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1. Experimental Procedures. 

1.1 The atmospheric pressure glow discharge (APGD) ion source. The APGD consisted of a 

needle electrode in the axis, surrounded by a tube electrode as shown in Figure S1. Between them, 

there was a glass tube to insulate these two electrodes but free of the last 2 mm near the outlet of 

the source (Figure S1b). High voltage (CE1500002T, Rainworm Electronics (Shanghai) Co., Ltd. 

Shanghai, China) was applied to the needle electrode in current-controlled mode (Max voltage= 

1500 V, current= 8 mA), while the tube electrode is grounded.  To enhance the oxidation efficiency, 

10% oxygen-added-argon gas (0.6 L/min) was used as the discharge gas and introduced to the 

gap between the tube electrode and the glass insulator. Without the insulation of the glass tube at 

the last 2 mm nearing the outlet of the source, the discharge gas was penetrated to generate glow 

discharge plasma when the voltage is higher than 400 V and the current is higher than 2 mA. 

Parameters such as the angle between APGD and the horizontal line, the distance from the MS 

inlet to the APGD discharge region, the discharge current and gas flow rate were optimized (Figure 

S2), and the setup worked in the optimal condition hereafter (the angle = 45, the distance = 4 mm, 

the discharge current = 6 mA and the discharge gas flow rate = 0.6 L/min). 

1.2 The sand core chip. The sand core is used in chemistry lab as filters to separate samples from 

precipitate and bacteria. Here, we use it to separate complex urine samples. We bought four types 

of sand core chips (G2, G3, G4 and G5) from the internet (Taobao.com). The average diameters 

of the micropores of the four types of sand core chips are 30~50 m, 16~30 m, 4~7 m and 

2~4 m, respectively. The separation effects of four types of sand core chips were characterized 

and “G5” shows better performance (Figure S3). The tortuous and porous inner structure of the 

sand core chip (see Figure S3 right panel) provides the separation ability according to the volatility 

of the analytes and the adhesive force between analytes and the tiny cavity wall (van der Waals 

force). 

2. Mechanism of the derivatives fragmentation. 
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DMED can label carboxyl, aldehyde, and ketone functional groups. All these three type compounds 

shifted to m/z +70 after derivatization, but their fragmentation follow a different pathway. The 

charge site prefers to keep with nitrogen atoms. Thus, all these derivatives have two isomers, i.e., 

the charge site keeps in the tertiary amine nitrogen or the bridging nitrogen. Figure S5a, b, and c 

show the possible isomer pairs of the Schiff base, the carboxamide, and the oxidized Schiff base, 

respectively. The relative energy differences of each pair are also marked. Both isomers 

fragmentation pathway follows the charge site-initiated cleavage. The bond cleavage always 

occurs in the C-N bond next to the charge site, that’s the origination of the two main type daughter 

ions, m/z -45 (Type I Fragmentation) and m/z 72 (Type II Fragmentation). For Schiff base 

(derivated from aldehyde or ketone), the energy of bridging nitrogen-charged isomer is lower than 

that of the tertiary amine nitrogen-charged one (Figure S5a), but the difference is small. Figure S5d 

and g show the fragmentation mechanisms of both the isomers. The peak at m/z 72 is the major 

daughter ion of ketonic and aldehydic compounds (Figure S7, S8). As for carboxamide (derivated 

from carboxyl acid), the energy difference between two isomers is enormous (Figure S5b), and 

nearly all the molecular adopt the low-energy tertiary amine nitrogen-charged isomer to keep stable. 

m/z -45 is almost the only product in the CID of carboxyl derivatives, whereas m/z 72 ions do not 

appear (Figure S6). The oxidized Schiff base (derivated from aldehydes) is similar to carboxamide, 

and m/z -45 daughter ions were observed mainly (Figure S8). The well-matched experimental 

results verify the reliability of the theory presented here. 

3. Discrimination of carboxyl, ketone, and aldehyde groups. 

3.1 Carboxyl. Carboxyl acids such as fatty acid and small carboxyl acid metabolites are involved 

in a lot of biological processes.1 Due to its unique properties, carboxylic acids are usually detected 

by ESI-MS under negative ion mode, but with low sensitivity.2 Here, we employ DMED to label 

carboxyl acids and detected in positive ion mode by LTQ. The dehydration condensation reaction 

between carboxyl and amino produce an amide compound with an m/z shift of 70. The amide 

compound will neutral loss a dimethylamine during the CID process with an m/z shift of -45.3 This 

characteristic feature helps us to discern carboxyl groups. As can be seen in Figure S6a, oleic acid 
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(MW=282) was labeled by DMED and formed a protonated amide compound at m/z 353. A 

daughter ion of m/z -45 at m/z 308 was generated during the CID process. The peak of m/z 308 

is the only daughter peak in the CID spectrum, which shows its unique characteristic property. And 

then, terephthalic acid was tested as an example of aromatic acid (Figure S6b). The peak at m/z 

237 and 307 are the primary and secondary derivatization products, respectively. Similarly, the 

primary derivatization product generated a daughter ion of m/z -45 at m/z 192. As predicted, the 

secondary derivatization product at m/z 307 generated two daughter ions of m/z -45 and m/z -

90, corresponding to one and two molecular of dimethylamine neutral loss from the parent ion. The 

dicarboxylic acid experiment provides evidence of this method’s ability to not only identify but also 

quantify functional groups by the order of derivatization. Glutaric acid, a fatty dicarboxylic acid, also 

shows a similar feature with other acids (Figure S6c). The difference is that the CID spectrum of 

glutaric acid secondary derivatization product shows not only m/z -45 and m/z -90 fragments 

ions, but also m/z -88 ions. The peak of m/z -90 and m/z -88 chemical structure were shown 

nearing the corresponding peak.  

3.2 Ketones. Ketones occur in various biological samples such as blood, urine, and exhaled 

breath.4 Many hormones in the human endocrine system contain ketone groups. DMED was again 

employed here to label ketones. Amino reacts with carbonyl to form a carbon-nitrogen double bond 

compound (Schiff base). Figure S7a shows the spectra of acetone labeled by DMED. The peak at 

m/z 129 is the protonated Schiff base. Unlike carboxyl acid, ketones generate a daughter ion at 

m/z 72 during the CID process. This daughter ion also appears in the case of cyclohexanone 

(Figure S7b), benzophenone (Figure S7c), and other ketones. In the case of benzophenone, a 

prominent daughter ion appears at m/z 167. The structure of the daughter ion is also shown in 

Figure S7c. Such a case indicates that the method developed here is not universal, and some 

special chemical environment should be taken into consideration. Fortunately, in most situations, it 

does work.  

3.3 Aldehydes. Aldehydes play important roles in the biological system as they are the products 

of lipid peroxidation, which has been linked to the etiology of several diseases, including 

Alzheimer’s disease.5 Accurate determination of aldehydes is of great significance for early disease 
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screening and treatment. Several aldehyde determination methods have been developed, mainly 

based on LC-MS,5, 6 GC-MS,7-9 and proton-transfer-reaction mass spectrometry (PTR-MS).10 

DMED can react with aldehydes to form a Schiff base in the same way with ketones. The difference 

is that the aldehydes-derivated Schiff base can be oxidized further due to a lower steric hindrance. 

There are plenty of reactive oxygen species such as ozone and hydroxyl radicals that can be the 

oxidants in the glow discharge plasma, especially in the case of 10% oxygen-added-argon 

discharge gas. The peak at m/z 177 in Figure S8a is the protonated benzaldehyde-derivated Schiff 

base, and the red-marked m/z 193 is its oxidized peak, which was not observed in ketones. The 

Schiff base of benzaldehyde –derivated also generates m/z 72 daughter ion in the CID process like 

ketones. A dialdehyde can generate primary and secondary derivatives as shown in Figure S8b. 

Both derivatives were further oxidized and the peaks of m/z +16 appeared as red-marked. During 

the CID process, the primary product generated an m/z 72 daughter ion, while the oxidized 

derivative generated a m/z -45 daughter ion. 

4. Simultaneous determination of carboxyl and hydroxyl groups. 

This method had also been proven to be an efficient tool for the simultaneous determination of 

carboxyl and hydroxyl groups. A piece of obvious evidence is the derivatization reaction of DL-

malic acid, a natural product with two carboxyls and a hydroxyl group. As can be seen in Figure 

S9a and d, the derivatization reaction of DL-malic acid labeled by DMED generated a primary 

product at m/z 205 and a secondary product at m/z 275. The carboxyl acid derivatives, both primary 

product and secondary product generate m/z -45 daughter ions (Figure S9e and f). Interestingly, 

peaks at m/z -18 appear near the protonated derivatives, which indicate the presence of a 

hydroxyl group in the molecule. Figure S9b and c show the proposed dehydration processes of the 

primary and secondary products. The hydroxyl takes off followed by the oxygen of the carbonyl 

takes off to form a carbon-nitrogen double bond. The CID spectra in Figure S9e, f, g and h verified 

the assumption proposed in Figure S9b and c. In other carboxyl acids without hydroxyl, such 

dehydration products peak not appear. 
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5. Identification of the metabolites in urine samples. 

The identification of those unknown metabolites in the urine samples starts from the determination 

of the functional groups, followed by searching the HMDB database. Specifically, in an MS scan of 

a urine sample, all the peaks with a signal-to-noise ratio (S/N) higher than 3 were isolated for further 

collision induced dissociation (CID). The collision energy was 25 and the mass window was 1 Da. 

And then, those peaks with a characteristic CID pattern (type I or type II fragmentation, Figure S5) 

were selected as the potential biomarkers. Thereby, the functional groups of these potential 

biomarkers can be deduced. Then searching the molecular weight and the corresponding functional 

groups in HMDB will help us determine the precise structure of the metabolites. The assignments 

were further confirmed by high-resolution MS and listed in Table S1. High-resolution MS was 

performed on an FT-ICR-MS and a Q-TOF-MS. The former one has a very high resolution but 

moderate sensitivity, while the latter one is the opposite. That’s why both two instruments were 

used. 

6. Quantification details 

To explore the limit of the detection (LOD), a series of oleic acid standards solutions with different 

concentrations were prepared. Figure S10a shows the derivatization reaction of oleic acid labeled 

by DMED, and Figure S10b shows the mass spectrum of the reaction system in the concentration 

of 3.510-13 mol/L. The signal to noise ratio S/N is higher than 10 in this concentration, which 

indicates a better LOD than 0.35 pM. Typically, carboxylic compounds can be detected in the 

negative ion mode with moderate sensitivity. To show the sensitivity advantage of the labeling 

strategy, the LOD of underived oleic acid was measured as 30M as shown in Figure S10c. 

Nine-Phenylacridine was used as an internal standard (IS) to achieve the relative quantification of 

the potential biomarkers in urine samples. Figure S11a shows the chemical structure of the IS. 

Creatinine is one of the major components in the urine sample, and we employed it as an example 

to show the relative quantification method. Figure S11b shows the mass spectra of the mixtures of 

a constant concentration of IS and increased concentration of creatinine. Figure S11c shows the 

ratio of creatinine intensity to IS intensity (R(A/I)) increases with the increase of creatinine 
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concentration in good linearity. We believe that the fluctuation of the ratio R reflects the 

concentration changes of biomarkers. 

7. Machine learning. 

7.1 Matrices processing. Totally 42 carboxylic, aldehydic and ketonic metabolites were identified 

and relatively quantified. The relative concentrations of these metabolites were set as the features, 

and the BC/HC status was set as the target. Samples from 28 BC patients and 38 controls were 

tested and repeated three times for each. One hundred and ninety-eight data points formed the 

matrix for machine learning (Figure S12). Every column in the matrix represents a single repeat of 

a sample, and every row represents a potential biomarker. And the colors indicate the relative 

concentration. The matrix shows visible differences between BC and HC. And then, in a typical 

procedure, the matrix was split into two parts (3:1) randomly to training and testing the machine 

learning models. 

7.2 Model Selection. Several commonly used models were applied to classify the data, including 

Gaussian Naïve Bayes (GNB), Logistic Regression (LR), Random Forest (RF), Support Vector 

Machine (SVM), and K-Nearest Neighbor (KNN). To evaluate these models, 5 indicators were 

calculated for each model and listed in Table S2. Area Under the Curve (AUC) was calculated from 

the average Receiver Operating Characteristic (ROC) curve of each model. In a confusion matrix, 

the data can be separated into four classes, True Positive (TP), False positive (FP), True negative 

(TN), and False negative (FN). 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹1 =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
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Besides, Principal Component Analysis (PCA) was also applied to classify the data in the first three 

principal components. However, the first three components only explained 55% variance as shown 

in Figure S13. 

In general, Logistic Regression performs best, and to be the selected one. 

7.3 Details about the Logistic Regression (LR) model.  

LR can be regarded as a linear regression model in a broad sense. Consider a linear regression 

model: 

𝑧 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑛𝑥𝑛 

Where z is the BC/HC status and x1, x2 ... xn are the features. 

Logarithm of both sides: 

𝑔(𝑧) =
1

1 + 𝑒−(𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑛𝑥𝑛
=

1

1 + 𝑒−𝑧
 

This transforms the predicted value of the linear regression model into a probability value between 

[0,1] (nonlinear logistic regression). 

The equation was solved by a home-written python script based on the sklearn package, and the 

major parameters are set as follows: penalty=‘l2‘, tol=0.00001, fit_intercept=True, 

class_weight=None, max_iter=100, solver=‘lbfgs‘. 

7.4 Five-fold cross-validation. Five-fold cross-validation was performed to evaluate the LR model 

more comprehensively. As shown in Figure S14, the dataset was split into five parts and in each 

fold, take one of the five as testing data, and the others as training data. After five-folds, all the data 

has been used for training and testing.  

7.5 FreeViz. FreeViz was performed by an open-source software Orange 3.0 as shown in Figure 

S15. Firstly, assuming all the features contribute equally to the classification and formed a cycle as 

Figure S15a. After optimized by FreeViz, the most important features were shown in the longer 

arrows. The length of the arrow represents the contribution of the feature to the classification as 

shown in Figure S15b. It can be seen that m/z 250, 203, 237,187, 193, 224, 158 are more important 

than other ones in the classification.  
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Figures and Tables 
 

Figure S1. Details of the DSI platform. a) Schematic diagram and (b) partial section view of the 
DSI-MS platform. A photograph of (c) the DSI-MS platform and (d) the sand core chip.  
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Figure S2. The angle between APGD and the horizontal line (a), the distance from the MS inlet 
to the APGD discharge region (b), the discharge current, (c) and gas flow rate (d) were optimized.   
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Figure S3. The separation effects of G2 (a), G3 (b), G4 (c), and G5 (d) type of sand core chips 
characterized by the extracted ion chromatogram (EIC) of several representative compounds in 
the urine. The right sides are the corresponding optical microscope photos of the chips, and the 

bar represents 50m.  
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Figure S4. The reproducibility of the DSI-MS platform. During multiple loadings of the 9-
Phenylacridine solution to the same sand core chip, (a) the extracted ion chromatography and (b) 
the mass spectrum is relatively stable and the relative standard deviation (RSD) is 5.97%. And 
the RSD is 14.15% between different chips (c and d) for the same sample. 
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Figure S5. The possible isomer pairs and energy differences of (a) Schiff base, (b) carboxamide, 
and (c) oxidized Schiff base. The corresponding possible fragmentation pathway of each pair are 
shown in (d) and (g), (e) and (h), (f) and (i), respectively. 
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Figure S6. Mass spectra of (a) oleic acid, (b) terephthalic acid, and (c) glutaric acid labeled by 
DMED. The CID spectra of the corresponding derivatives are shown on the right side. 
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Figure S7. Mass spectra of (a) acetone, (b) cyclohexanone, and (c) benzophenone labeled by 
DMED. The CID spectra of the corresponding derivatives are shown on the right side. 
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Figure S8. Mass spectra of (a) benzaldehyde, (b) terephthalaldehyde, and (c) heptaldehyde 
labeled by DMED. The CID spectra of the corresponding derivatives are shown on the right side. 
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Figure S9. Simultaneous determination of carboxyl and hydroxyl groups. (a) The reaction of DL-
malic acid labeled by DMED; The proposed dehydration processes of primary (b) and secondary 
(c) derivatization products; Mass spectra of the reaction system (d) and the corresponding CID 
spectra of m/z 205 (e), m/z 275 (f), m/z 187 (g) and m/z 257 (h). 
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Figure S10.  (a) The reaction of oleic acid labeled by DMED and (b) the corresponding mass 
spectrum in the concentration of 0.35 pM detected in positive ion mode. For comparison, (c) show 
the mass spectrum of underived oleic acid detected in negative ion mode.   
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Figure S11. (a) The molecule structure of the internal standard (IS) 9-phenylacridine. (b) Mass 

spectra of the mixtures of a constant concentration of IS (1.5 mol/mL) and increased 
concentration of creatinine. (c) The ratio of creatinine intensity to IS intensity (ratio R(A/I)) 
increases with the increase of creatinine concentration in good linearity. 
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Figure S12. The acquired relative concentrations of potential biomarkers data were reorganized 
to a data matrix for machine learning. 
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Figure S13. (a) 2D and (b) 3D plot of principal component analysis (PCA) of the dataset. The first 
three principal components explained 55% of the variance. 
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Figure S14. Five-fold cross-validation of the dataset. The dataset was split into 5 parts and in 
each fold, one of the five parts was used for model testing while the others for training. After 5 
folds, all these five parts have been tested. 
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Figure S15. Features (a) before and (b) after FreeViz optimization. Those features with a longer 
arrow in (b) contribute more to the classification. 
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Table S1. Information about the identified metabolites in the urine samples. [a][b]. 

no
. 

Retention  
Time (min) 

m/z 
(Calculated) 

m/z 
(observed) 

m/z 
(ppm) 

Ion type 
Major  

Fragment 
Classificati

on 
Assignment Formula 

1 0.33 89.1073  89.1068  5.61  [M+H]+ - 
Lable 

Reagent 
DMED C4H12N2 

2 0.4 158.1652  158.1656  2.53  [M_DMED+H]+ m/z= 72 Ketone Amino Butanone C4H9NO 

3 0.44 201.1961  201.1890  35.29  [M_DMED+H]+ Δm/z= -45 Acid Heptanoic Acid C7H14O2 

4 0.45 209.1284  209.1275  4.30  [M_DMED+H]+ Δm/z= -45 Acid 
4-

Hydroxybenzoic 
acid 

C7H6O3 

5 0.57 238.1220  238.1129  38.22  [M_DMED+H]+ m/z= 72 Ketone N-Acetyltaurine C4H9NO4S 

6 0.58 117.1022  117.1079  48.68  [M_DMED+H]+ Δm/z= -45 Acid Formic acid CH2O2 

7 0.58 256.1121  256.1057  24.99  [M+H]+ - 
Internal 

Standard 
9-Phenylacridine C19H13N 

8 0.59 157.1335  157.1350  9.55  [M_DMED+H]+ Δm/z= -45 Acid Isocrotonic acid C4H6O2 

9 0.63 131.1179  131.1181  1.53  [M_DMED+H]+ Δm/z= -45 Acid AceticAcid C2H4O2 

10 0.64 156.1131  156.1135  2.56  [M_DMED+H]+ Δm/z= -45 Acid 
Cyanoacetic 

acid 
C3H3NO2 

11 0.64 160.1444  160.1449  3.12  [M_DMED+H]+ Δm/z= -45 Acid Alanine C3H7NO2 

12 0.64 199.1805  199.1760  22.59  [M_DMED+H]+ Δm/z= -45 Acid 3-Heptenoic acid C7H12O2 

13 0.65 146.1288  146.1212  52.01  [M_DMED+H]+ Δm/z= -45 Acid Glycine C2H5NO2 

14 0.68 183.1128  183.1136  4.37  [M_DMED+H]+ Δm/z= -45 Acid 2-Furoic acid C5H4O3 

15 0.68 184.1444  184.1409  19.01  [M_DMED+H]+ Δm/z= -45 Acid 
1-pyrroline-5-

carboxylic acid 
C5H7NO2 

16 0.69 132.1131  132.1133  1.51  [M+H]+ - Acid Creatine C4H9N3O2 

17 0.69 217.1659  217.1686  12.43  [M_DMED+H]+ Δm/z= -45 Acid Glutamine C5H10N2O3 

18 0.69 224.1393  224.1517  55.32  [M_DMED+H]+ Δm/z= -45 Acid 
5-Aminosalicylic 

acid 
C7H7NO3 

19 0.78 121.0720  121.0772  42.95  [2M+H]+ - - Urea (Dimer) (CH4N2O)2 

20 0.81 185.1285  185.1293  4.32  [M_DMED+H]+ Δm/z= -45 
Acid/aceton

e 
Acetylacrylic 

acid 
C5H6O3 

21 0.86 203.1866  203.1876  4.92  [M_DMED+H]+ Δm/z= -45 Acid L-Ornithine C5H12N2O2 

22 0.87 186.1601  186.1528  39.21  [M_DMED+H]+ Δm/z= -45 Acid Proline C5H9NO2 

23 0.95 175.1077  175.1036  23.41  [M_DMED+H]+ Δm/z= -45 Acid 
Hydroxypyruvic 

acid 
C3H4O4 

24 1.11 171.1492  171.1447  26.29  [M_DMED+H]+ Δm/z= -45 Acid Allylacetic acid C5H8O2 

25 1.11 188.1393  188.1458  34.55  [M_DMED+H]+ Δm/z= -45 Acid N-Acetylglycine C4H7NO3 

26 1.11 197.1397  197.1454  28.91  [M_DMED+H]+ Δm/z= -45 Acid 
2-(1-Imidazolyl) 

acetic Acid 
C5H6N2O2 

27 1.11 200.1393  200.1403  5.00  [M_DMED+H]+ Δm/z= -45 Acid 
L-Pyroglutamic 

acid 
C5H7NO3 

https://hmdb.ca/metabolites/HMDB0034439
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28 1.25 159.1123  159.1029  59.08  [M_DMED+H]+ m/z= 72 
Ketone\Aci

d 
Pyruvic acid C3H4O3 

29 1.25 187.1805  187.1880  40.07  [M_DMED+H]+ Δm/z= -45 Acid Hexanoic acid C6H12O2 

30 1.25 225.1234  225.1107  56.41  [M_DMED+H]+ Δm/z= -45 Acid 
2,5-

Dihydroxybenzoi
c acid 

C7H6O4 

31 1.52 237.1961  237.2087  53.12  [M_DMED+H]+ Δm/z= -45 Acid Perillic acid C10H14O2 

32 1.91 173.1648  173.1557  52.55  [M_DMED+H]+ Δm/z= -45 Acid N-Valeric Acid C5H10O2 

33 1.92 161.1284  161.1271  8.07  [M_DMED+H]+ Δm/z= -45 Acid Lactic acid C3H6O3 

34 1.97 250.1550  250.1565  6.00  [M_DMED+H]+ Δm/z= -45 Acid Hippuric acid C9H9NO3 

35 2.05 202.1662  202.1666  1.98  [M_DMED+H]+ Δm/z= -45 Acid Creatine C4H9N3O2 

36 2.4 115.1230  115.1219  9.55  [M_DMED+H]+ m/z= 72 Aldehyde Acetaldehyde C2H4O 

37 2.59 114.0662  114.0661  0.88  [M+H]+ - - Creatinine C4H7N3O 

38 2.59 145.1335  145.1396  42.03  [M_DMED+H]+ Δm/z= -45 Acid Propionic acid C3H6O2 

39 2.59 147.1228  147.1255  18.35  [M+H]+ Δm/z= -45 Acid Glycolic acid C2H4O3 

40 2.59 192.1165  192.1212  24.46  [M_DMED+H]+ Δm/z= -45 Acid L-Cysteine C3H7NO2S 

41 2.61 169.1335  169.1325  5.91  [M_DMED+H]+ Δm/z= -45 Acid Vynilacrylic acid C5H6O2 

42 2.61 193.1335  193.1335  0.00  [M_DMED+H]+ Δm/z= -45 Acid Benzoic acid C7H6O2 

43 2.61 194.1288  194.1273  7.73  [M_DMED+H]+ Δm/z= -45 Acid Nicotinic acid C6H5NO2 

44 2.62 129.1386  129.1457  54.98  [M_DMED+H]+ m/z= 72 Ketone Acetone C3H6O 

45 2.97 245.2084  245.2012  29.36  [M_DMED+H]+ Δm/z= -45 Acid Arginine C6H14N4O2 

46 3.75 227.1251  227.1264  5.72  [2M+H]+ - - 
Creatinine 

(dimer) 
(C4H7N3O)2 

 

[a]. Labeling reagent, internal standard, urea, and creatinine are also shown in the table as refers. 
[b]. The mass tolerances are relatively high because of the lack of performance of the 
instruments. 
  

https://hmdb.ca/metabolites/HMDB0000243
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Table S2. The comparison of classification performance for the dataset between models.   

 
 

Model AUC Accuracy F1 Precision Recall 

Logistic 
Regression 

0.84 0.87 0.87 0.87 0.87 

Random Forest 0.89 0.82 0.82 0.82 0.82 

SVM 090 0.80 0.80 0.80 0.80 

kNN 0.86 0.78 0.79 0.79 0.78 

Naïve Bayes 0.81 0.69 0.69 0.71 0.69 


