.1        | 106.3              | 6184.6                       |
|         | 0.72                | 15.9*                            | 54.3* | 6.2*       | 100.4              | 6677.5                       |
| Sb-rich | 0.68                | 15.4                             | 47.6  | 5.0        | 116.5              | 1509.3                       |

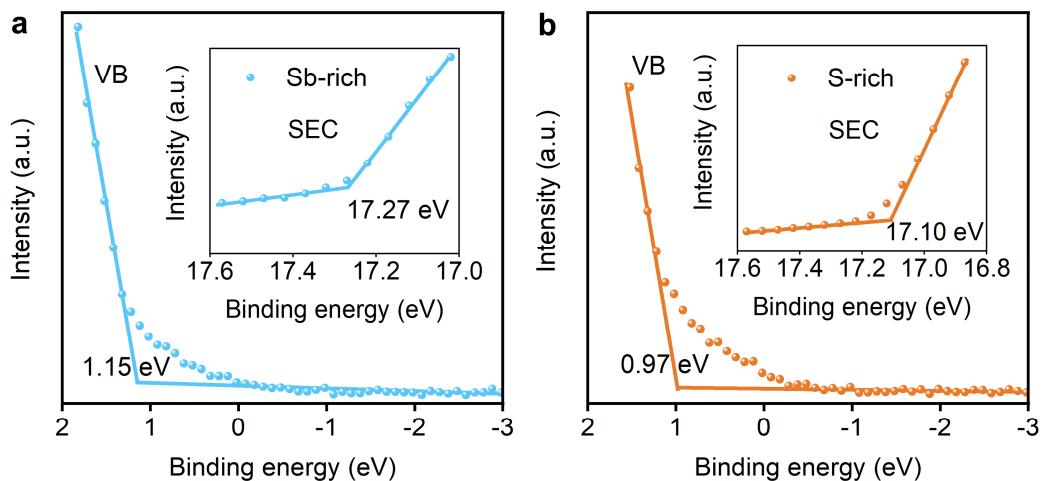
33 (\* indicates the champion parameters.)

34



35  
36 Supplementary Fig. 1 Films morphology characterizations. **a, b**, Surface and cross  
37 sectional morphology of Sb-rich  $\text{Sb}_2\text{S}_3$  film. **c, d**, Surface and cross sectional  
38 morphology of S-rich  $\text{Sb}_2\text{S}_3$  film.




41      Supplementary Fig. 2 Device photovoltaic performance characterizations. **a-c**, Statistic  
 42       $V_{oc}$ ,  $J_{sc}$  and  $FF$  based on 40 individually fabricated Sb-rich and S-rich  $\text{Sb}_2\text{S}_3$  devices.  
 43      **d, e**, Statistic PCE distribution of 40 Sb-rich and S-rich  $\text{Sb}_2\text{S}_3$  devices. **f** Differential  
 44      EQE and integral current density of optimal Sb-rich and S-rich  $\text{Sb}_2\text{S}_3$  based solar cells.

46      **Supplementary note 1. Ultraviolet photoelectron spectroscopy.**

47      To investigate the dependence of stoichiometry on the work function (Fermi level,  $E_F$ )  
 48      and band structure of  $\text{Sb}_2\text{S}_3$  films, we carried out ultraviolet photoelectron spectroscopy  
 49      (UPS) characterizations. According to the secondary electron cutoff (SEC) and valence  
 50      band (VB) position (Supplementary Fig. 3a and b), we calculate the  $E_F$  which are -3.95  
 51      eV and -4.12 eV, respectively for Sb-rich and S-rich  $\text{Sb}_2\text{S}_3$ . Furthermore, we find that  
 52      Sb-rich and S-rich  $\text{Sb}_2\text{S}_3$  share an identical band gap of 1.70 eV corresponding to 730  
 53      nm absorption onset (Supplementary Fig. 2f). Hence, the CBM and VBM are

54 determined to be -3.39 and -5.09 eV for S-rich  $\text{Sb}_2\text{S}_3$ . The CBM and VBM of Sb-rich  
 55  $\text{Sb}_2\text{S}_3$  are -3.40 and -5.10 eV, respectively. Particularly, it is noted that the introduction  
 56 of S has no impacts on the band structure and band gap but  $E_F$  solely. Regarding the  
 57 downshift of  $E_F$ , we attribute it to some reduced shallow donor dopants accompanying  
 58 with S addition<sup>1</sup>. Specially, it is worth noting that the S-rich  $\text{Sb}_2\text{S}_3$  is still an n type  
 59 semiconductor even if the  $E_F$  shift downward a little after S supplement.

60



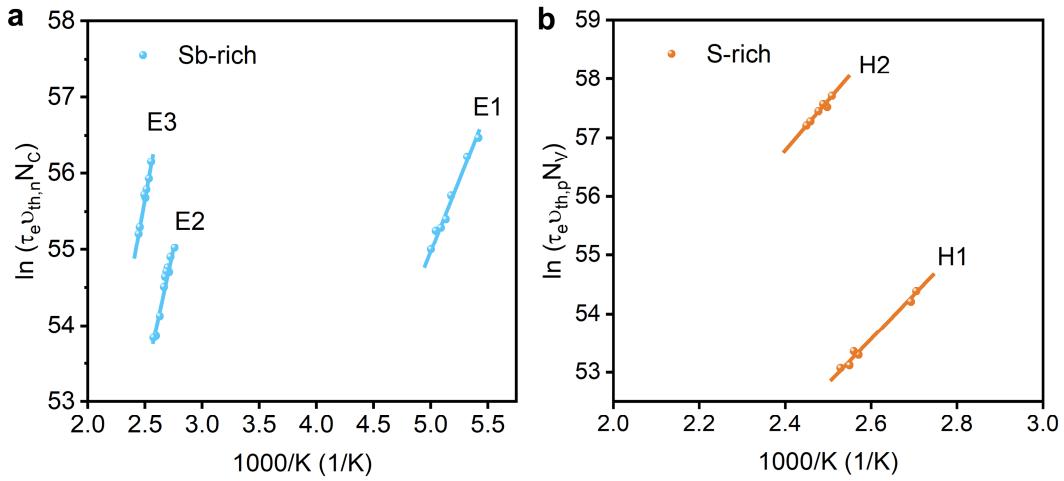
61  
 62 Supplementary Fig. 4 Band structure characterizations. **a, b**, Secondary electron (SEC)  
 63 cutoff edge and valence band (VB) position of Sb-rich and S-rich  $\text{Sb}_2\text{S}_3$  films.

64

65 **Supplementary note 2. DLTS measurement background.**

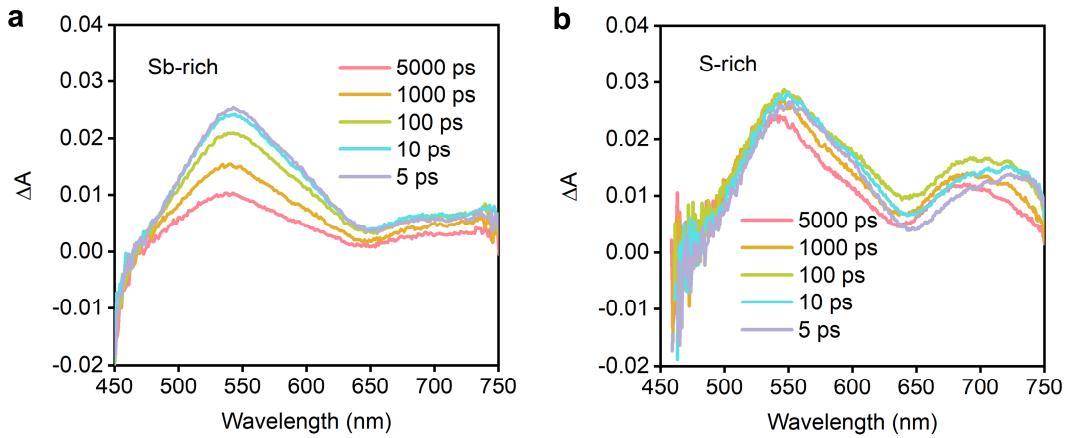
66 We conduct deep-level transient spectroscopy (DLTS) to detect the deep-level defects  
 67 properties. Arrhenius plots obtained from DLTS are shown in Supplementary Fig. 4.  
 68 The active energy ( $E_a$ ,  $E_C-E_T$  or  $E_T-E_V$ ) and capture cross section of electron traps and  
 69 hole traps can be calculted by the Arrhenius equations (1) and (2)<sup>2</sup>,

70 
$$\ln(\tau_e v_{th,n} N_C) = \frac{E_C - E_T}{k_B T} - \ln(X_n \sigma_n), \quad (1)$$


71 
$$\ln(\tau_e v_{th,p} N_V) = \frac{E_T - E_V}{k_B T} - \ln(X_p \sigma_p). \quad (2)$$

73 where  $\tau_e$ ,  $N_C$ ,  $N_V$ ,  $E_C$ ,  $E_T$  and  $E_V$  are emission time constant, conduction band state  
 74 density, valence band state density, conduction band, trap energy level and valence band,  
 75 respectively.  $v_{th,n/p}$ ,  $X_{n/p}$  and  $\sigma_{n/p}$  represent thermal velocity, entropy factor and capture  
 76 cross section for electron and hole, respectively. Hence, the  $E_a$  and  $\sigma$  can be exteacted  
 77 by the slope and  $y$ -axis intercept, seperately. In addition, the trap density ( $N_T$ ) could be  
 78 obtained by equation (3)<sup>2</sup>,

79 
$$N_T = 2N_s \frac{\Delta C}{C_R}. \quad (3)$$


80 where  $N_s$  is the shallow donor concentration,  $C_R$  is the capacitance under reverse bias,  
 81 while  $\Delta C$  represents the amplitude of transient capacitance.

82



84 Supplementary Fig. 4 Arrhenius plots obtianed from DLTS for Sb-rich (a) and S-rich  
 85 (b)  $\text{Sb}_2\text{S}_3$ .

86



87

88      Supplementary Fig. 5 Carrier transport kinetics. **a, b**, TAS for Sb-rich and S-rich  $\text{Sb}_2\text{S}_3$   
 89      films on soda-lime glass tracked at 5, 10, 100, 1000 and 5000 ps after pulsed excitation  
 90      at 400 nm.

91      **Supplementary reference.**

92      1.      Yin, Y. et al. Composition engineering of  $\text{Sb}_2\text{S}_3$  film enabling high performance solar cells. *Sci. Bull.* **64**, 136-141 (2019).

93      2.      Lang, D. Deep-level transient spectroscopy: A new method to characterize traps in  
 94      semiconductors. *J. Appl. Phys.* **45**, 3023-3032 (1974).

96

97