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Appendices

A Stock and Flow Methods

A.1 Background

The goal of the stock and flow model is to estimate I'TN crop and access over
time at the national level from 2000 to 2020 for 40 sub-Saharan African countries.
The model triangulates and ensures consistency between three data sources: re-
ports from net manufacturers about how many I'TNs were delivered to national
programs, reports from national programs about how many I'TNs were distributed
to households, and data extracted from household surveys about how many I'TNs
were found in houses. The first two data sources are annual; the third is cross-
sectional and was observed between one and ten times in each country across the
time period of interest.

The difficulty of estimating I'TN crop from surveys alone, and the utility of
a mechanistic model for incorporating added information from delivery and dis-
tribution data, was first introduced by Flaxman et al. in 2010 [1]. This paper
established the fundamental framework for a “stock and flow” model of tracking
net crop in a given country over time, but was constrained by several limitations.
First, net crop was estimated with an annual time step, diluting the 3-4 month
time span captured by any nationally representative survey and yielding relatively
coarse estimates of net crop over time. Second, rates of net loss were estimated
separately in the first, second, and third years of net life, with all nets presumed
discarded by the end of three years — a parameterization which makes description
of net retention difficult and which may ignore long-term net ownership. Third,
the model reported “coverage” in units of “household ownership of at least one
ITN” and “ITN use in children under 57, neither of which are currently recom-
mended as evaluation metrics (though both are still often reported and used for
policy decisions).

In 2015, Bhatt et al. [2] published an improved version of the stock and flow
model featuring a quarterly time step, a smooth-compact loss function for I'TN
retention, and the explicit calculation of five different I'TN metrics, including
household ownership, household access, population access, population use, and
the “ownership gap”. Limitations of this model included unrealistically high cov-
erage estimates in countries with no available survey data (most notably South
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Sudan). Additionally, while the decisions to use splines for missing NMCP data
imputation and fit two time-varying parameters for the net loss function added an
immense amount of flexibility to the model, it concurrently called into question
the identifiability of the parameters being fit.

Neither the Flaxman nor Bhatt models reported on several quality assurance
metrics that are now standard. First, although the number of surveys available
for model fitting differs drastically from country to country (from zero to five in
Flaxman’s models and zero to nine in Bhatt’s), the sensitivity of model fit to survey
inclusion is not reported with either model. Second, while both models published
extensive documentation, neither group published their code or otherwise made
the details of their analysis available for external review or replication.

The present analysis substantially updates and refines the Bhatt model, in-
cluding:

e Simplified imputation and loss function parameterization to improve identi-
fiability;
e Sensitivity analysis on survey inclusion (Appendix A.6);

e Updated survey data across the full time series, including previously over-
looked surveys from Ethiopia, South Sudan, and Zimbabwe;

e A fully refactored, publicly available codebase with Google Cloud function-
ality.

The only other mechanistic model of national-level ITN crop known to the au-

thors is NetCALC (https://www.vector-works.org/resources/netcalc-planning-tool/),

a publicly-available spreadsheet-based model designed to assist countries with net
procurement calculations. NetCALC is widely used by national programs and net
durability studies [3—6], but is not designed for the type of historical analysis or
spatial disaggregation required here.

A.2 Definitions: ITN, LLIN, cITN, Access, Household Size
A.2.1 Net Types

Pre-treated nets whose insecticide is designed to last for at least three years are
defined as “LLINs”. Treated nets obtained, or re-soaked with insecticide, within


https://github.com/bertozzivill/map-itn-cube
https://www.vector-works.org/resources/netcalc-planning-tool/
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the past 12 months are defined as conventional ITNs, or “cITNs”. LLINs and
cI'TNs collectively comprise “ITNs”, or simply "nets”, as untreated nets do not
enter into this analysis.

A.2.2 Net Movement

ITN “delivery” refers to manufacturer shipment of nets to national programs or
other distributing bodies, while ITN “distribution” refers to the provision of nets
to homes. Most countries have continuous I'TN distribution channels through an-
tenatal clinics, child immunization programs, and schools, which are supplemented
every 3-4 years with mass distribution campaigns directly to family homes. ITN
“stock” refers to the number of nets available to distribute at a given time. Be-
cause national programs may not immediately distribute all of the nets delivered
to them, stock in a given year is not necessarily equal to the manufacturer delivery
count.

ITN “crop” refers to the total number of nets in homes in a country at a
given time point. Crop depends upon both I'TN distribution and I'TN “retention”,
the length of time for which nets are owned before being discarded. The WHO
recommends mass net distributions every three years under the assumption that
average retention times are not much shorter than this.

A.2.3 Household Size

For surveys with data available at the household level, “household size” refers to
the number of people who slept in the household the night prior to the survey.
For the 33 surveys for which only aggregated measures were available, “mean
household size” references the survey-specific definition of the term.

A.2.4 Net Access

A person is defined to have “access” to an I'TN if they live in a household where they
can sleep under an I'TN, assuming two people per net per night. Population-level
access is the fraction of people with access. To avoid underestimating this metric,
access is calculated at the individual level- i.e. in a household of ten people and
three nets, six people will be defined as “having access” even though the household
as a unit does not have sufficient access for all its inhabitants. Access is calculated
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from surveys that either count the number of nets in homes or that ask household
heads how many nets they own.

A.3 Data sources
A.3.1 Net Stock: LLIN Manufacturer Reports

Net stock data were obtained from the Alliance for Malaria Prevention’s (AMP)

Net Mapping Project (https://netmappingproject.allianceformalariaprevention.

com/) via WHO (private correspondence), and represent the number of LLINs de-
livered by manufacturers to countries annually from 2000 to 2019. This source
includes LLINs donated by Global Fund, the President’s Malaria Initiative (PMI),
UNICEF, the Against Malaria Foundation (AMF), World Bank, UNITAID, the
UK Department for International Development (DfID), the Canadian International
Development Agency, private sales, and other sources. These data come directly
to AMP from all WHO-approved net manufacturers, and are thus assumed to be
highly complete. Data were not available for LLINs in 2020 and do not include
cI'TNs at all, so for these cases the number of nets delivered was assumed to equal
the number of nets distributed (see below).

A.3.2 Net Distribution: National Malaria Control Programs, the African

Leaders Malaria Alliance, and the President’s Malaria Initiative
Malaria Operational Plans

The following data sources were available for I'TN distributions at the national
level:

e National Malaria Control Programs (NMCPs), via WHO: Distribution num-
bers, disaggregated by net type, from 2000 to 2018, with extensive missing
values.

e African Leaders Malaria Alliance (ALMA, https://alma2030.o0rg/): Mass
net distribution numbers from 2016 to 2020. These data contain missing val-
ues in country-years without mass campaigns. The 2020 distribution num-
bers were obtained in late September of 2020, and enumerate both nets
already delivered and those projected to be delivered before the end of the
year. All nets listed were included in the model as ”delivered”.


https://netmappingproject.allianceformalariaprevention.com/
https://netmappingproject.allianceformalariaprevention.com/
https://netmappingproject.allianceformalariaprevention.com/
https://alma2030.org/
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e President’s Malaria Initiative Malaria Operational Plans (PMI MOPs, https:
//www .pmi.gov/resource-library/mops/fy-2020): Twenty-four countries
in this analysis receive funding from PMI, and therefore publish annual
Malaria Operational Plans (MOPs) which include a three-year assessment
of retrospective and prospective ITN need and distribution. For example,
the 2019 Tanzanian MOP contains ITN distribution counts for 2018, and
proposed distributions for 2019, and 2020. Some reports are later supple-
mented with a revised funding table giving updated distribution estimates.
While these reports are generated by PMI, they include estimates of net
distributions from other large in-country donors. These are a less reliable
resource than NMCP or ALMA data as they are largely prospective, but
provide useful information in the absence of other data.

To create a single cohesive time series of net distributions from 2000 to 2019,
data from these sources were combined as follows (Figure A.1):

1. From 2000 to 2015, NMCP data were used, with the process of missing value
imputation described below.

2. From 2016 to 2020, where available, the higher of the NMCP or ALMA
values were used.

3. From 2016 to 2020, where neither NMCP nor ALMA data were available but
a PMI MOP was present, the latest available PMI estimate was used.

4. If no data from any source was available in a country-year, the minimum
NMCP distribution value from 2014-2018 was used. This value was selected
as a proxy for a typical number of routinely-distributed nets in a country-
year.

NMCP data prior to 2016 were incomplete and required imputation. Missing
values were primarily in country-years where the expected number of nets was zero
(i.e. for cITNs after 2013 or LLINs prior to 2007), but some countries had missing
values at points in the timeseries when nonzero distributions would be expected.

For years prior to each country’s mass adoption of LLINs or all years for cI'TNs,
missing distribution counts were set to zero. For missing values in other years,
the following case-specific strategies were used to estimate a typical number of
routinely distributed nets, avoiding mass distributions:


https://www.pmi.gov/resource-library/mops/fy-2020
https://www.pmi.gov/resource-library/mops/fy-2020
https://www.pmi.gov/resource-library/mops/fy-2020
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e Chad 2012: Take the minimum of 2010-2013.

e Cote d’Ivoire 2007-8: Interpolate between 2006 and 2009.

e Cote d’Ivoire 2012: Take the minimum of 2010-2013.

e DRC 2005: Interpolate between 2004 and 2006.

e Mauritania 2007: Interpolate between 2006 and 2008.

e Tanzania 2013-2016: Take values from the most recent available PMI MOPs.

e Togo 2009: Take the minimum of 2008-2011.

Net distribution counts summarize complex campaigns requiring the coordi-
nated effort of thousands of health workers. As reflected in the variety and miss-
ingness of the available data, determining and reporting these values presents
numerous logistical challenges. The values presented here may not reflect nets lost
in the process of distribution, or nets acquired through the private market. To
reflect this uncertainty, wide priors were placed on I'TN distribution counts in the
model.

A.3.3 Net Crop: Nationally-Representative Surveys

To obtain data on net crop, ITN ownership and household size indicators were
collated and extracted from 161 nationally-representative household surveys con-
ducted in Sub-Saharan Africa from 2000 to 2019. These included demographic
health surveys (DHS), malaria indicator surveys (MIS), multiple indicator cluster
surveys (MICS rounds 3, 4, and 5), AIDS indicator surveys (AILS), and one anemia
and parasitemia survey (EA&P).

Data on the number of nets owned at the household level were available for
128 surveys in 36 countries (Table A.1, Figure A.2). Of these, most reported net
type for every net owned in a household, while some reported net type only on
one net per household. For those surveys that reported net type for all nets in
the household, the number of ITNs owned was determined by summing ITNs by
type. For those surveys where data on net type was only available for one net per
household, the overall survey-level proportion of nets by type (non-ITN, cITN,
or LLIN) was determined and multiplied by the number of nets in the surveyed
household to estimate the number of LLINs and cITNs owned by each household.
These household-level values were aggregated using the appropriate survey weights

6
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Figure A.2:

Surveys by Country and Type
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15 to generate national-level estimates of mean cI'TNs per household, mean LLINs per
household, and mean household size. The standard errors for each of these metrics
was used to inform the width of survey-specific priors. Each survey was assigned
to a single point in time, defined as the survey-weighted mean of the dates of
household interviews.

19 For an additional 33 surveys in 20 countries, data were only available in aggre-
gate from survey reports. For these, we collected measures of mean household size
and mean cITNs and LLINs per household from the relevant report tables. The
standard errors reported for each of these metrics was used to inform the width of
survey-specific priors. Each survey was assigned to a single point in time, defined

15 as the midpoint between the beginning and end of data collection for the survey.



A.3.4 Population

Population and population-at-risk (PAR) are from the central MAP database,
which combines WorldPop, AfriPop, and IHME population databases for final
population and PAR estimates. For more details see the supplementary materials

200 Of [7]

Table A.1: Surveys used in ITN models.
Surveys used in I'TN models.
No. of
Surve No. of .. Geospatial

Country Yearsy Source Clusters irllsdlwdu- Data?p
Angola 2006-2007 | MIS 115 13,952 Yes
Angola 2010-2011 | MIS 238 39,951 Yes
Angola 2015-2016 | DHS 625 72,870 Yes
Benin 2006 DHS — 87,396 No
Benin 2011-2012 | DHS 750 85,898 Yes
Benin 2014 MICS5 0 86,676 No
Benin 2017-2018 | DHS 555 73,336 Yes
Burkina Faso 2003 DHS 400 58,844 Yes
Burkina Faso 2006 MICS3 - 37,070 No
Burkina Faso 2010 DHS 573 80,532 Yes
Burkina Faso 2014 MIS 252 38,393 Yes
Burkina Faso 2017-2018 | MIS 245 36,307 Yes
Burundi 2005 MICS3 — 40,633 No
Burundi 2010-2011 | DHS 376 40,983 Yes
Burundi 2012-2013 | MIS 200 22,606 Yes
Burundi 2016-2017 | DHS 554 76,528 Yes
Cameroon 2004 DHS 466 49,557 Yes
Cameroon 2011 DHS 578 70,294 Yes
Cameroon 2014 MICS5 - 51,031 No
Cameroon 2018-2019 | DHS 430 58,474 Yes
Contral - African | 550 MICS3 | - 54,385 No
Republic

Contral - African | 5, MICS4 | - 52,355 No
Republic

Chad 2014-2015 | DHS 624 96,005 Yes
Comoros 2012 DHS 252 23,580 Yes
Cote d’Ivoire 2005 AIS - 23,475 No




Surveys used in ITN models, cont.

No. of

Surve No. of . . Geospatial
Country Yearsy Source Clusters ;?deldu_ Data“.13
Cote d’Ivoire 2006 MICS3 - 54,402 No
Cote d’Ivoire 2011-2012 | DHS 351 49,278 Yes
Cote d’Ivoire 2016 MICS5 — 65,109 No
Democratic Re-
public Of The | 2007 DHS 300 46,496 Yes
Congo
Democratic Re-
public Of The | 2010 MICS4 - 58,510 No
Congo
Democratic Re-
public Of The | 2013-2014 | DHS 536 93,147 Yes
Congo
Djibouti 2006 MICS3 - 28,781 No
Djibouti 2009 MIS - 22,373 No
Equatorial 2011 DHS - 19745 | No
Guinea
Eritrea 2008 MIS — 8,814 No
Ethiopia 2005 DHS 535 64,914 Yes
Ethiopia 2007 MIS - 32,380 No
Ethiopia 2011 MIS - 47,248 No
Ethiopia 2015 MIS - 53,335 No
Gabon 2012 DHS 336 40,597 Yes
Gambia 2005-2006 | MICS3 - 44 877 No
Gambia 2013 DHS - 50,347 No
Gambia 2014 MIS — 42,633 No
Gambia 2017 MIS — 40,393 No
Ghana 2003 DHS 412 25,498 Yes
Ghana 2006 MICS3 - 24,947 No
Ghana 2008 DHS 411 45,297 Yes
Ghana 2011 MICS4 - 52,969 No
Ghana 2014 DHS 427 42,292 Yes
Ghana 2016 MIS 200 22,332 Yes
Ghana 2019 MIS 200 23,000 Yes
Guinea 2005 DHS 295 36,950 Yes
Guinea 2012 DHS 300 43,876 Yes
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Surveys used in ITN models, cont.

No. of
Surve No. of . . Geospatial
Country Yearsy Source Clusters ;?deldu_ Data“.13
Guinea 2016 MICS5 - 58,021 No
Guinea 2018 DHS 401 48,956 Yes
Guinea-Bissau 2006 MICS3 - 41,312 No
Guinea-Bissau 2014 MICSH - 62,451 No
Kenya 2003 DHS 400 36,464 Yes
Kenya 2008-2009 | DHS 398 37,790 Yes
Kenya 2010 MIS - 26,946 No
Kenya 2014 DHS 1594 145,440 Yes
Kenya 2015 MIS 245 24,989 Yes
Liberia 2008-2009 | MIS 150 21,876 Yes
Liberia 2011-2012 | MIS 150 18,632 Yes
Liberia 2013 DHS 322 45,995 Yes
Liberia 2016 MIS 150 20,859 Yes
Madagascar 2008-2009 | DHS 594 82,594 Yes
Madagascar 2011 MIS 267 39,337 Yes
Madagascar 2013 MIS 274 37,571 Yes
Madagascar 2016 MIS 358 47,640 Yes
Malawi 2004-2005 | DHS 521 58,812 Yes
Malawi 2006 MICS3 - 131,021 No
Malawi 2010 DHS 849 115,027 Yes
Malawi 2010 MIS - 14,382 No
Malawi 2012 MIS 140 14,091 Yes
Malawi 2013-2014 | MICS5 — 140,133 No
Malawi 2014 MIS 140 14,141 Yes
Malawi 2015-2016 | DHS 850 117,833 Yes
Malawi 2017 MIS 150 16,330 Yes
Mali 2006 DHS 407 70,871 Yes
Mali 2010 EA & P 109 9,561 Yes
Mali 2012-2013 | DHS 413 55,658 Yes
Mali 2015 MICS5 — 123,858 No
Mali 2015 MIS 177 38,705 Yes
Mali 2018 DHS 345 53,477 Yes
Mauritania 2007 MICS3 - 59,572 No
Mauritania 2015 MICS5 — 69,675 No
Mozambique 2011 DHS 610 61,159 Yes

11




Surveys used in ITN models, cont.

No. of

Surve No. of . . Geospatial
Country Yearsy Source Clusters ;?deldu_ Data“.13
Mozambique 2015 AIS 306 32,051 Yes
Mozambique 2018 MIS 224 28,126 Yes
Niger 2006 DHS - 46,403 No
Niger 2012 DHS - 61,680 No
Nigeria 2003 DHS 362 34,609 Yes
Nigeria 2007 MICS3 - 124,840 No
Nigeria 2008 DHS 886 154,946 Yes
Nigeria 2010 MIS 239 30,134 Yes
Nigeria 2011 MICS4 — 143,686 No
Nigeria 2013 DHS 896 176,949 Yes
Nigeria 2015 MIS 326 37,772 Yes
Nigeria 2016-2017 | MICS5 - 189,319 No
Nigeria 2018 DHS 1389 186,327 Yes
Republic O |55 DHS - 29,156 No
Congo
Republic — Of 11 9019 | DHS - 48,826 No
Congo ’
Republic — Of | o014 9015 | MIcS3 = 67,159 No
Congo
Rwanda 2005 DHS 462 46,715 Yes
Rwanda 2007-2008 | DHS 249 31,741 Yes
Rwanda 2010-2011 | DHS 492 55,280 Yes
Rwanda 2013 MIS - 20,450 No
Rwanda 2014-2015 | DHS 492 53,770 Yes
Rwanda 2017 MIS - 19,901 No
Senegal 2005 DHS 376 66,506 Yes
Senegal 2006 MIS - 28,918 No
Senegal 2008-2009 | MIS 320 104,488 Yes
Senegal 2010-2011 | DHS 391 74,941 Yes
Senegal 2012-2013 | DHS 200 39,756 Yes
Senegal 2013 DHS - 37,518 No
Senegal 2014 DHS 200 39,447 Yes
Senegal 2015 DHS 214 41,042 Yes
Senegal 2016 DHS 214 40,573 Yes
Senegal 2017 DHS - 77,084 No
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Surveys used in ITN models, cont.

No. of
Surve No. of . . Geospatial
Country Yearsy Source Clusters ;?deldu_ Data“.13
Sierra Leone 2005 MICS3 - 42719 No
Sierra Leone 2008 DHS 353 40,426 Yes
Sierra Leone 2013 DHS 435 74,290 Yes
Sierra Leone 2013 MIS — 36,395 No
Sierra Leone 2016 MIS 336 39,580 Yes
Somalia 2006 MICS3 - 33,959 No
South Sudan 2009 MIS - 17,001 No
South Sudan 2013 MIS - 18,337 No
South Sudan 2017 MIS — 32,358 No
Sudan 2009 MIS - 30,423 No
Sudan 2012 MIS - 26,547 No
Tanzania 2004-2005 | DHS - 46,516 No
Tanzania 2007-2008 | AIS 475 85,034 Yes
Tanzania 2009-2010 | DHS 475 47,357 Yes
Tanzania 2011-2012 | AIS 583 50,996 Yes
Tanzania 2015-2016 | DHS 608 61,030 Yes
Tanzania 2017 MIS 442 45,814 Yes
Togo 2006 MICS3 - 30,542 No
Togo 2010 MICS4 - 29,573 No
Togo 2013-2014 | DHS 330 45,432 Yes
Togo 2017 MIS 171 22,478 Yes
Uganda 2006 DHS 368 43,396 Yes
Uganda 2009-2010 | MIS 170 20,916 Yes
Uganda 2011 DHS 404 102,538 Yes
Uganda 2014-2015 | MIS 210 26,464 Yes
Uganda 2016 DHS 696 88,174 Yes
Uganda 2018-2019 | MIS 340 44,489 Yes
Zambia 2001-2002 | DHS - 35,941 No
Zambia 2007 DHS 319 33,794 Yes
Zambia 2008 MIS - 20,430 No
Zambia 2010 MIS - 20,042 No
Zambia 2012 MIS - 16,928 No
Zambia, 2013-2014 | DHS 721 78,486 Yes
Zambia 2015 MIS - 16,129 No
Zambia, 2018 MIS - 18,384 No

13
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Surveys used in ITN models, cont.

No. of
Survey No. of . . Geospatial

Country Years Source Clusters ;?SleIdu_ Data?
Zambia 2018-2019 | DHS 545 62,342 Yes
Zimbabwe 2005-2006 | DHS 398 41,289 Yes
Zimbabwe 2009 MICS3 — 52,194 No
Zimbabwe 2010-2011 | DHS 406 40,711 Yes
Zimbabwe 2014 MICS5 - 67,536 No
Zimbabwe 2015-2016 | DHS 400 41,894 Yes

A.4 Model

A.4.1 Summary

National LLIN crop was estimated via a modified version of the mechanistic “stock
and flow” model described below and in [2]. Briefly, a compartmental model was
used to triangulate LLIN stock, distribution, and ownership data. Stock and dis-
tribution data were linked via a minimum function, mandating that no more than
the available stock of nets could be distributed at a given time point. Distribution
and ownership data were linked via a sigmoidal loss function to model discarding
of LLINs over time. National cITN crop was modeled similarly, but no stock in-
formation was available for cITNs, so the upper bound on cITN distributions was
omitted.

The model was run separately for each country. All parameters were fit sepa-
rately by net type. After estimating LLIN and cITN crop, the two were summed
into a single time series of national ITN crop. This was converted to I'TN access
via a household-size-based regression methodology described in [2] and below. All
models were fitted in JAGS using the rjags package, which produces draws from
the posterior distributions of the fitted parameters. The mean and 95% ClIs of
these draws were computed to generate all mean estimates and uncertainties.

For this analysis, the model described in [2] was refactored and rewritten in its
entirety, but the model specification has remained largely constant. Key changes
are:

e updated input data from net manufacturers, NMCPs, and surveys, including

14
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all information from ALMA and PMI;

e change from a time-varying to a static loss function parameterization to

improve model identifiability;

e Placing a cap on excess stock distribution to ensure a reliable fit to survey

data.

A formal model specification is presented below. To clarify notation, the pro-
cess is described for a single country and for LLINs only. The specification for

cI'TNs is identical except where noted.

A.4.2 Stock and Flow

All symbols and their definitions are shown in the tables below. Values drawn
directly from data are represented by Roman characters, while parameters derived
through model fitting are represented by Greek characters.
parameter-specific standard errors, and hats” over characters describe the modeled

representations of data values.

Symbol Meaning Notes

YyeY Year count, year index
Quarter count, quar- | Q =Y x4+ 1; see text

@qe@ ter index for details

t Continuous time

Ssed Survey count, survey
index

h Household size

P National population Source: MAP
Manufacturer deliver-

m o5 of LLINs Source: AMP

d Reported cITN and | Source: ALMA, NM-
LLIN distributions CPS, and PMI
ITN crop (C), count ‘ :

C,ch cP per household ¢", and Source: .Natlonally

. representative surveys

count per capita c?

Table A.2: Parameter definitions: indices and data.

15

Sigmas o refer to
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Symbol Meaning

ITN crop (I'), count per
L, ~yh, P household 7", and count per
capita

) Net distribution

Initial and final LLIN stock
for a given year

Net distribution adjust-
10) ment: proportion of surplus
stock distributed

Shape parameter for Beta
distribution of ¢

Rate and duration parame-
ters for net loss function

K, T

Table A.3: Parameter definitions: modeled values.

Data on deliveries of LLINs to countries from manufacturers did not report
uncertainty, but were assumed to be highly accurate. Therefore, we modelled
LLIN deliveries m in year y as:

a," ~ Unif(0,0.075)

MMy ~ N(mwmyU;n)

This relationship allows for a small amount of noise in the number of LLIN deliv-
eries. Similar data were not available for cITNs.

Data on I'TN distributions also did not report uncertainty, but were assumed
to be somewhat less accurate than manufacturer data given the presence of miss-
ing values and the difficulties inherent in collecting such information (see Ap-
pendix A.3). Therefore, we placed modest priors on per-capita rates of TN dis-
tribution:

ol ~ Unif(0,0.03)

A d
dy ~ N(Fyaayd)Py
Y

Since no net delivery data was available for cITNs, CZZITN was used without

adjustment, while Jﬁ“ N was further adjusted using 7.

16
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An LLIN time series was constructed using information about both stock and
distributions. Every year, LLINs were delivered to a country (acquisition of stock)
and distributed (dispersal of stock). Not all acquired stock was necessarily dis-
persed each year, allowing for the possibility of stock accumulation over time.
Stock at the beginning and end of every year was tracked using parameters o, and
Wy

In a given year, no more LLINs could be distributed than the available stock a,
and no fewer could be distributed than d},. If more than dy LLINs were available, a
small portion of additional stock could be distributed to allow a closer fit to survey
data. However, the model should not distribute a large amount of additional stock,
both in the interest of hewing to data on net distributions and because countries
may receive shipments of nets in anticipation of distributions in the following year.
Therefore, the proportion of surplus stock to distribute, ¢,, was modeled as a Beta
distribution with shape parameters 2 and 3,, truncated at 0.25. A narrow prior
was placed on [ such that the mean value of ¢ ranged between 0.07 and 0.09. The
parameter ¢ can be thought of as a mechanistically-informed relaxation on the
upper bound of the prior for LLIN distributions.

The LLIN distribution time series was constructed as follows. Beginning in
year o = 2000 and proceeding sequentially through each year:

ay =y, if y=1yy, otherwise ay,=w, 1+ m,
0y = min (1, Czy)
B, ~ Unif(20, 24)
¢y ~ Beta(2,5,) T(0,0.25)
Oy = ‘zy + &y — Czy)

Wy = ay — Oy

Where T'(-) represents a truncated distribution. This yields an adjusted esti-
mate for annual LLIN distributions, d,,.

Next, annual ITN distributions ¢, were disaggregated the into quarterly net
distributions d,. For each year y in Y:

1. Split the year into four quarters, ¢ € 1 : 4.

2. Define the proportion of ITNs distributed in each year-quarter, p, ; ~ Unif(0, 1),
raked such that ). p,;, = 1.
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3. Define 9, ,; = d,p,; for each quarter i.

4. Reindex such that quarters are indexed as d, rather than ¢, ;.

The calculation was performed separately by net type, yielding quarterly es-
timates of net distribution /%' and 6¢'"V. Since survey calibration requires
interpolation between the beginning and end of each quarter, net distribution esti-
mates were also calculated for the first quarter of year Y + 1. These were assumed
to be the same as distributions in the final quarter of the last year for which dis-
tribution data is available, dg = dg_;. From these quarterly distribution counts,
net loss can be tracked.

Following [2], a smooth-compact loss function for nets was used, with:

Loss (t, k,7) = e */(1=E/1)%)

if t < 7, and Loss(t, k,7) = 0 otherwise.

K is therefore a rate parameter, while 7 dictates the time by which all nets will
be lost. Previous versions of the model constrained x and allowed 7 to vary widely.
To further aid identifiability, here x was fixed at a value of 18 and 7 was given
a wide prior 7 ~ Unif(5.5,20.7). After model fitting, net retention half-life was
calculated analytically as the time ¢ at which Loss (¢, x,7) = 0.5. To estimate net
loss, for each net type a () x ) matrix A was constructed, where each column j
represents a quarter of net distribution and row ¢ tracks net retention in subsequent
quarters. Entries of the matrix were populated according to the following rules:

o A;; =0if i < j (nets have yet to be distributed)

o A;; =9;if i = j (nets were distributed in that quarter)

o Ay =0; Loss(t,k,7) if i > j, with t = (i — j)1.

Once A was populated, summing across columns generated estimated net crop

by quarter, I', = > je1.0 Ag;. Next, these quarterly distribution estimates were fit
to the available survey data.

Each survey yielded an estimate of mean nets per household, ¢, and mean
household size, hg, each with standard errors. A national net crop C' was estimated
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for each survey via C; = cg%, with P, the national population in the year y

in which survey s took place. Within the model, both nets per household and
household size were assumed to be normally distributed, with means ¢ and h,
and standard deviations from the standard errors of the survey data.

In the modeled time series, for each survey s conducted at time t estimated
net crop was calculated as an interpolation between values at the beginning and
end of the quarter ¢ in which ¢ falls:

Iy =(1—=p)ly+plon
where p represents the proportion of ¢ that has elapsed by time t.
Net crop was then calibrated to surveys as:
Cy ~ NIy, 09 T(C, —30Y,C, +30%)
Where the truncation constrains model estimates to hew closely to survey re-
ports, which are highly reliable and widely used.

After calibration, estimates of net crop and were summed to
generate a time series of total ITN crop, Ff;’t. This is converted ITN crop to per-

FLLIN FCITN
q q

capita ITNs using 77 = %. This is the main output of the stock and flow model,

which is passed on to calculate household-size-specific indicators p? and yy, to find
a time series of I'TN access by country.

A.4.3 Conversion to access

Symbol Meaning

Proportion of households of
Ph size h with no nets

Mean net count given own-
I ership of at least one net,

among households of size h
Aace National-level ITN access

Table A.4: Parameter definitions: conversion to access.

The simplest way to convert from ITN crop I' to ITN access A*“ would be
2r

A% = min(=,1), using the definition of access as ownership of two nets per
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person. However, this simple equation does not account for the overdispersion
of nets to certain households, a well-documented phenomenon explored in depth
in [8] and [2]. One of the most widely available predictors of sufficient access is
household size, with nationally-representative surveys consistently showing that
access to nets decreases with household size. Therefore, while converting from
crop to access, country-specific household size distributions must be taken into
account. As discussed in [2], the distribution of access among household sizes is
well-represented by a zero-truncated Poisson distribution, requiring the estimation
of both the proportion p; of households with no nets and the mean net count gy,
among households with at least one net.

Following [2], this analysis defined a bivariate joint probability function H =
P(h,n) € R? as the probability mass of a household of size h owning n ITNs.
For a given h, the conditional probability distribution P(n|h) was estimated as a
zero-truncated Poisson distribution [9] characterized by p, and py. Therefore,

P(n = 0|h) = pupn
(pen)"
P(n > 0lh) = pr(1 — pp) ——=
(TL | ) ph( ph)n!(e“h — 1)

with p;, the proportion of all households having size h. The distribution of house-
hold sizes p;, is calculated on a per-survey basis. H is a 10x40 matrix with rows
representing household size h and columns representing net count n. These di-
mensions were chosen because some surveys only collect household size informa-
tion up to ten people, and 40 is a sufficiently large net count to characterize all
meaningful features of these distributions. The entries of H are renormalized as

Hy, = % to convert them from probabilities among households to proba-

bilities among the population. Using the definition of access as “the proportion of
people able to sleep under an ITN, assuming one I'TN per two people”, national
access among households of size h with n nets is then:

2
ace min(%, 1) Hn

And overall national access is the sum
acc __ acc
A = E Ah,n.
h,n

Parameters p, and u;, were defined as polynomial functions of h and the national
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net crop per capita, v

Bo ~ Unif(—50, 50)
p1 ~ Unif(—3,3)

Py ~ Unif(—1,1)

By ~ Unif(— 100, 100)

B4 ~ Unif(—300, 300)

B ~ Unif(—300, 300)
7 ~T(0.1,0.1)

vp = Bo + Bih + Boh + sy + Buve” + Bsve
Empirical Logit(pp,) ~ N (vp, T)

And:

By ~ Unif(—20, 20)
7 ~T(0.1,0.1)
Hn ~ N(ﬁha T)

See [2] for validation of these parameterizations. Equation coefficients were fit
in Stan using rstan version 2.19.3 with all available household-level surveys. It
should be noted that the mean of a zero-truncated Poisson with rate parameter A
is ﬁ rather than simply A. To coerce the mean of P to equal py, for all n > 0,
the solution of uj, = ﬁ was used rather than py.

Quarterly values of p? and j; were predicted using these coefficients and the
estimated net crop values 7¢ from the stock and flow model, with uncertainty
propagated at the draw level. These quarterly estimates were interpolated to the
monthly time scale, and the monthly estimates used to calculate access as defined
above. Thus, the final result of this modeling process was a monthly time series
from 2000 through 2020 of I'TN access at the national level for the 40 countries of
interest.

A.5 Stock and Flow LLIN Median Retention Times
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LLIN Median Retention Times.

1SO3 Median Retention | Survey

Time (Years) Count
AGO 1.10 (1.01, 1.26 3
BDI 1.31 (1.14, 1.47
BEN 1.07 (1.01, 1.17
BFA 1.58 (1.41, 1.76
CAF 1.90 (1.56, 2.26
CIV 1.69 (1.51, 1.86

CMR 3.49 (3.24, 3.78

COD 1.41 (1.15, 1.64

COG | 291 (231, 3.65

COM 2.13 (1.81, 2.39

DJI 1.05 (1.01, 1.13

ERI 3.01 (1.94, 3.79

ETH 1.33 (1.19, 1.48

GAB 3.34 (2.63, 3.79

GHA 1.78 (1.67, 1.90

GIN 1.51 (1.28, 1.75

GMB 1.62 (1.39, 1.85

KEN 2.26 (1.98, 2.58

LBR 1.03 (1.01, 1.07

MDG 1.65 (1.48, 1.81

MLI 2.81 (2.46, 3.14

MOZ 1.34 (1.21, 1.50

MRT 1.07 (1.01, 1.16

MWI 1.33 (1.21, 1.45

NER 3.50 (3.25, 3.78

NGA 2.22 (2.00, 2.47

RWA | 1.59 (1.48, 1.70

N[OOI N O N WO OR[N A TP PN | W W | DN O | >~

SDN 291 (2.11, 3.77

)
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )

GNB | 1.38 (1.01, 2.16)

GNQ  [3.59 (3.27, 3.79)
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )

SEN 1.35 (1.22, 1.48 10
SLE 1.47 (1.31, 1.63 5
SOM 2.35 (1.02, 3.66 1
SSD 1.02 (1.01, 1.04 3
TCD 1.03 (1.01, 1.08 1
TGO 2.42 (2.21, 2.61 4
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LLIN Median Retention Times, cont.
1SO3 Median Retention | Survey
Time (Years) Count
TZA 2.15 (1.88, 2.43) 6
UGA 1.66 (1.55, 1.78) 6
ZMB 1.32 (1.21, 1.44) 9
ZWE 2.79 (2.26, 3.38) 5

Table A.5: Median retention times and 95% CI’s for
LLINs from the stock and flow model. Number of surveys
used to fit each country model also listed.

A.6 Sensitivity analysis
A.6.1 Methods

Each of the 40 countries included in the stock and flow model have between one and

355 ten nationally-representative surveys available for use in model fitting (Table A.1).
To assess sensitivity of this model framework to both survey count and individual
survey values, we ran a series of tests on the eight countries with more than five
survey points.

Survey
Count
Ghana 6
Rwanda
Sierra Leone
Tanzania
Zambia
Malawi
Nigeria
Senegal

Country

= OO0 | DD

0

Table A.6: Countries included in sensitivity analysis.

Sensitivity analyses included all available manufacturer and NMCP data, since
w0 the completeness of these data types does not change meaningfully across countries.
Only sensitivity to survey data was tested.

Consider country ¢, with N, available surveys. We reran the model N, — 1
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times, starting from a single survey point and adding an additional survey each
round, to test the sensitivity of model estimates to the number of surveys included.
To test the importance of the order of survey inclusion, we ran each sequence of 1 :
Nc—1 models three different ways: in chronological order, in reverse chronological
order, and in random order. The “random order” option shows only one possible
permutation of non-chronological sequence, but it still gives some intuition into
the impact of survey inclusion order on model performance.

The main performance metric was out-of-sample LLIN crop root mean squared
error (RMSE): that is, the RMSE of predicted LLIN crop vs observed LLIN crop
for the surveys not included in each model run. We also compare estimates of
LLIN median retention time between each held-out model and the full model.

A.6.2 Results

Figure A.3 shows the out-of-sample RMSE (in units of millions of LLINs) for
each country-iteration of the analysis. When surveys are added in chronological
order, the RMSE trend is nonlinear, often peaking at some intermediate number
of surveys before declining. Adding surveys in reverse chronological order shows
a more stable trend, with RMSE generally declining with each additional survey.
One major exception is Sierra Leone, which has a large peak in RMSE at three
surveys. The random permutation approach splits the difference between these
two, but generally behaves slightly more like the “reverse chronological” than
the “chronological”. For a given country-survey count, chronological RMSE is
usually higher than reverse-chronological RMSE. Including only the low-net-count
surveys early in the time series yields the highest RMSEs. Otherwise, there is not
a consistent marker of which survey will have the highest impact on model fit.
In Sierra Leone, for example, all models take a step change in RMSE upon the
inclusion of the middle-of-the-series 2011 survey, while in Tanzania it is the two
surveys at the end of the time series that most impact RMSE. For countries like
Senegal, no one survey has an outsized impact.

Figure A.4 shows the evolution of estimated LLIN median retention time (also
called half-life). The solid line through each plot is the half-life estimated by the full
model. Again here, with the exception of Sierra Leone, the “reverse chronological”
sequence converges quickly to the value estimated by the full model, whereas the
chronological sequence varies considerably before arriving at the full model’s result.
When just one survey is included, half-lives are more likely to be overestimates
than underestimates of the full model value.
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These results suggest that stock and flow time series fit to a small number
of surveys, especially if those surveys occur early in the time series, may not
be reliable estimators for LLIN half-life or net time series in the country they
represent. As shown in Figure 5 of the main paper, countries with three or fewer
surveys are likely to fall at the extreme ends of the LLIN half-life spectrum. In
these countries, local knowledge and additional data collection will be crucial to
understanding the true circumstances of net distribution, retention, and use.

B Spatiotemporal Regression Methods

A spatiotemporal regression framework was developed to derive 5km-by-5km pixel-
level ITN access and use from the national-level access metrics estimated in the
stock and flow model. First, national ITN access is disaggregated spatially, with
survey data informing the difference between local and national access. Next,
use is estimated from access, with survey data informing the gap between access
and use over space and time. Additionally, a process similar to that for access is
employed to estimate pixel-level nets-per-capita (NPC). NPC does not precisely
capture I'TN coverage, but does capture spatial heterogeneity in I'TN distribution
and retention that may be useful for crafting policy.

The present framing of this work is an adaptation of [10], with the following

improvements:

Cluster-level recalculation of national access to reflect local household size
distributions;

Addition of nets-per-capita as an outcome variable;

Calculation of relative gain;

Full propagation of uncertainty from stock and flow model;

Addition of over two dozen new or previously-overlooked surveys;

A fully refactored, publicly available codebase with Google Cloud function-
ality.
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LLIN Half-Life (Years)

25

2.0

15

1.0

3.0

25

2.0

1.5

35

25
2.0
15
1.0

1.9

1.8

1.7

16
25

2.0

15

2.2

1.8

14

1.0

3.5

3.0

25

2.0

1.6

1.2

Figure A.4:

Half Life Sensitivity Analysis
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B.1 Definitions: Access Deviation, Use Gap, Nets-per-
Capita Deviation

ITN “use” is the proportion of people who were reported to have slept under a net
the night prior to the survey. ITN “nets-per-capita“ is simply net crop divided
by population. For all metrics, the population denominator is calculated from “de
facto household size”, defined as the number of people who slept in the household
the night prior to the survey.

“Access deviation” is the difference between access in a specific location and
the national mean access. Access deviation is positive when local access is greater
than the national mean, and negative when local access is below the national mean.
The “use gap” is the difference between access and use in any one location. The
use gap is positive when not everyone with access to a net sleeps under it, negative
when more than two people sleep under a single net, and zero when everyone who
has access to a net sleeps under it respecting the “two people per net” guideline.
Like access deviation, “NPC deviation” is the difference between nets-per-capita
in a specific location within a country and the national mean nets-per-capita.

B.2 Data: National ITN Access, Household Survey Data,
Covariates

B.2.1 National Net Access and Nets Per Capita

From the stock and flow model-see Appendix A.4.

B.2.2 Household Survey Data

Ninety-five surveys from 28 countries with household-level data were used to fit
the geospatial model. Indicators for (i) household size (defined as number of
individuals that slept in the surveyed households the night prior to the survey),
(ii) number of ITNs, and (iii) number of individuals that slept under an ITN
the night prior to the survey were collected. The relevant cluster identifications
were also collected to allow for aggregation to the cluster level. The final dataset
contained 34,352 data points covering 28 countries and 17 years.
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B.2.3 Covariates

To model the underlying mean function of the latent Gaussian model, we used a
set of environmental and socioeconomic covariates consisting of rasterised satel-
lite imagery across all of Africa at a 2.5 arc-minute (approximately 5km-by-5km)
spatial resolution and monthly, annual, or static temporal resolution (Table B.1).
All raster covariates were derived from high-resolution satellite images that were
gap-filled [11] to eliminate missing data resulting primarily from persistent cloud
cover over equatorial forests. Some covariates are themselves modeled products
that capture derived phenomena such as temperature suitability to mosquitoes or
human accessibility to cities.

B.3 Latent Gaussian model
B.3.1 Cluster-level estimates of access, use, and nets per capita

Within a given household, the number of people with access to an I'TN is calculated
as accy, = min(2ny, popy), with n; the number of nets in that household. ITN ac-
cess within a cluster is calculated as A% = )", accy,/ Y, popn. The underlying na-
tional access from the stock and flow model, A%“, was adjusted at the cluster level
to reflect variation in household size distribution, A% = > o Dopr A€/ >, popy,.

Cluster-level ITN use is calculated as A\"*® = )" wuse./ ) .pop. , with use. the
number of people who slept under an I'TN the night prior to the survey in a given
cluster. Cluster-level nets per capita is calculated as X" = )" itn./ ) pop. ,
with itn. the number of nets in a given cluster. Clusters are assigned to a time ¢
based on a weighted average of sampling times. Values of \%“) \**¢ and A\"P¢ that
fall within the same geographic pixel are aggregated to a single value.

B.3.2 Access Deviation, Use Gap, and Nets-Per-Capita Deviation

Due to the heterogeneity in net distribution volumes and times within countries
and the sparsity of survey data, access is a highly nonstationary process which
is challenging to predict at high resolution directly from A\** (Figure B.1, top
row). To create a stationary process that can readily be mapped, \* is de-
trended by the underlying national mean. The resulting metric, access deviation,
is therefore a measure of the subnational variation around an overall country mean
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Years

Covariate Source Available Resolution|
Aridity WorldClim - Static
Elevation SRTM - Static
Slope SRTM - Static
NightTime Lights VIIRS 2014 Static
Accessibility to Cities MAP —modeled 2015 Static
output
Plasmodium falciparum Seasonality MAP "~ modeled | _ Static
output
Potential Evotranspiration (PET) WorldClim - Static
Topographic Moisture Index (TMI) SRTM - Static
Population MAP —modeled 2000-2020 | Annual
output
Land Cover Class 2: Evergreen Broadleaf MODIS product | 2001-2017 | Annual
Forest
%sﬁeitCover Class 4: Deciduous Broadleaf MODIS product | 2001-2017 | Annual
Land Cover Class 5: Mixed Forest MODIS product | 2001-2017 | Annual
Land Cover Class 6: Closed Shrublands MODIS product | 2001-2017 | Annual
Land Cover Class 7: Open Shrublands MODIS product | 2001-2017 | Annual
Land Cover Class 8: Woody Savannas MODIS product | 2001-2017 | Annual
Land Cover Class 9: Savannas MODIS product | 2001-2017 | Annual
Land Cover Class 10: Grasslands MODIS product | 2001-2017 | Annual
Land Cover Class 11: Permanent Wetlands | MODIS product | 2001-2017 | Annual
Land Cover Class 12: Croplands MODIS product | 2001-2017 | Annual
Land vaer Cle?ss 14:  Cropland /Natural MODIS product | 2001-2017 | Annual
Vegetation Mosaic
Land Cover Class 16: Barren or Sparsely MODIS product | 2001-2017 | Annual
Populated
Land Cover Class 17: Water MODIS product | 2001-2017 | Annual
Enhanced Vegetation Index (EVI) MODIS product | 2000-2017 | Dynamic
Tassled Cap Wetness (TCW) MODIS product | 2000-2017 | Dynamic
Daytime Land Surface Temperature (LST) | MODIS product | 2000-2017 | Dynamic
Nighttime Land Surface Temperature (LST) | MODIS product | 2000-2017 | Dynamic
Temperature Suitability Index (TSI) MAP “modeled 19000 9017 | Dynamic

output

Table B.1: Covariates used in all spatiotemporal models
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Figure B.1: Spatial stationarity of deviation metrics.

Deviation
Metric

0.8
0.4
N 0.0

-0.4

(Figure B.1, bottom row). Access deviation for a given pixel is calculated as
Nace-dev — \ace _ jace - After model fitting and pixel-level prediction of A%, pixel-
level \*“ is estimated by adding national mean access back onto access deviation.
This process is identical for nets-per-capita deviation, A™Pe-4ev,

Net use is similarly spatio-temporally non-stationary, motivating the estimation
of the use gap instead. Use gap is simply the pixel-level difference between access
and use, A9 = )\ — \use,

Both A% and A9 are transformed via the empirical Logit to expand bounds
to [—00, 00]. This transformation is unnecessary for A"?-4¢which is not bounded
between -1 and 1.

B.3.3 Latent Gaussian model for access deviation, use gap, and nets-
per-capita deviation

All outcome metrics were fit using a Bayesian hierarchical model with a Gaussian
likelihood and a Gaussian process prior:
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0 ~ 7(6)
ylu, 0 ~ N(Au,0?)
ulf ~ N(p, Q")

with: 6 € {o., 3,7, K, ¢} a vector of hyperparameter priors; y = \ace-dev \9ap,
or \Pe-devs = BX a linear basis function for the fixed effects; o2 the variance
for random Gaussian noise; u a Gaussian Markov Random Field representing the
spatiotemporal random effect; and A a sparse observation matrix that maps the
GMRF to function evaluations at local observations.

The precision matrix ) on the GMRF is defined as a Kronecker product of a
temporal process and a spatial process, () = Q;®(Q)s. Temporal correlation is mod-
eled by first order autoregressive dynamics as w; = ¢w,_; with w, ~ N(0,Q; ).
The spatial process w, ~ N(0,Q;') is the sparse finite element solution to the
stochastic partial differential equation

(k?* — A)a/27'u(5> =Wi(s)

where A is the Laplacian operator,  is the spatial scale parameter, « is the
spatial smoothness parameter (fixed at a = 2), 7 controls the variance, and W (s)
is the spatial white noise process. Because the spatial process covers a substantial
portion of the Earth’s surface, s is defined on a spherical manifold in Cartesian
R®. For more details see [12].

The models were fit in R using the Integrated Nested Laplace Approxima-
tion (INLA, https://www.r-inla.org/). To allow for correct posterior coverage
and credible intervals under the Laplace approximation we transform both access
and use via the inverse hyperbolic sine function, arsinh(z) = In(x + Va% + 1),
thereby allowing the response in the model to be as close to Gaussian as possible.
For a given scaling parameter p and response x € {\ecc-dev \gap \npe-devl - with p
observations, we define ihs(x,p) = (arsinh(z)p)/p. The optimal p is found by
minimizing the following log-likelihood:

l(p,x) x —nlog(z (x — 7)) — Z log(1 + p*z?).

For more details see [13].
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Figure B.2:

ITN Access Deviation by Country
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B.4 Results

B.4.1 National Time Series of Regression Predictions

Plotted here are national-level time series of the three regression outputs. On the
national level, by definition, both access deviation (Figure B.2) and NPC deviation
(Figure B.3 should be close to zero. However, because national mean estimates
(blue horizontal lines) are derived from the stock and flow model for these two
measures, the survey data can show nonzero values in country-years where the
stock and flow model did not perfectly fit the surveys, and the regression estimates
will be similarly nonzero.

Use gap values are not constrained to be near zero. Figure B.4 also demon-
strates the stronger seasonal patterns detected in the use gap regression. While
use rate is a derived output that was not directly fitted to data, we include time
series of it here for reference (Figure B.5).
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Figure B.3

Nets—per—Capita Deviation by Country
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Figure B.5:

ITN Use Rate by Country
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B.4.2 Access vs NPC: Model and Data

s Figure 4 demonstrates the curvature of the relationship between ITN access and
NPC for modeled country-months in the year 2020. Figure B.6 shows the consis-
tency of this relationship by plotting survey data on the cluster level along with
modeled estimates on the country-month level for all years in which survey data
was available.

ss0 B.4.3 Assessing the Impact of Imperfect Allocation: Optimal vs True
Access

Another way to assess the impact of less-than-perfect net allocation is to calculate

a counterfactual “optimal access” metric based on the number of nets-per-capita,

min(2+NPC, 1). Plotting this value against estimates for access (Figure B.7) gives
sss  an upper bound of what I'TN access could look like with improved allocation.
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Figure B.6:

Nets—Per—Capita vs Access, Data and Model
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B.4.4 Example of Exceedance Surfaces for Uncertainty Visualization

The main manuscript communicates geospatial uncertainty using an uncertainty
quantile approach. Another way of visualizing this uncertainty is through an
exceedance approach. For Bayesian models such as these, exceedance surfaces

ss0 demonstrate the proportion of posterior draws that are above or below a given
threshold. As an example, Figure B.8 shows posterior mean maps (central col-
umn) along with several positive and negative exceedance surfaces. The top row
demonstrates that all 200 posterior draws showed an access estimate below 0.3
in Angola in 2020, whereas in Botswana only a fraction of draws were below this

sss  threshold. In contrast, almost all of Botswana had posterior draws below 0.5 in
this same year. An interactive visualization to explore a range of cutoffs is available
at the Malaria Atlas Project website.

B.4.5 Regression Coefficients and Model Validation

Figure B.9 shows coefficient values for all model covariates. Note that these values
ss0 are in transformed variable space, not level space.

Figure B.10 plots true vs predicted values for all survey data points. Posterior
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Figure B.T:

Estimated True vs Optimal Access
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Figure B.8: 2020 Exceedance Surfaces
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coverage was evaluated by leave-one-out probability integral transforms (PIT). For
well-calibrated posteriors, the distribution of PITs should be close to Uniform.
PIT distributions showed acceptable posterior coverage for all models, though the
NPC regression will require more adjustment in future iterations to ensure proper
calibration (Figure B.11).

B.5 Covariate Selection
B.5.1 Methods

The full set of covariates (Table B.1) was selected during a previous iteration of
this analysis [10]. The temperature- and aridity- based covariates were selected on
the basis of a documented relationship between these variables and net use [14, 15].
The remaining variables were selected either as proxies for socioeconomic status
(nighttime lights, population, access to cities) or as proxies for other spatially-
varying cultural behaviors that may impact net use (land cover types). Because
the outputs of this analysis are in turn used as inputs into a regression model to
estimate malaria prevalence [7, 16], covariate selection is also constrained to not
overlap with the covariates used in the downstream model to avoid circularity.
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Geospatial Regression Coefficients
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Model fit to data for geospatial regressions
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Figure B.11:
PIT distribution for different models

Access Deviation Use Gap NPC Deviation

4000

Count

2000

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
PIT

Three covariate combinations were assessed for predictive performance in the
access deviation and use gap models: The full set of available covariates, the full
set excluding landcover covariates, and a custom set based on the magnitude and
significance of effects in the full model (Table B.2). Models were compared on
the basis of pointwise leave-one-out predictive density loo; = log p(y;|y—;) and
pointwise Watanabe-Akaike Information Criterion (WAIC).

B.5.2 Results

The model utilizing the full set of covariates performed best by all metrics except
for WAIC in the access deviation regression, for which it performed almost iden-
tically to the “No Landcover” model (Table B.3). Based on these results, the full
covariate set was utilized in the final model.
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Included

. « Included
Covariate Resolution m No in Cus-
Land-
” tom Set
cover
Aridity Static Yes Yes
Elevation Static Yes No
Slope Static Yes No
NightTime Lights Static Yes No
Accessibility to Cities Static Yes No
Plasmodium falciparum Seasonality Static Yes Yes
Potential Evotranspiration (PET) Static Yes No
Topographic Moisture Index (TMI) Static Yes No
Population Annual Yes No
Land Cover Class 2: Evergreen Broadleaf Annual No Yes
Forest
Land Cover Class 4: Deciduous Broadleaf Annual No Yos
Forest
Land Cover Class 5: Mixed Forest Annual No No
Land Cover Class 6: Closed Shrublands Annual No No
Land Cover Class 7: Open Shrublands Annual No No
Land Cover Class 8: Woody Savannas Annual No No
Land Cover Class 9: Savannas Annual No Yes
Access
Land Cover Class 10: Grasslands Annual No Deviation
Only
Land Cover Class 11: Permanent Wetlands | Annual No Yes
Land Cover Class 12: Croplands Annual No gfﬁy Gap
Land vaer Cla‘uss 14:  Cropland/Natural Annual No No
Vegetation Mosaic
Access
Land Cover Class 16: Barren or Sparsely Annual No Deviation
Populated
Only
Land Cover Class 17: Water Annual No Yes
Enhanced Vegetation Index (EVI) Dynamic Yes Yes
Tassled Cap Wetness (TCW) Dynamic Yes Yes
Daytime Land Surface Temperature (LST) | Dynamic Yes No
Nighttime Land Surface Temperature (LST) | Dynamic Yes No
Temperature Suitability Index (TSI) Dynamic Yes Yes

Table B.2: Covariates used in covariate selection tests.
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Model Covariate LOO WAIC
Type

Access Deviation Full Model -49,951 91,705
No Landcover -45,951 91,670
Custom -46,130 92,048

Use Gap Full Model 903.6 -1902.7
No Landcover 888.8 -1872.6
Custom 859.6 -1814.3

Table B.3: Validation metrics for covariate sets.

B.6 Uncertainty Propagation

Both JAGS and INLA return samples from the posterior distributions of the pa-
rameters of interest, allowing summary statistics to be explicitly computed as the
mean and 95% percentile ranges across these samples. The ideal way to propa-
gate uncertainty would be to run a separate INLA regression for each of the N
stock-and-flow posterior samples, but this was beyond our computational capac-
ity. Instead, the mean value across the Ny; = 500 posterior INLA samples was
used as the “national mean” from which access deviation and NPC deviation were
computed. Then, Ny, = 200 posterior samples were drawn from each geospatial
regression (access deviation, use gap, and NPC deviation). To compute access,
use, and NPC at the draw level, 200 samples were selected at random from the
stock-and-flow draws and these were added to the INLA samples in place of the
stock-and-flow mean values to recapture some stock-and-flow uncertainty in the
final result.

B.7 Relative gain

By separately modeling access and use, this analysis was able to distinguish
whether lack of net access or lack of net use was the primary driver of low net
coverage for those areas that do not achieve universal coverage.

This analysis required the answers to two questions. First, how high could
ITN use be if access were kept constant but the use rate were maximized? Second,
how high could ITN use be if the use rate were kept constant but access were
maximized? These two questions correspond to maps of ITN access and the ITN
use rate (use/access) in a given year, respectively. By subtracting true use from
each surface, the percentage point gain in coverage from each of these scenarios
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Figure B.12:
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was calculated. The relative gain of one scenario over another was then assessed
by comparing the two gain surfaces.
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C Additional Stock and Flow Plots

C.1 LLIN Retention Caterpillar Plots

These plots show posterior densities and parameter traces from JAGS for the
LLIN duration parameter in the stock and flow model (defined as 7 in Table A.3).
Countries with wide densities or trace plots that cluster toward the top or bottom
of the plot suggest unstable model fits, usually due to sparse survey data.
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C.2 Sensitivity Analysis Full Results

These plots show model fits for the stock and flow sensitivity analysis described
in Appendix A.6. Blue curves represent LLIN model estimates, while red curves
represent cITN model estimates. shaded areas represent 95% confidence intervals.
Survey data is shown in circles for LLINs and squares for cITNs. Surveys used for
model fitting are shown in color, while out-of-sample surveys are shown in black.
The RMSEs printed on each plot are for LLINs only.
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