

1 **Supplementary information**
2
3
4
5
6

7 **Cryo-EM structure and functional landscape of an RNA polymerase ribozyme**
8
9

10
11 Ewan K.S. McRae^{1, 3}, Christopher J.K. Wan^{2, 3}, Emil L. Kristoffersen^{1, 2}, Kalinka Hansen¹,
12 Edoardo Gianni², Isaac Gallego², Joseph F. Curran², James Attwater², Philipp Holliger^{2,4} ,
13 Ebbe S. Andersen^{1,4}
14
15

16
17 ¹Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark; ²MRC
18 Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
19
20

21
22 *Communication to: ph1@mrc-lmb.cam.ac.uk & esa@inano.au.dk
23 ³ these authors contributed equally to this work
24 ⁴jointly supervised the work
25
26
27
28

29 Methods
30 Supplementary Figures
31 Supplementary Tables
32 References
33

34 **Methods**

35

36 **RNA preparation**

37 *For the 5TU+t1 dataset:*

38 Ribozyme RNA was prepared essentially as described¹. In brief, RNA was *in vitro*
39 transcribed, gel purified by 10% Urea PAGE, and recovered by freeze and squeeze
40 extraction (removing gel pieces with a Spin-X column (0.22 µm pore size, Costar)).
41 Recovered RNA of 5TU and t1 was then mixed in a 1:1 ratio, precipitated in 96%
42 EtOH+KCl, washed in 70% ice-cold EtOH, and redissolved in buffer (50 mM Tris, pH 8,
43 100 mM MgCl₂) to a final concentration of 3 mg/mL RNA dimer. All buffers and EtOH
44 solutions were filtered (3 K cut-off, Amicon) prior to use. RNA dissolved in buffer was
45 then fast annealed (1 min at 80 °C and then quickly moved to ice) to allow folding of the
46 ribozyme (fast) but not aggregation due to high MgCl₂ (slow). Finally, the annealed RNA
47 dimer (3 mg/mL) was added to grids for downstream cryo-EM analysis as described below.
48

49 *For the t5+t1 data set:*

50 Ribozyme RNA was prepared similarly as described¹. Ribozyme RNA was prepared similarly
51 as described¹. In brief, RNA was *in vitro* transcribed, gel purified by 10% Urea PAGE, and
52 recovered by electro-elution (Model 422, BIO RAD), and finally filtered with a Spin-X column
53 (0.22 µm pore size, Costar). Ribozyme RNAs were then ethanol precipitated independently
54 and resuspended in milli-pure water to stock concentrations of 50 µM (t5) and 100 µM (t1). t5
55 and t1 (1:1 ratio; t5⁺¹ as heterodimer) were prepared at 10 µM final concentration each in Tris-
56 HCl pH 8.3 50 mM, MgCl₂ 25 mM and Tween-20 0.005 % (w/v) as follows: t5 and t1 were
57 mixed and annealed by heating at 50 °C for 5 min, cooled down to 17 °C for 10 min in milli-
58 pure water and finally placed in ice. Then, the required amount of Tris-HCl, MgCl₂ and milli-
59 pure water (to reach the final volume minus Tween-20), were added and left to incubate in ice
60 for at least 10 min. Finally, Tween-20 was added before sample application to the grid.
61

62 **Cryo-electron microscopy data acquisition**

63 *For the 5TU+t1 dataset:*

64 Protochips 1.2/1.3 300 mesh Au-Flat grids were glow discharged in a GloQube Plus glow
65 discharging system for 45 seconds at 15mA and used immediately after for plunge freezing.
66 Plunge freezing was performed on a Leica GP2 with the sample chamber set to 99% humidity
67 and 15 degrees Celsius. Three microlitres of sample was applied onto the foil side of the grid
68 in the sample chamber before a 4 second delay and then 6 seconds of distance-calibrated foil-
69 side blotting against a double layer of Whatman #1 filter paper. With no delay after blotting
70 the sample was plunged into liquid ethane set to -184 degrees Celsius. All data were acquired
71 at 300 keV on a Titan Krios G3i (Thermo Fisher Scientific) equipped with a K3 camera
72 (Gatan/Ametek) and energy filter operated in EFTEM mode using a slit width of 20 eV. Data
73 were collected over a defocus range of -0.8 to -2 micrometers with a targeted dose of 60
74 electrons per square angstrom (Å²). Automated data collection was performed with EPU and
75 the data was saved as gain normalized compressed tiff files with a calibrated pixel size of 0.647
76 Ångstrom per pixel.
77

78 *For the t5⁺1 data set:*
79 Aliquots of 3 μ l of pre-annealed t5+1 were applied into C-Flat carbon CF-1.2/1.3 300 mesh
80 grids, which were plasma cleaned for 30 seconds in a 3:1 (Argon:Oxygen) gas mixture. The
81 grids were blotted for 12 seconds at 4 °C and 100% humidity, and plunged into liquid ethane,
82 using a home-made manual plunger. t5¹⁺t1 data was collected in a Titan Krios transmission
83 electron microscope operated at 300 kV. Zero-loss-energy images were collected on a Gatan
84 K2-Summit detector in super-resolution counting mode (pixel size of 1.1 Å) with slit width of
85 20 eV on a GIF Quantum energy filter. Each image was exposed for a total of 18 s (65
86 electron/Å²) and dose-fractionated into 72 movie frames.
87

88 **Single particle image processing and 3D reconstruction**

89 *For the 5TU+t1 dataset:*

90 Motion and CTF correction were performed in CS-Live^{2,3} and the micrographs were curated to
91 12507 acceptable exposures. Micrographs were binned to a pixel size of 1.294 Å during motion
92 correction. Initial blob picking followed by templated picking using 2D classes generated
93 during CS-live pre-processing were used to generate the initial particle stack. Several rounds
94 of *ab initio* reconstruction followed by heterogeneous refinement were performed before we
95 identified a volume that refined to 8 Å GSFSC (0.143) with 69,977 particles. This volume was
96 used to create 7 different 2D templates that were used to re-initiate templated particle picking.
97

98 Templated particle picking, from the templates generated using our *ab initio* model,
99 resulted in 849,824 particle picks that were extracted with a box size of 256 pixels and Fourier
100 cropped to 128 pixels. 2D classification (250 classes) was performed and contained 12 classes
101 (78,962 particles) that were “junk”, and therefore discarded from further analysis. *Ab initio*
102 reconstruction using 30,000 particles and 3 classes was used to generate initial volumes.
103 Heterogeneous refinement of 770,862 particles resulted in 306,161 particles being sorted into
104 the class that was further investigated. These particles were re-extracted with newly aligned
105 shifts for the particle centers and subjected to another 3-class *ab initio*, this time using the entire
106 particle stack (302,927 particles), which was then followed by heterogeneous refinement into
107 three volumes. 126,690 particles were sorted into the best class and used for a 2-class *ab initio*
108 job with class similarity parameter set to 0, followed by heterogeneous refinement into those
109 two volumes, resulting in 95114 particles being kept. The method of 2 class *ab initio* with a
110 class similarity of 0, followed by heterogeneous refinement was repeated twice more, further
111 reducing the particle stack to 71,746 and then to 45,589. At this point we were no longer
112 removing junk particles but sorting different structural classes of the heterodimer that either
113 had or did not have good alignment with the epsilon domain (P9/P10). Heterogeneous
114 refinement into the previous 2 *ab initio* volumes was performed 3 times, reducing the particle
115 stack to 35,633, then 31,103 then 28,000 particles. Further classification was determined to
have diminishing returns in terms of improved resolution.

116 It was determined that we were able to achieve better particle alignments with a smaller
117 box size and so the particles were re-extracted with a box size of 208 and not Fourier cropped.
118 Some close particle picks were found to be preventing the FSC curve from dropping to zero
119 and were removed, resulting in a final particle stack of 26,167 particles. A final local refinement
120 using a full mask was performed while minimizing over per-particle scale at each iteration of

121 the refinement⁴. This resulted in a GSFSC (0.143) of 5.9 Å. The final map was sharpened with
122 a B-factor of 275.

123

124 *For the t5⁺1 data set:*

125 We collected 452 movies which were imported to cryoSPARC. Whole-image drift correction
126 of the movie frames ('Patch motion correction'), and contrast transfer function (CTF)
127 estimation ('Patch CTF estimation') were performed using default parameters. An initial stack
128 of ~ 37k particles were "blob picked" and extracted using a 256 pixel box (binning 4) and
129 subjected to one round of reference-free 2D classification (150 classes). From these, 14 2D
130 classes were selected to conduct a template-based particle picking. A total of 38276 particles
131 were extracted using a 256 pixel box (binning 2). These particles were then used to produce 3
132 *ab initio* models in which one of them already had the overall structure of t5+1 at low resolution.
133 To remove the defective particles, an initial 3D classification ('Heterogeneous refinement' in
134 cryoSPARC) was performed using all the particles and the 3 *ab initio* models, where the 2 ill-
135 formed models were acting as 'sinks'. The 'Heterogeneous refinement' was repeated twice by
136 using the particles of the best volume and the 3 volumes of the previous job as input. Finally,
137 the particles (n = 5,485) of the best volume, were extracted from the micrographs using a 256
138 pixel box, and an 'homogeneous refinement' was performed giving rise to an EM-map with
139 an overall 8.0 Å GSFSC resolution. 5TU+t1 model and EM-map from t5¹⁺t1 were then docked
140 using Chimera.

141

142 ***Model Building***

143 To determine the helix placement for 5TU and t1 we used DRRAFTER^{5,6} to fit the helical
144 fragments into our map. For 5TU we used the secondary structure diagram from Attwater et
145 al.¹ as restraints for DRRAFTER. Taking into account that we had knowledge of a potential
146 interaction / dimerization point between the 5' cap region from 5TU and t1, we manually placed
147 the 5'cap helix at the end of the region of our map—which was clearly the long single stranded
148 5TU:J1/3 (SI Fig. 6a). Using this initial helix placement, DRRAFTER was able to determine
149 the helix positions and model the single-stranded junctions in an automated fashion. After the
150 first round of modelling, which produced 3000 models, the top 10 models only converged to a
151 mean pairwise RMSD of 22.3 angstrom (SI Fig. 6a). Upon visual inspection, most of these top
152 models had clearly failed to fit all helical components within the volume of our map. However,
153 the best fitted model had managed to place all 152 nucleotides within the volume reasonably
154 well (SI Fig. 6a). We then used this model as a starting point for manual model building of the
155 heterodimer.

156 Model building with DRRAFTER failed to produce reasonable models using the
157 secondary structure diagram for t1, as described in Attwater et al.¹. Furthermore, it was clear
158 from the remaining unfilled space in our map that there was an extended helical component
159 that was longer than any of the helical components previously predicted. We used the
160 NUPACK web application⁷ to predict the secondary structure of t1 (SI Fig. 4c), and used this
161 predicted structure as restraint for model building with DRRAFTER. The end of the extended
162 helix predicted by NUPACK was manually fit in the map (SI Fig. 6b, column 1) and after only
163 2000 models generated by DRRAFTER, the top 10 models had achieved a mean pairwise

164 RMSD of 12.2 angstrom (SI Fig. 6b, column 2). The top model (SI Fig. 6b, column 3) was
165 selected as a template for manual model building of the heterodimer.

166 t1 RNA has 2 major helical components (t1:P1 and t1:P3), which are connected by a
167 joining region (t1:J1/2), the short helix (t1:P2) and another joining region (t1:J2/3). t1:J1/2 has
168 a 7-nucleotide loop component that our DRRAFTER model places where the 5' P1 cap helix
169 of 5TU is located. This 7-nucleotide loop has 5 bases which complements perfectly with the
170 5TU hairpin loop of the 5' cap. We manually built this dimerization site around an idealized 5-
171 bp double stranded helix between sequences U6-U7-C8-U9-C10 from 5TU and G23-A24-G25-
172 A26-A27 from t1.

173 After having defined the coarse features of the 5TU+t1 dimer, we started to focus on
174 the fine details in our model. The two GAUA loop sequences make up the second dimerization
175 site between 5TU and t1 forming a 2-base pair kissing loop. This is reminiscent of the 2-base
176 pair GACG kissing loop from the 5'-end dimerization signal of the Moloney murine leukemia
177 virus (MoMuLV) RNA⁸. Accordingly, we used the NMR structure (PDB: 1F5U) of this
178 dimerization signal as a template to model this interaction site. We remodelled 5TU:J2/3 and
179 5TU:P6 using the crystal structure of the class I ligase ribozyme (PDB: 3IVK)⁹ as a template.
180 Finally, individual DRRAFTER runs with 7600 models were setup to rebuild t1:J3/2 (SI Fig.
181 6e), 5TU:J3/4 (SI Fig. 6c) as well as 5TU:J10/9 (SI Fig. 6d). These DRRAFTER runs on
182 smaller fragments reached much better convergence than the DRRAFTER build of the entire
183 RNA strands, with mean pairwise RMSD values of 1.7, 2.1 and 2.4 Å, respectively.

184 Flexible fitting with molecular dynamics, as well as general model inspection and
185 combination was performed using ISOLDE¹⁰ and ChimeraX^{11,12}. The PDB-tools software
186 package was utilized for renumbering, editing the sequence and merging chains from PDB
187 models¹³. The model was iteratively refined using Real-Space refinement and validation using
188 Phenix software package^{14,15} and energy minimizations using QRNAS¹⁶, which uses the
189 AMBER force fields^{17,18}. Validation¹⁹ of the final model can be found in Supplementary Figure
190 7 and Supplementary Table 1.

191

192 **3D variability analysis**

193 3DVA was performed in cryoSPARC²⁰ using the 126,690 particle stack as an input, which was
194 only 3D classified to remove junk particles. A filter threshold of 8 Å was applied and 3
195 components were solved. The second component contained the greatest motion and is the only
196 one presented herein. The 3DVA intermediates display job was used to sort the particles into
197 9 classes with no overlap (top hat windows). The three flanking classes were used to reconstruct
198 volumes without alignment, followed by homogeneous and then local refinements. The
199 leading-edge refinement contained 19854 particles and the tailing edge refinement contained
200 17,799 particles. To generate the movie, the consensus model was fit into each map,
201 individually and molecular dynamics with flexible fitting was performed using ISOLDE. The
202 force field strength was reduced to 0.05 x 1000kJ per mol per map units by cubic angstrom and
203 allowed to run for 15 minutes with a 0-degree temperature factor. This allowed the model to
204 smoothly drift into the slightly deviant conformations with minimal change to the secondary
205 structure. The coordinate sets between the two states were then calculated in ChimeraX using
206 the default corkscrew rigid-body transformation morph command.

207

208 **Selection library synthesis**

209 A library containing all possible single mutants, insertions and deletions in t5 was synthesised
210 by a commercial supplier (Twist Bioscience). The library (0.5 ng) was used as template in a 50
211 μ l GoTaq HotStart (Promega) PCR using forceGG and HDVrec primers. The PCR product (0.1
212 ng) was further mutagenised in a 50 μ l error-prone PCR using GeneMorph II Random
213 Mutagenesis Kit (Agilent) for 30 cycles using forceGG and HDVrec primers, following the
214 manufacturer's instructions. The resulting amplicon was purified using agarose gel, and further
215 amplified in a 50 μ l GoTaq HotStart (Promega) PCR using HDVRT and t5_tri12x12 primers.
216 The DNA from this reaction was transcribed into RNA overnight using MEGAshortscriptTM
217 T7 Transcription Kit (ThermoFisher); products of the transcription was subsequently purified
218 using preparative-scale urea-PAGE.

219 ***In vitro* evolution cycle**

220 The t5 library selection construct was annealed with equimolar 5' biotinylated primer and t1
221 ribozyme, as well as triplets in water (80°C 2–4 min, 17°C 10 min). Chilled extension buffer
222 was added, and the reaction was then frozen and incubated at –7°C. After the incubation the
223 reaction was thawed on ice. Constructs were then precipitated with 0.3 M sodium acetate in
224 isopropanol (55%) before treatment with polynucleotide kinase (NEB) followed by
225 denaturation to resolve the HDV-derived 2', 3'-cyclic phosphates and allow later adaptor
226 ligation.

227 Constructs were urea-PAGE separated alongside FITC-labelled RNA markers
228 equivalent to successfully ligated constructs. The marker-adjacent gel region in the construct
229 lane was excised. Biotinylated (primer-linked) constructs were eluted overnight into BB with
230 100 μ g MyOne C1 beads. After 30 μ m filtering (Partec Celltrics(Wolflabs (York, UK))) of the
231 supernatant to remove gel fragments, the beads were washed in BB then 0.1 M NaOH to
232 confirm covalent linkage of construct to primer, before further BB washing and transfer to a
233 fresh microcentrifuge tube to minimize downstream contamination. 3' adaptors were
234 subsequently ligated to bead-bound constructs for 2 hr (with buffer/enzyme added after bead
235 resuspension in other reaction components including 0.04% Tween-20). Beads were BB
236 washed.

237 Bead-bound constructs were put into a 50 μ l RT-PCR using HDVRec and forceGG
238 primers, and SuperScript III One-Step RT-PCR System with Platinum Taq DNA Polymerase
239 (ThermoFisher). Resulting products were further amplified using HDVRT and t5_tri12x12
240 primers, in a 50 μ l GoTaq HotStart (Promega) PCR to generate the DNA template for the
241 subsequent round of selection. The DNA was subsequently transcribed into RNA overnight
242 using MEGAshortscriptTM T7 Transcription Kit (ThermoFisher); products of the transcription
243 was subsequently purified using preparative-scale urea-PAGE. At the end of the selection, t5
244 libraries were amplified by P51HDVba and P7forceGG primers in a 50 μ l GoTaq HotStart
245 (Promega) PCR; products were purified by agarose gel, quantified using a KAPA SYBR FAST
246 qPCR kit (KAPA Systems) and then sequenced on a HiSeq 2500 (Illumina).

247 **Comparing t5 and 5TU TPR activity**

248 0.5 μ M of t5 or 5TU was mixed with 0.5 μ M of t6F10mix RNA template, 0.5 μ M of F10 primer,
249 5 μ M each of ^{PPP}GCG, ^{PPP}ACC, ^{PPP}UUC, ^{PPP}GAA, ^{PPP}CGC, ^{PPP}AUA, ^{PPP}GGU, ^{PPP}CCA, with or

252 without 0.5 μ M of t1 (as described within SI Fig 1C), made up to 3.75 μ L in water. Reactions
253 were annealed to 80 °C for 2 minutes, followed by 17 °C for 10 minutes. Reaction buffer was
254 added to a final concentration of 200 mM MgCl₂ and 50 mM Tris pH 8.4; reactions were
255 subsequently frozen in dry ice, and incubated at -7 °C for 12 hours. Reactions were then thawed,
256 to which 50 pmol of a competing oligo (t6F10mix-comp) added. Products of the reaction were
257 separated on analytical urea-PAGE, and detected on a Typhoon Trio scanner (GE Healthcare
258 (GE) (Chicago, USA)).

259

260 **Determination of 5TU+t1 adaptive landscape**

261 For construction of the 5TU library, 5TU-F1, 5TU-F2, 5TU-R1 and 5TU-R2 were mixed
262 equimolar, and a small amount (around 0.05 pmol of each) is used as a template for a 50 μ l
263 PCR using Q5 DNA Polymerase (NEB), with forceGG and HDVrec as primers. For
264 construction of the t1 library, t1-F1 and t1-R1 were mixed equimolar, and a small amount
265 (around 0.05 pmol of each) is used as a template for a 50 μ l PCR using Q5 DNA Polymerase,
266 with t1rec and HDVrec as primers. For both subunits, the amplification products were purified
267 and diluted, such that 106 molecules were subsequently used as templates in a PCR using Q5
268 DNA Polymerase (primers 6AUA-6AACCA-fGG and HDVRT for 5TU, and 6AUA-6AACCA-
269 t1rec and HDVRT for t1). The resulting PCR products were transcribed using using
270 MEGAshortscript T7 Transcription Kit (ThermoFisher); products of the transcription were
271 subsequently purified using preparative-scale urea-PAGE.

272 Both 5TU and t1 libraries were subjected to 1 round of *in vitro* evolution in triplicates,
273 as described above. Pre-selection and post-selection libraries were amplified using primers that
274 introduce indexed adaptors for Illumina sequencing (P51HDVba, P52HDVba, P53HDVba and
275 P510HDVba for the forward primer and P7forceGG for the reverse primer for the 5TU libraries,
276 and P51t1rec, P52t1rec, P53t1rec and P54t1rec for the reverse primer and P7HDVba for the
277 reverse primer for the t1 libraries). PCR products were subsequently quantified using a KAPA
278 SYBR FAST qPCR kit (KAPA Systems) and then sequenced on a HiSeq 2500 (Illumina).

279

280 **Calculating fitness associated with each genotype**

281 Reads from the HiSeq run were merged using PEAR²¹ and demultiplexed into their respective
282 libraries (input and 3 output libraries for both 5TU and t1) using a custom Python script,
283 according to 6-nucleotide barcodes at the 5' end of each read. Using FASTX-toolkit²² (Hannon
284 ref??), reads were trimmed to only contain the 5TU or t1 gene, and quality filtered such that
285 each read contains only bases with Q-score 30 or above. Remaining reads were aligned to the
286 wild-type 5TU or t1 sequences and mutations were called using alignparse²³. Genotypes
287 containing 10 reads or more in the input libraries, as well as at least 1 read in each of the 3
288 output libraries, were retained for downstream analysis; the rest of the genotypes were
289 discarded, as their fitness could not be accurately calculated.

290 To calculate the fitness of each genotype, as well as the error of fitness measurement,
291 we took into account sampling error associated with a given read count²⁴. We first calculated
292 the fraction of each library occupied by each genotype in the input (f_{in}) and 3 output (f_{out}):
293

294
$$f_{in_g} = \frac{counts_{in_g}}{\sum_{g=1}^L counts_{in_g}}$$

295

296
$$f_{out_{gi}} = \frac{counts_{out_{gi}}}{\sum_{g=1}^L counts_{out_{gi}}}$$

297

298 where g is the genotype in question (from 1 to L where L is the total number of genotypes),
 299 and i is the output replicate (1, 2, or 3).

300

301 Each input and output frequency is modelled with a Poisson variance (σ) associated with the
 302 number of reads for that genotype and the total number of reads in that library:

303

304
$$\sigma_{in_g} = \sqrt{\frac{1}{counts_{in_g}} + \frac{1}{\sum_{g=1}^L counts_{in_g}}}$$

305

306
$$\sigma_{out_{gi}} = \sqrt{\frac{1}{counts_{out_{gi}}} + \frac{1}{\sum_{g=1}^L counts_{out_{gi}}}}$$

307

308 For each genotype, we merged the 3 output fractions as an average, weighted by the inverse of
 309 the variance of the genotype:

310

311
$$f_{out_g} = \frac{\sum_{i=1}^3 f_{out_{gi}} * \sigma_{out_{gi}}^{-2}}{\sum_{i=1}^3 \sigma_{out_{gi}}^{-2}}$$

312

313 The associated error is:

314

315
$$\sigma_{out_g} = \sqrt{\frac{1}{\sum_{i=1}^3 \sigma_{out_{gi}}^{-2}}}$$

316

317 We calculated the fitness (F) of each genotype as the log2 ratio of the enrichment of the
 318 genotype during selection, and the enrichment of the wild-type sequence during selection:

319

320
$$F_g = \log_2 \left(\frac{f_{out_g} / f_{in_g}}{f_{out_{WT}} / f_{in_{WT}}} \right)$$

321

322 The associated error with this fitness is:

323

324
$$\sigma_{F_g} = \frac{1}{\ln(2)} * \sqrt{(\sigma_{out_g})^2 + (\sigma_{in_g})^2}$$

325
326 Due to normalisation to wild-type and subsequent transformation into log2 space, wild-type
327 sequences would have a fitness of 0, while less or more functional mutants would have fitness
328 <0 or >0, respectively.

329
330 For a given double mutant consisting of point mutations A and B, we defined epistasis (ε) as:
331

332
$$\varepsilon = F_{AB} - F_A - F_B$$

333

334 To check whether a given epistasis value was significant, we performed a one-sample t-test
335 using ε and its propagated error. For double mutants within 5TU and t1, the false discovery
336 rate was adjusted using the Benjamini–Hochberg method.²⁵

337
338 **Fidelity assay for substrate lengths**

339 Reactions were carried out with 0.1 μ M ribozyme and 0.5 μ M template (T γ GA2SU) and 5'
340 FITC-labelled primer (Fs5 γ 7) in 200 mM MgCl₂, 50 mM tris•HCl pH 8.3. As described¹,
341 ribozyme and template/primer/substrate mixes were pre-annealed in water independently (80
342 °C 2 min, 17 °C 10 min) before buffer addition and freezing on dry ice (10 min) followed by
343 incubation at -7°C for 16 hours. Substrates were at 5 uM each (triplets), 2 uM each (tetramers),
344 1 uM each (pentamers) and 0.5 uM each (hexamers). ³HO-CUG was used as the +2 downstream
345 triplet, to prevent incorporation of the +2 triplet to the reaction products to simplify analysis.
346 Reactions were stopped by addition to 1 μ l 0.5 M EDTA (pH 7.4) after thawing. Samples were
347 denatured in 66.6 mM EDTA (pH 7.4), 6 M urea (94 °C 5 min), before separation on a 35 cm
348 30% 19:1 acrylamide:bis-acrylamide 3 M urea tris-borate gel. This is sufficient to separate
349 correct and incorrect products due to the differential migration rates of adenine vs guanine
350 bases. FITC fluorescence were detected using a Typhoon trio scanner (GE), and quantitated
351 using ImageQuant software (GE).

352
353 **FidelitySeq assay**

354 FidelitySeq assay reactions were carried out using 4 pmol template (UP1NNN), 2 pmol t5⁺¹,
355 40 pmol ^{PPP}NNNN in 8 μ l reaction. Reactions were stopped after 48 hr and separated by urea-
356 PAGE. Empty template and bands resulting from triplet incorporation were excised, eluted in
357 10 mM tris•HCl pH 7.4 overnight, precipitated in 73% ethanol with 1.5 μ l 1 % glycogen carrier,
358 and resuspended in water. These products were annealed to 1 μ M BiouploopRT primer in 26.8
359 μ l water (72 °C 3 min, ice 3 min) and reverse transcribed (40 μ l Superscript IV reaction
360 supplemented with 0.02% Tween-20, 30 min 65 °C).

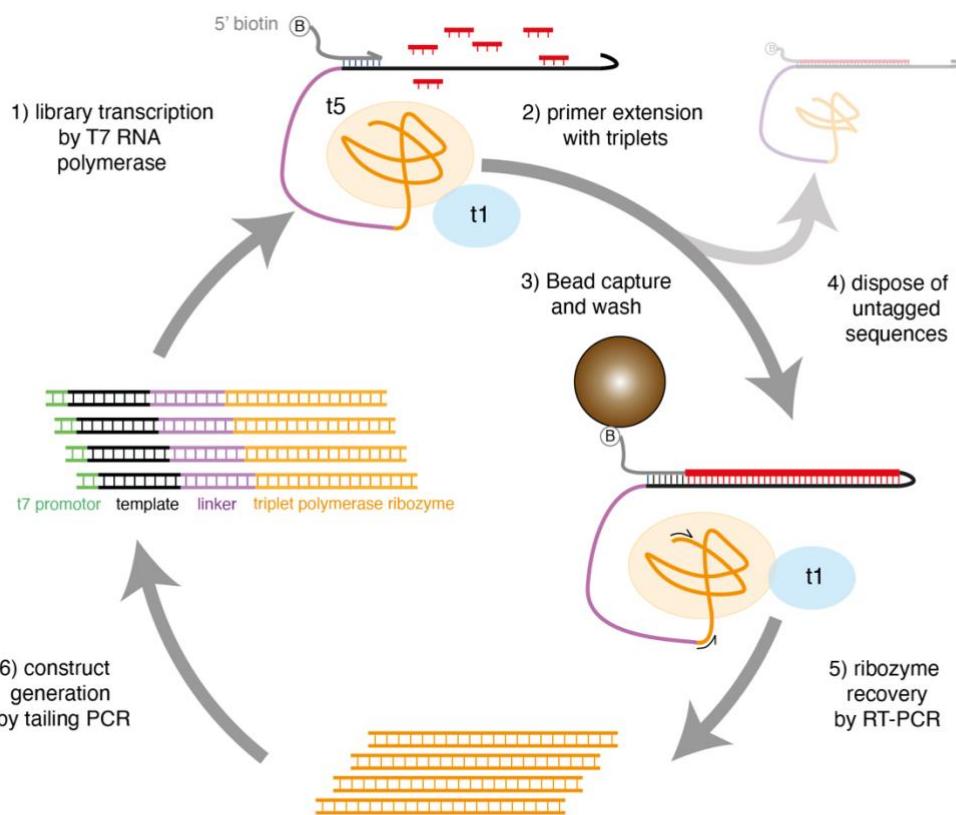
361 RT products were bound to MyOne C1 (Invitrogen) streptavidin-coated paramagnetic
362 microbeads (8 μ l thrice-BWBT washed beads per reaction) in 160 μ l BWBT (200 mM NaCl,
363 10 mM tris•HCl pH 7.4, 1 mM EDTA, 0.1 % Tween-20) supplemented with 10 mM EDTA for
364 30 min. Beads were washed in BWBT, incubated for 1 min in 25 mM NaOH, 1 mM EDTA,
365 0.05 % Tween-20 to denature any duplex²⁶, washed again in BWBT before adaptor ligation
366 (10 μ l App DNA/RNA ligase reaction: 1X NEB buffer 1, 5 mM MnCl₂, 0.04 % Tween-20, 2
367 μ M adenylated-HDVlig adaptor, 65 °C, 2 hr). Beads were washed twice in BWBT before

368 biotinylated species were eluted by heating in 95 % formamide, 10 mM EDTA (94 °C, 5 min)
369 and separated by urea-PAGE.

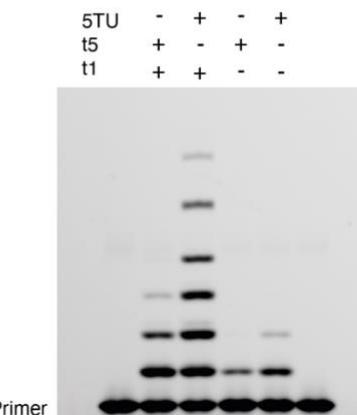
370 Ligation products were excised and eluted into BWBT before binding to 3 μ l thrice-
371 washed beads per reaction and resuspension in 10 μ l water. Samples were PCR amplified with
372 GoTaq HotStart master mix (Promega) (0.5 μ M primers P3HDV and barcoded P5Xuploopt,
373 40 °C anneal, 25 cycles), agarose gel purified and pooled for sequencing (Illumina HiSeq).

374 Sequencing reads were split by barcode (yielding over 250,000 reads per sample), and
375 3' adaptor sequences trimmed off using the Galaxy web platform, at the public server
376 usegalaxy.org²⁷. Custom python code was used to count the number and type of incorrect and
377 correct incorporation events per template, correcting for cross-template priming (which was
378 negligible). Base position fidelity and overall extension fidelity were calculated as geometric
379 means as described¹. Extension likelihood was calculated by dividing extended count by total
380 reads, normalised by fractional gel intensities of the extended and unextended bands.
381 Likelihood of correct extension was calculated by multiplying a given triplet's extension
382 likelihood by its fidelity.

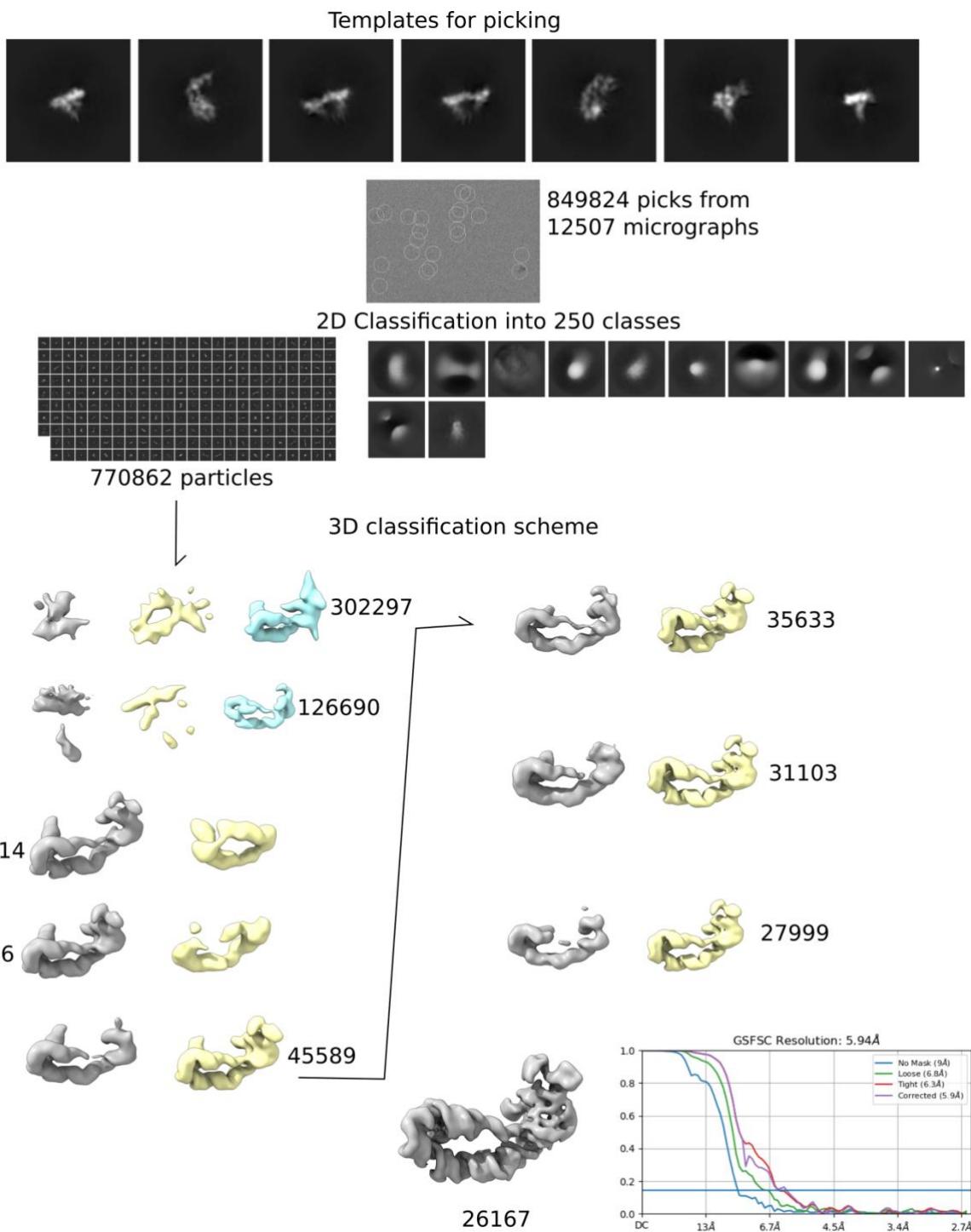
383


384 **Oligonucleotide syntheses**

385 RNA templates for the substrate length and FidelitySeq assays were prepared by *in vitro*
386 transcription and urea-PAGE purification. These were transcribed as described¹, using
387 MegaShortScript enzyme and buffer (ThermoFisher), from dsDNA templates. Triplets and
388 substrates up to hexamers in length were synthesised and purified as described¹. Briefly, T7
389 RNA polymerase transcription of short overhanging templates produced triplets and
390 dinucleotides (30 μ l reactions, 72 nmol each NTP required, 15 pmol template, 37 °C overnight).
391 Products were separated by urea-PAGE, identified by UV shadowing and relative migration
392 rates. Correct products were eluted and precipitated in 85% ethanol. RNA templates for the
393 substrate length and FidelitySeq assays were prepared by *in vitro* transcription and urea-PAGE
394 purification. These were transcribed as described¹, using MegaShortScript enzyme and buffer
395 (ThermoFisher), from dsDNA templates. Triplets and substrates up to hexamers in length were
396 synthesised and purified as described¹. Briefly, T7 RNA polymerase transcription of short
397 overhanging templates produced triplets and dinucleotides (30 μ l reactions, 72 nmol each NTP
398 required, 15 pmol template, 37 °C overnight). Products were separated by urea-PAGE,
399 identified by UV shadowing and relative migration rates. Correct products were eluted and
400 precipitated in 85% ethanol.

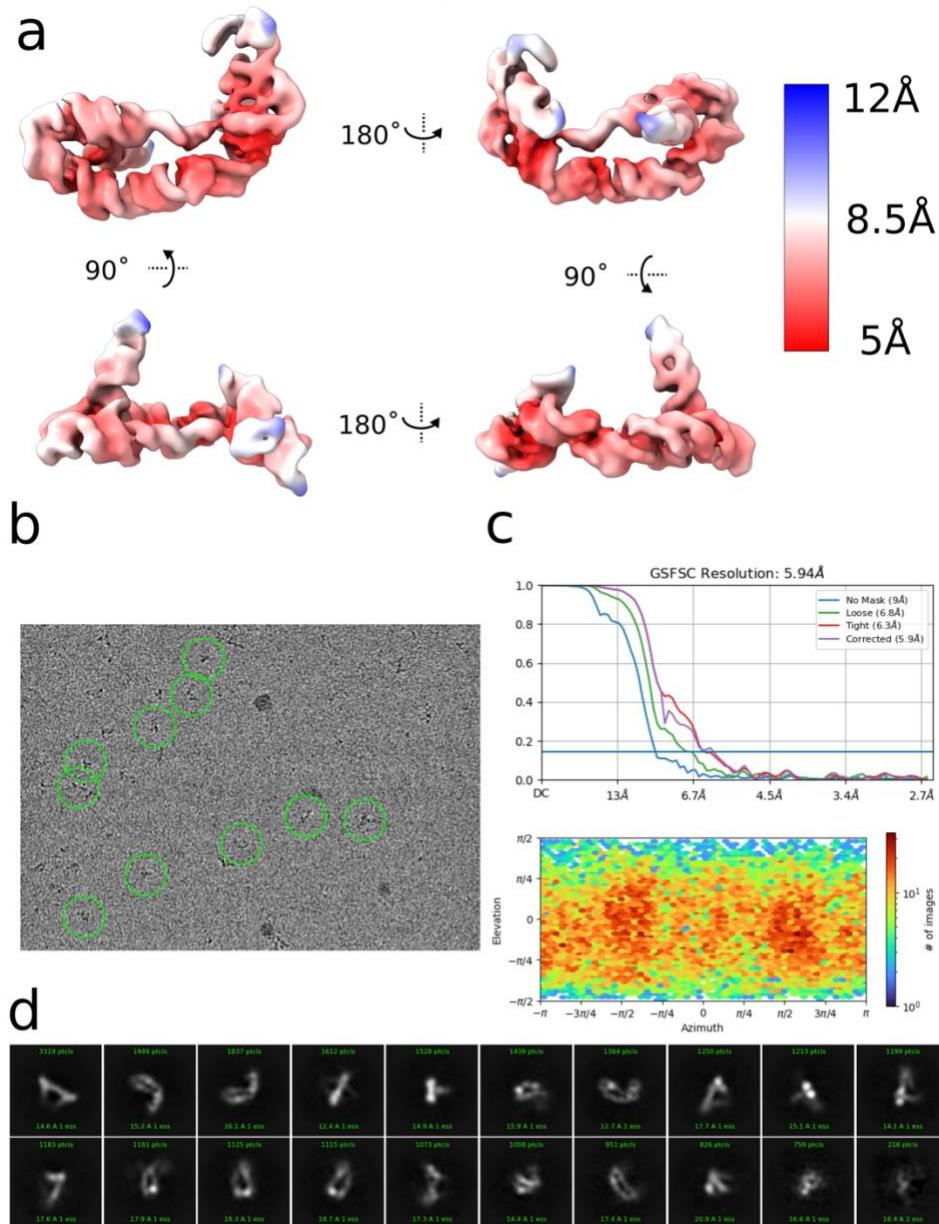

401

402 **Supplemental Figures**

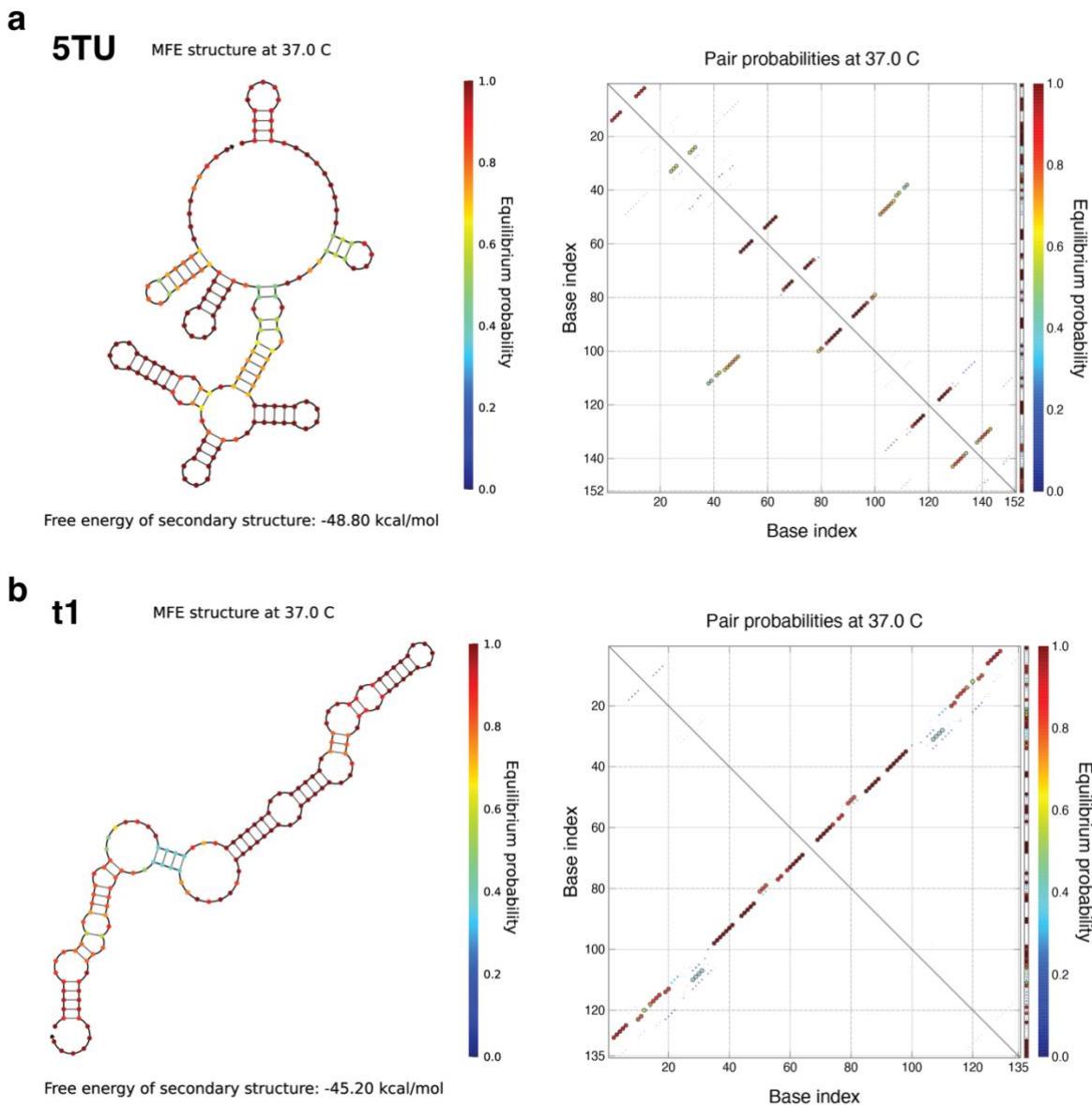

403

A**B**

30	40	100	120
t5	AUCUGCCAUC	CUCAACCAUGACAUGCAAAACGCGU	
5TUU.....C.....	
130	140	150	
t5	GCTTCGUUGAAUGGAGUUUUCAUG		
5TUC.....A.....		


C404
405

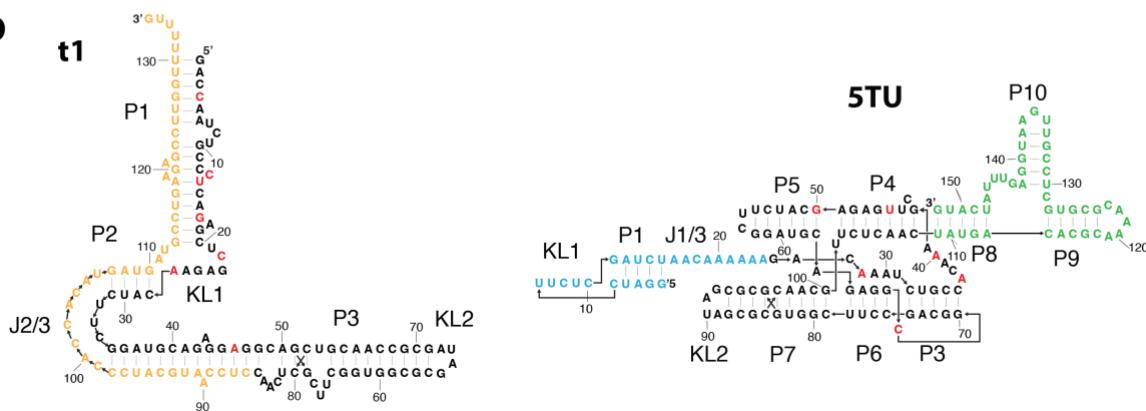
Supplementary Figure 1. TPR evolution. (a) Diagram of the TPR activity selection strategy. Ribozyme sequences are coloured in orange, linkers in purple, biotinylated primers in grey, templates in black, streptavidin-coated magnetic bead in brown. B - biotin. **(b)** Multiple sequence alignment of t5 against variant 5TU. Sequences of the ribozymes outside of the displayed regions are identical to t5. Numbering corresponds to positions in t5. **(c)** Activity of 5TU alone or in combination with wild-type t1 or top selected variant t1.5 on mixed sequence template, encoding for successive incorporations of GCG, ACC, UUC, GAA, CGC, AUA, GGU and CCA.


414
415
416
417

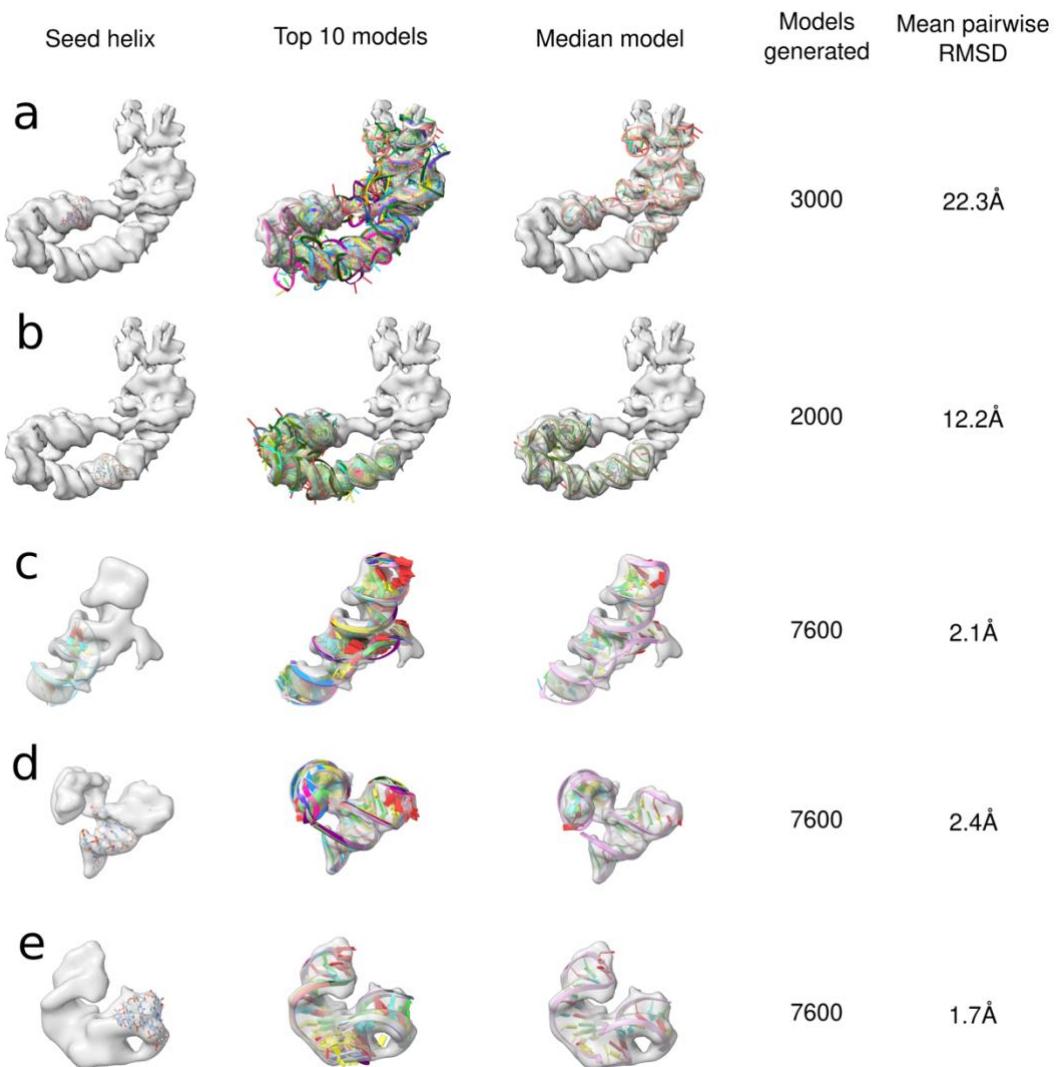
Supplementary Figure 2. Cryo-EM single particle analysis workflow. Numbers listed in the 3D classification scheme are the number of particles left in the class they are adjacent to and that were used for the subsequent round of classification.

418
419
420
421
422
423
424

Supplementary Figure 3. Features of the final particle stack from cryo-EM SPA analysis.
(a) Local resolution mapped onto the locally refined 5TU+t1 heterodimer cryo-EM map by color. **(b)** Exemplary micrograph showing 10 particle picks were retained in the final particle stack. **(c)** Gold-Standard FSC curve and viewing angle distribution from the final local refinement run in cryoSPARC. **(d)** 20 2D class averages generated from the final particle stack.

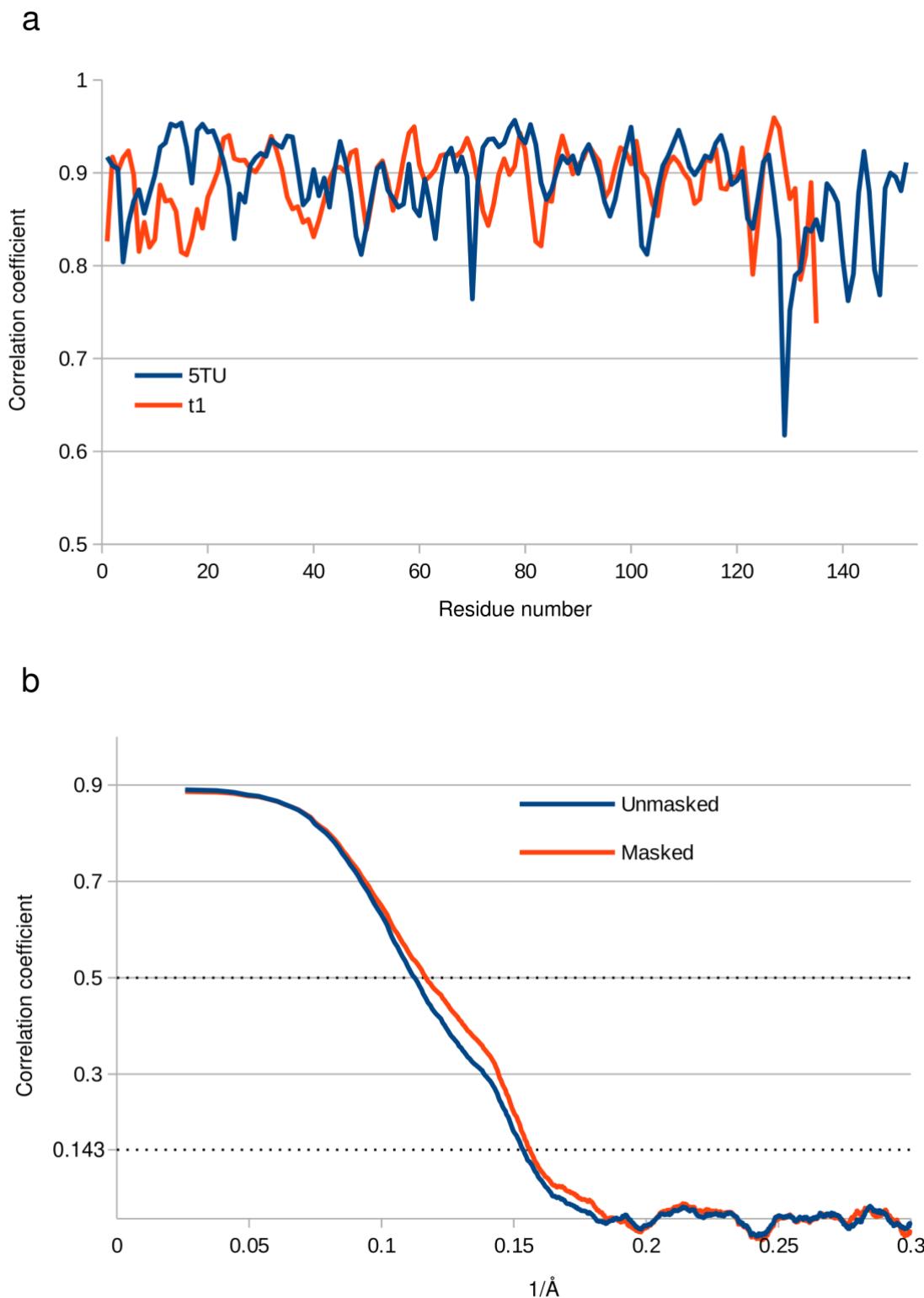


425
426 **Supplementary Figure 4. Secondary structure prediction for 5TU and t1.** (a,b) Secondary
427 structure prediction for 5TU and t1 using NUPACK. Left shows secondary structure coloured
428 with equilibrium probabilities. Right shows dotplot with pair probabilities.
429
430

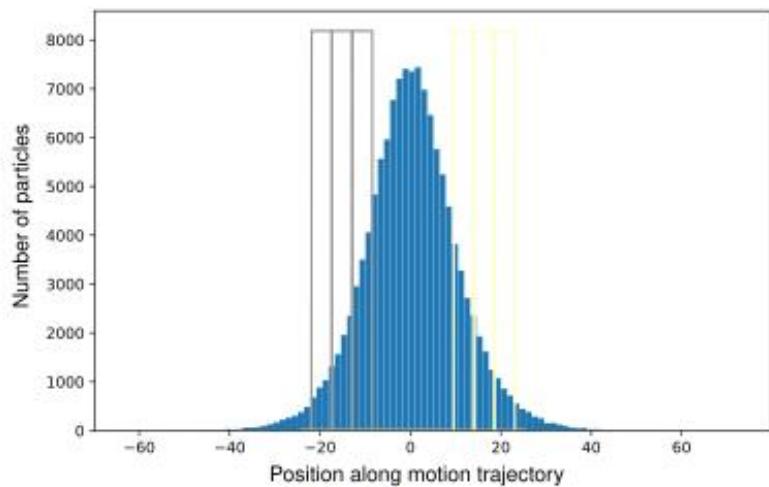

a

5TU 5'ext **GGAUUCUCGAUCUAACAAAAAA**
5TU GACAAACUGCCA–CAAAGCUUAGAGCAUCUUCGGAUGCAGAGGCGGCAGCCUUCGGUGGCGCGAUAGCGCCAACGUUCUAC
t1 **GACCAUCUGCC** **C****U****C****A****G****G****C****U****C****A****U****C****U****G****C****A****G****G****A****C****A**
5TU 3' ext **UAUGACACGCAAAACGCGUGCUCCGUUGAUGGAGUUUAUC**
t1 3' ext **CUCCAUGCAUCCACCACAU****G****A****U****G****C****U****G****G****U****U****U****U****U****U****U**

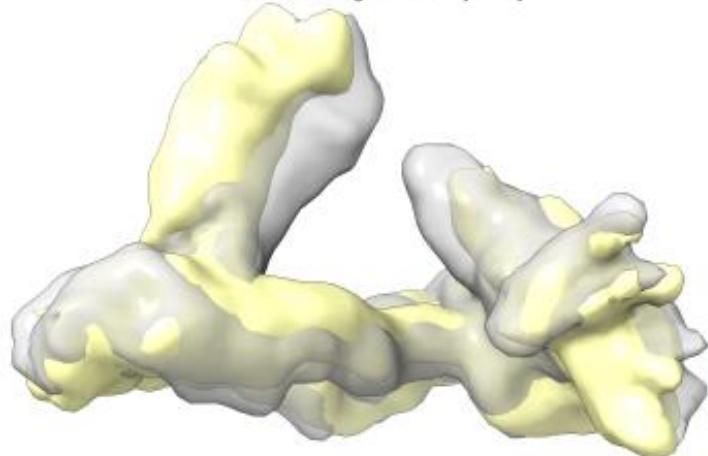
b



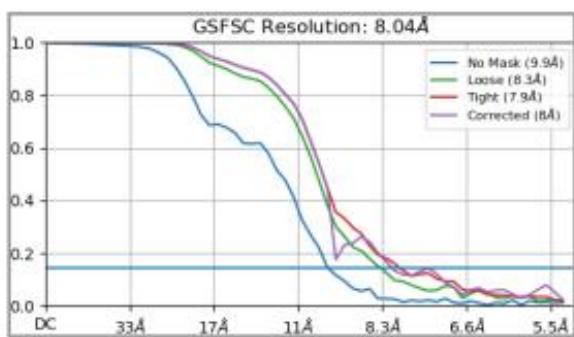
438

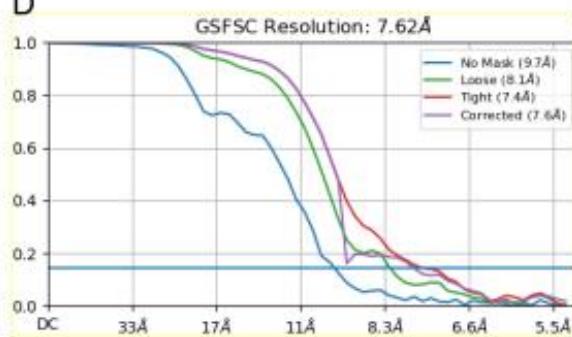

439

440 **Supplementary Figure. 6. DRRAFTER modelling of 5TU and t1.** From left to right the
 441 initial helix placement is shown, then the top 10 models from the DRRAFTER runs, then the
 442 top model. DRRAFTER runs were performed for (a) the entire 5TU, (b) the entire t1, (c)
 443 5TU:J3/4 with 5TU:P4-P5-P8-P9, (d) 5TU:J10/9 with P8-P9-P10, (e) t1:J3/2 with P2 & P3.

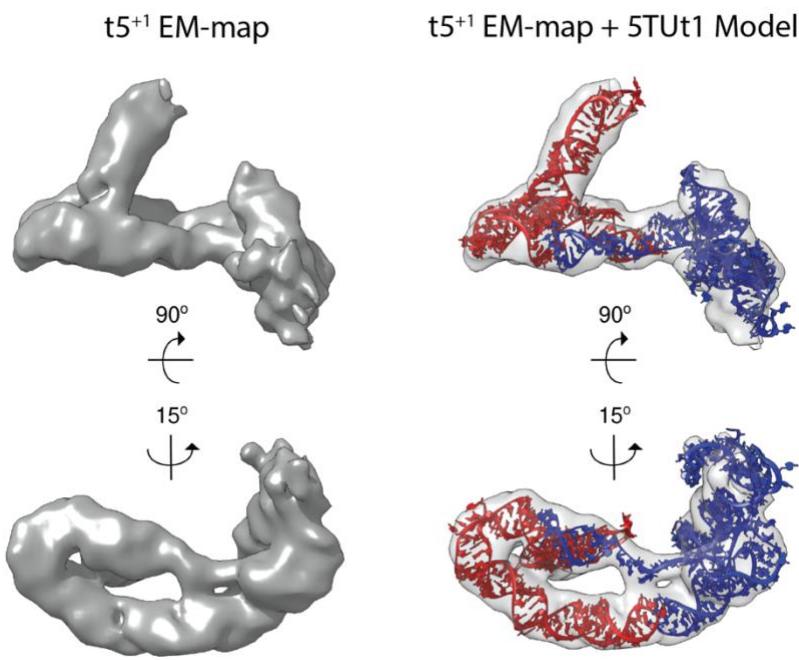


444
445 **Supplementary Figure 7. Map to model** comparison using Fourier shell correlation. (a)
446 Correlation coefficient for 5TU and t1 for each residue. (b) Correlation coefficient for the
447 5TU+t1 heterodimer at different resolutions. A soft mask was generated from the atomic
448 model¹⁵.


A


B

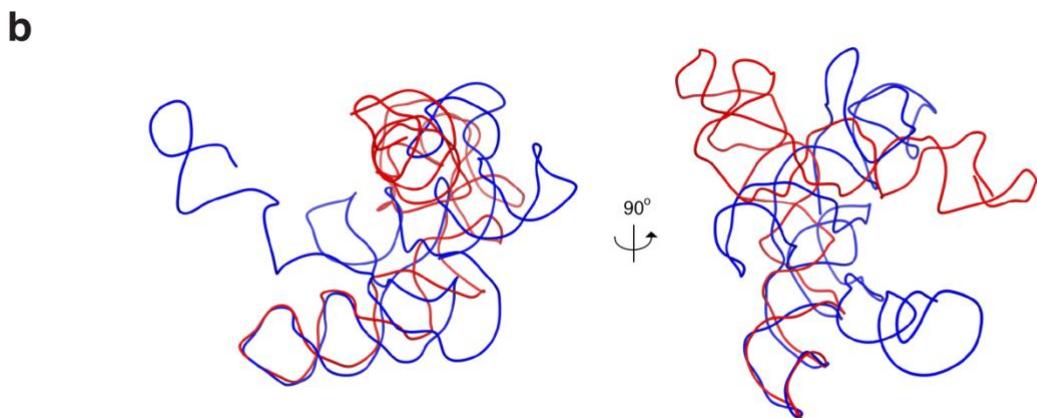
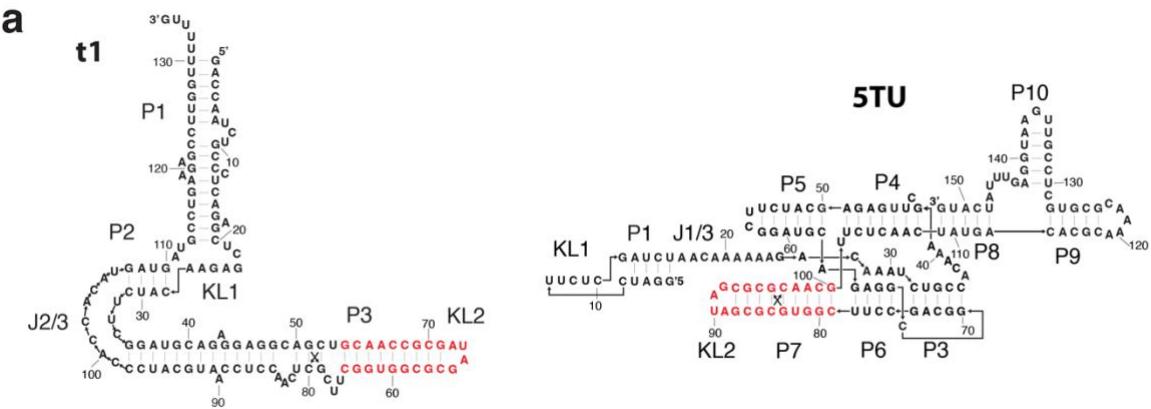
C

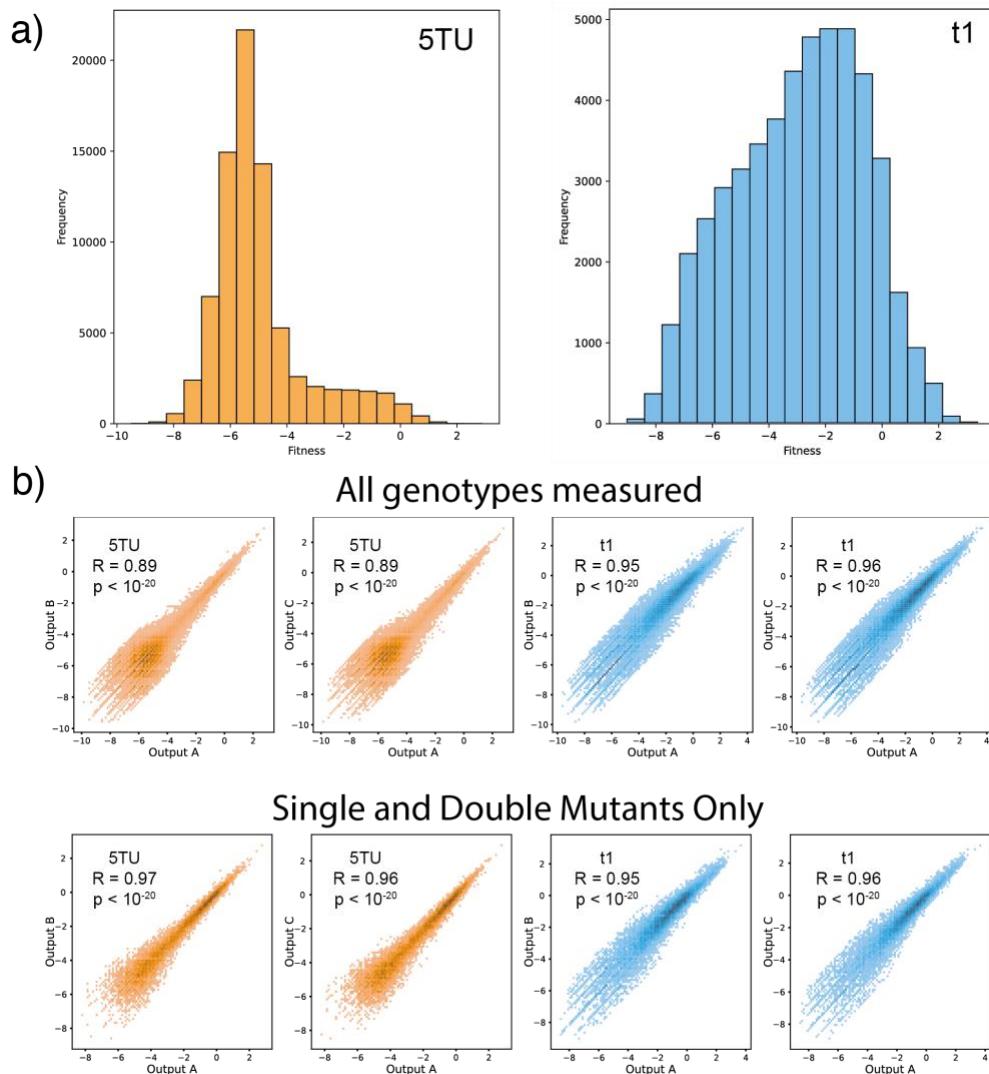


D

449
450

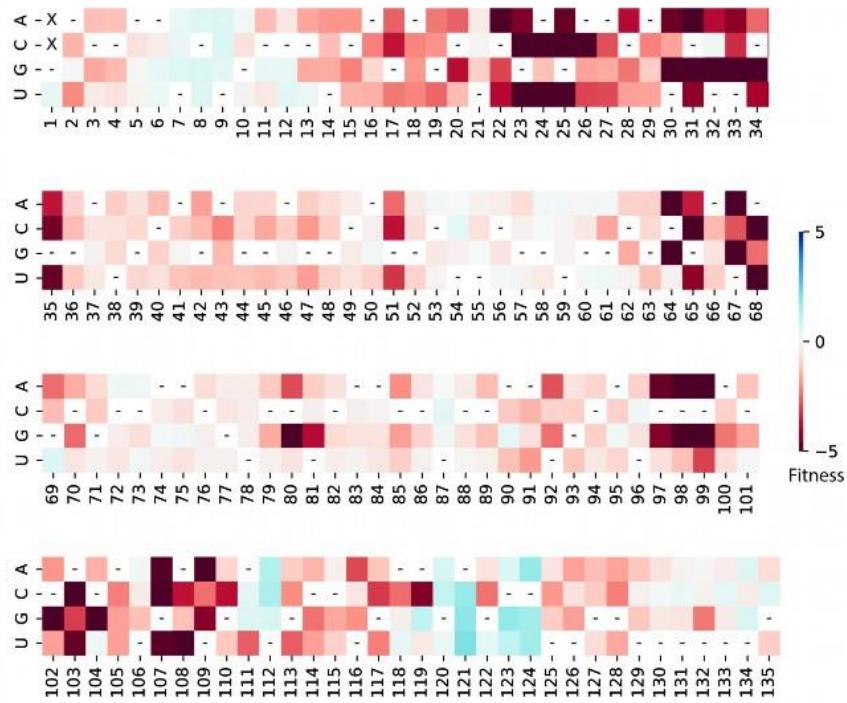
451 **Supplementary Figure 8: Flexibility of TPR structure.** 3D variability analysis of the TPR
 452 from the 126,690-particle stack shown in SI Fig. 2. The distribution of particles along the
 453 motion trajectory in (a) and the coloured boxes represent the particles used for the independent
 454 reconstruction and refinement of the volumes in (b). Gold-standard Fourier Shell Correlation
 455 curves for the reconstructed volumes are shown in (c) & (d).
 456

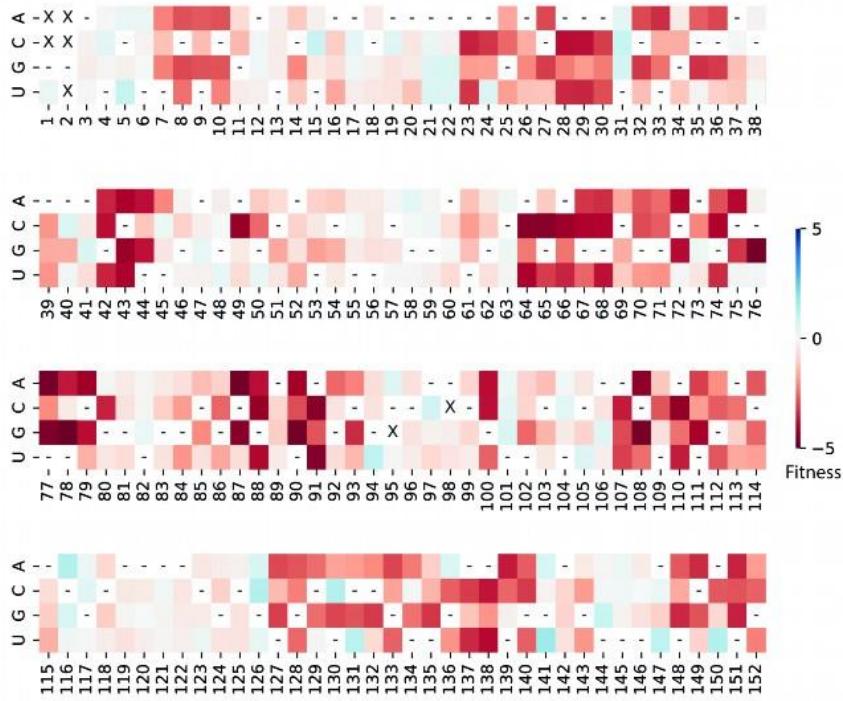


457


458

459 **Supplementary Figure 9: Comparison between t5⁺¹ EM-map and 5TU+t1 model.** Left
460 panels are the t5+1 EM-map. Right panels are the 5TU+t1 model docked into t5+1 EM-map
461 (7.99 Å resolution). The docking was performed in Chimera.

462

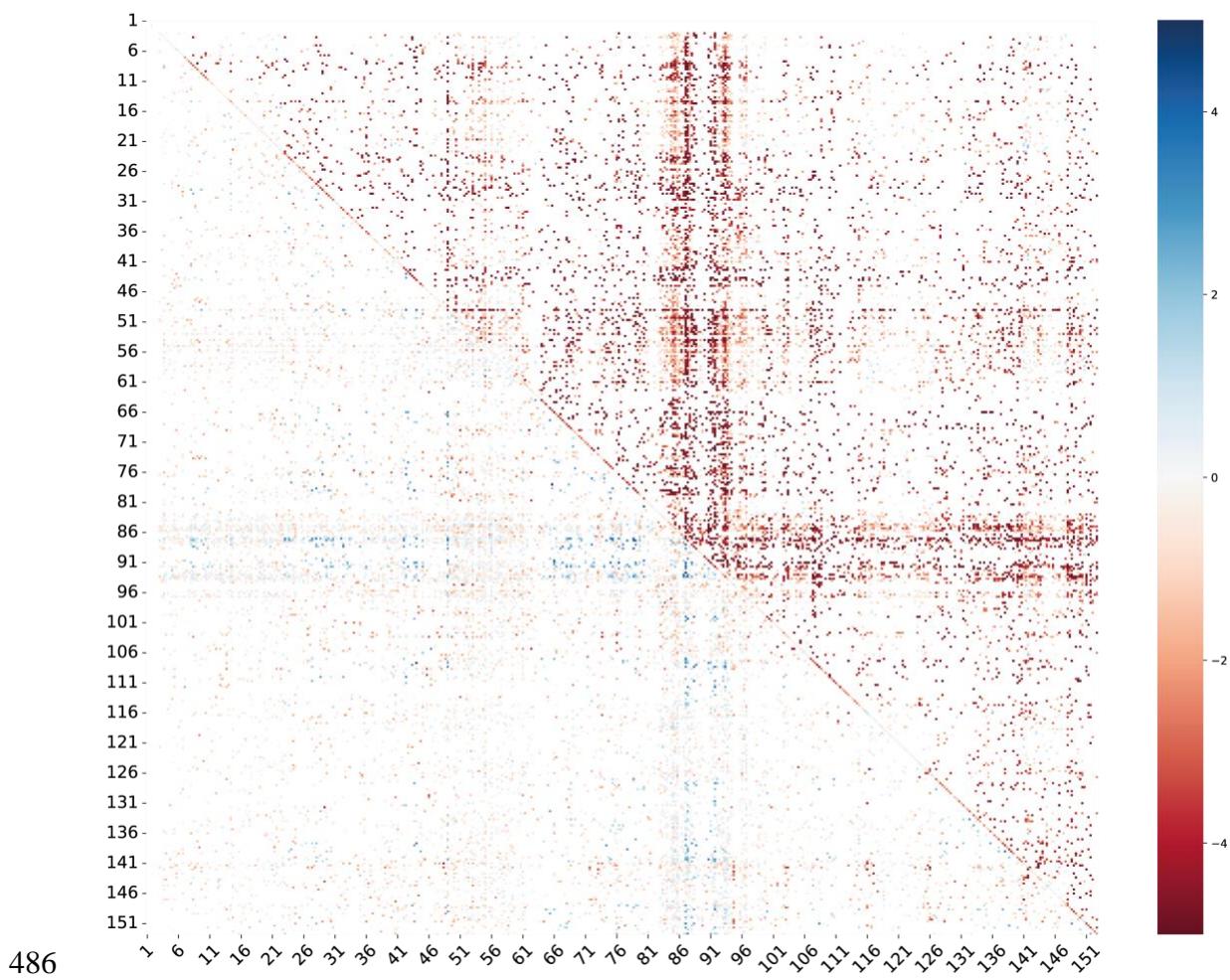

463
464 **Supplementary Figure 10. Structural comparison between 5TU and t1.** (a) Secondary
465 structure of 5TU and t1 with the only similar hairpin of 5TU:P7 and t1:P3 shown in red. (b)
466 Structural alignment of the 5TU:P7 and t1:P3 hairpins to highlight the structural difference
467 between the 5TU (blue) and t1 (red) subunits shown as ribbon diagrams at 90 degree rotated
468 views.
469


470
471
472
473
474
475
476
477

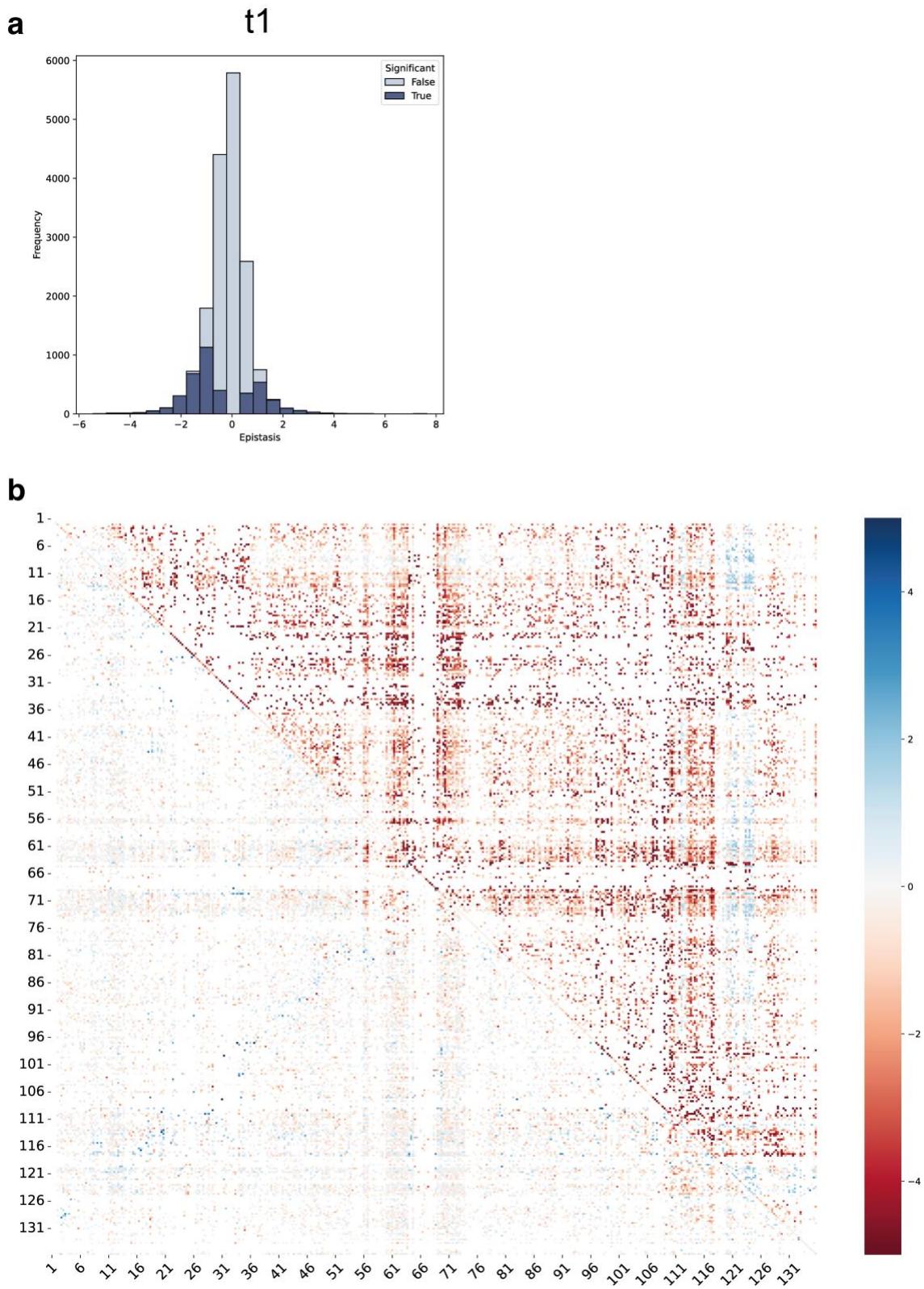
Supplementary Figure 11: Adaptive landscape of TPR. (a) Distribution of fitness values of 5TU and t1 genotypes. Distribution of 5TU fitness values is much sharper than that of t1 genotypes. (b) Top row: correlation between calculated log-transformed fitness values of all ribozyme genotypes in different replicates. R = Pearson correlation coefficient, $n = 79,702$ for 5TU, $n = 49,006$ for t1. Bottom row: correlation between calculated log-transformed fitness values of single and double mutant genotypes in different replicates. R = Pearson correlation coefficient, $n = 10,806$ for 5TU, $n = 17,086$ for t1.

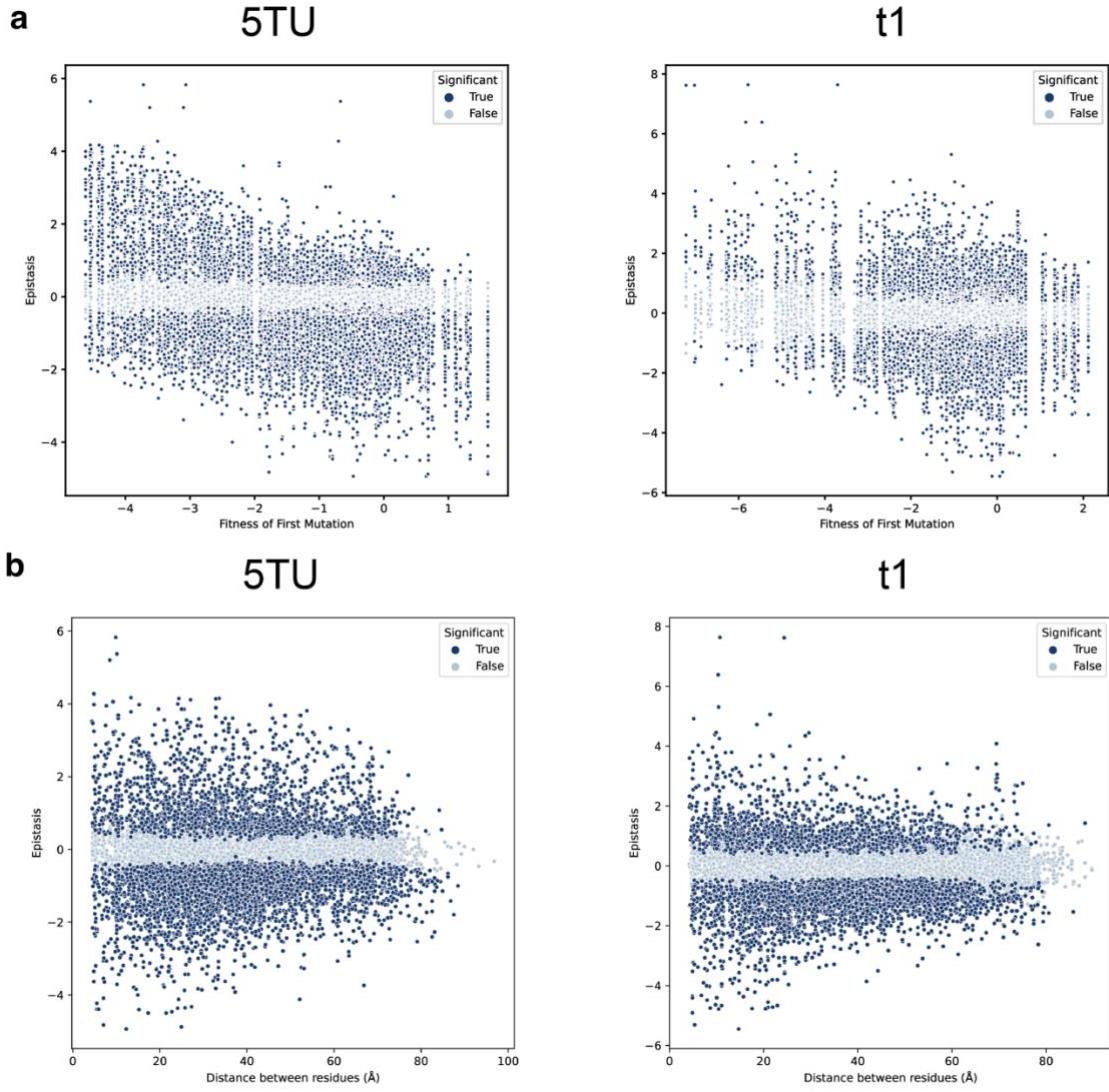
478
479
480 a) t1: accessory subunit

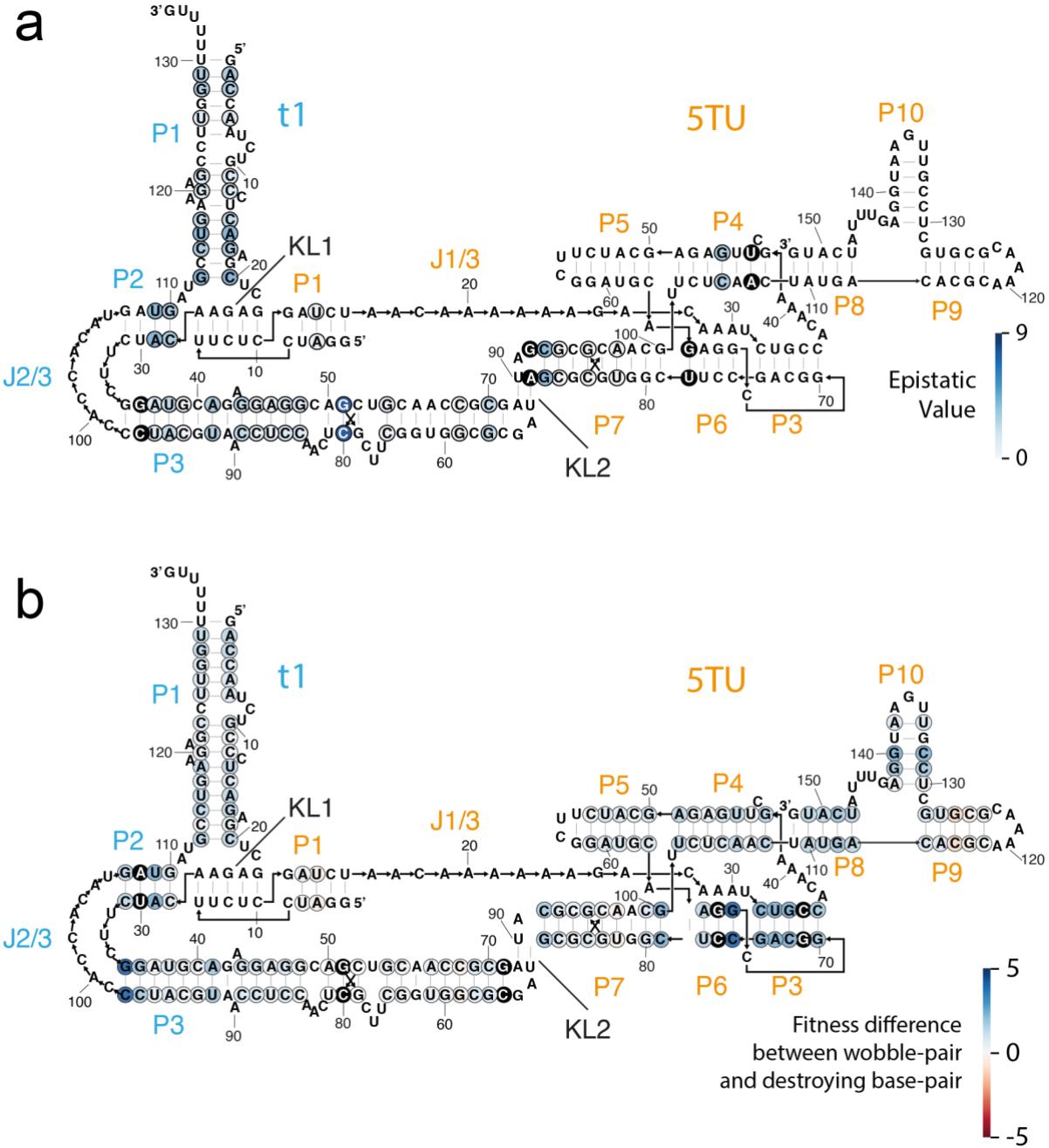

481 b) 5TU: catalytic subunit

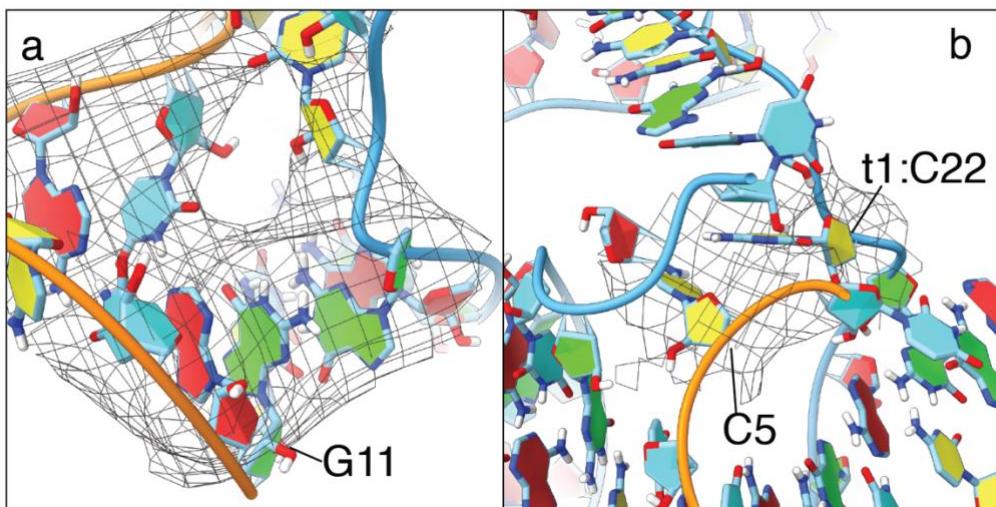

482
483
484
485

Supplementary Figure 12: Fitness landscape of TPR. (a) Fitness values of t1 point mutants. “-“ indicate wild-type base; “X” indicate that fitness of genotype could not be calculated. (b) Fitness values of 5TU point mutants. “-“ indicate wild-type base; “X” indicate that fitness of genotype could not be calculated. In 5TU, G1 and G2 were kept unmutagenised due to the recovery primer (forceGG) used for RT-PCR; in t1, G1 was kept unmutagenised for the same reason (t1rec primer used). Hence, the fitness of mutants at this position were not measured.

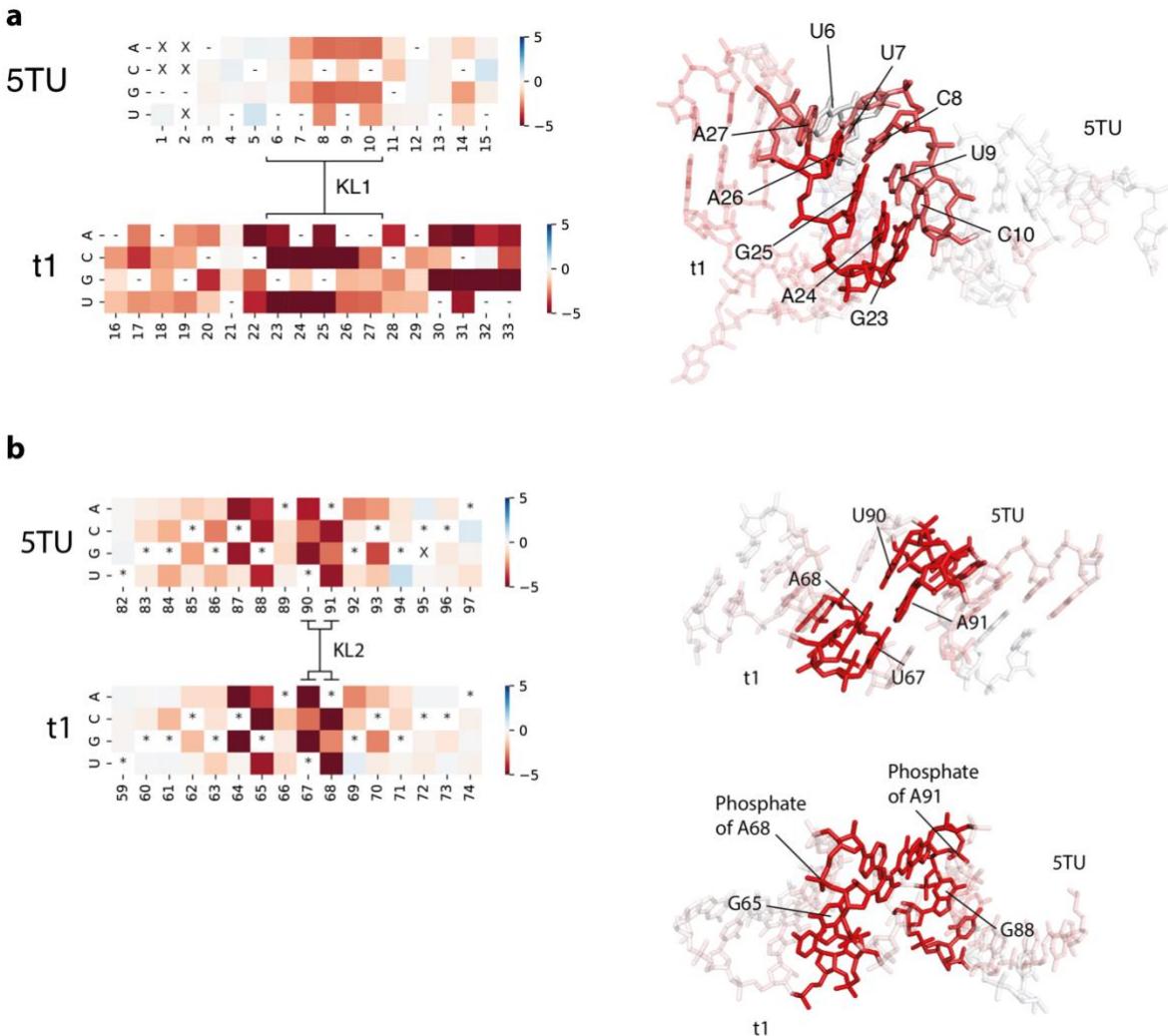

a **5TU**

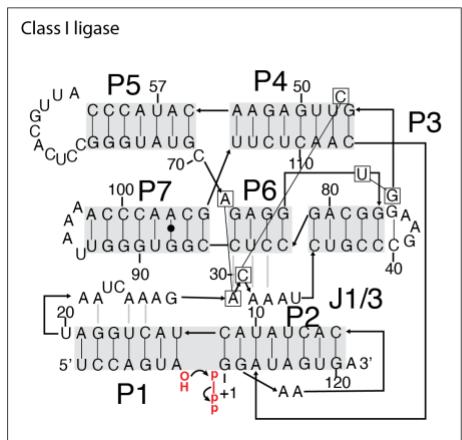

b



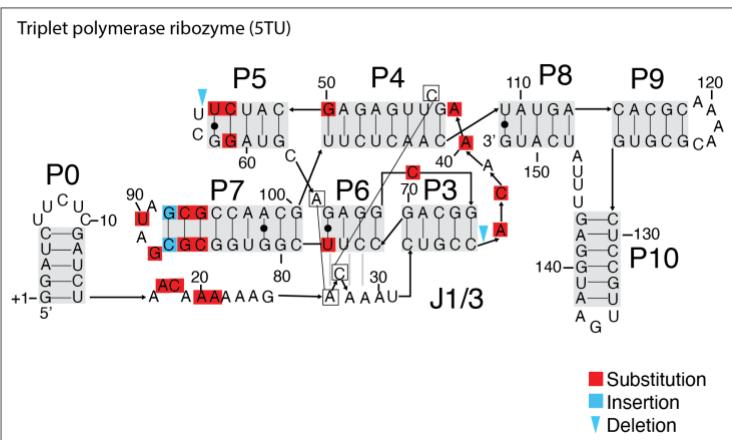

Supplementary Figure 13: TPR double fitness matrix. (a) Distribution of epistasis in 5TU double mutants. Significant epistasis values coloured in dark blue (False Discovery Rate: 10.1%), non-significant epistasis in light blue. In both subunits, epistasis is negatively biased. (b) Upper right triangle shows estimated fitness of all 5TU double mutants present in dataset. Lower left triangle shows estimated epistasis of double mutants. Scale bar refers to both fitness and epistasis, depending on the sector of the figure in question.

Supplementary Figure 14: TPR double fitness matrix. (a) Distribution of epistasis in t1 double mutants. Significant epistasis values coloured in dark blue (False Discovery Rate: 16%), non-significant epistasis in light blue. In both subunits, epistasis is negatively biased. (b) Upper right triangle shows estimated fitness of all g1 double mutants present in dataset. Lower left triangle shows estimated epistasis of double mutants. Scale bar refers to both fitness and epistasis, depending on the sector of the figure in question.

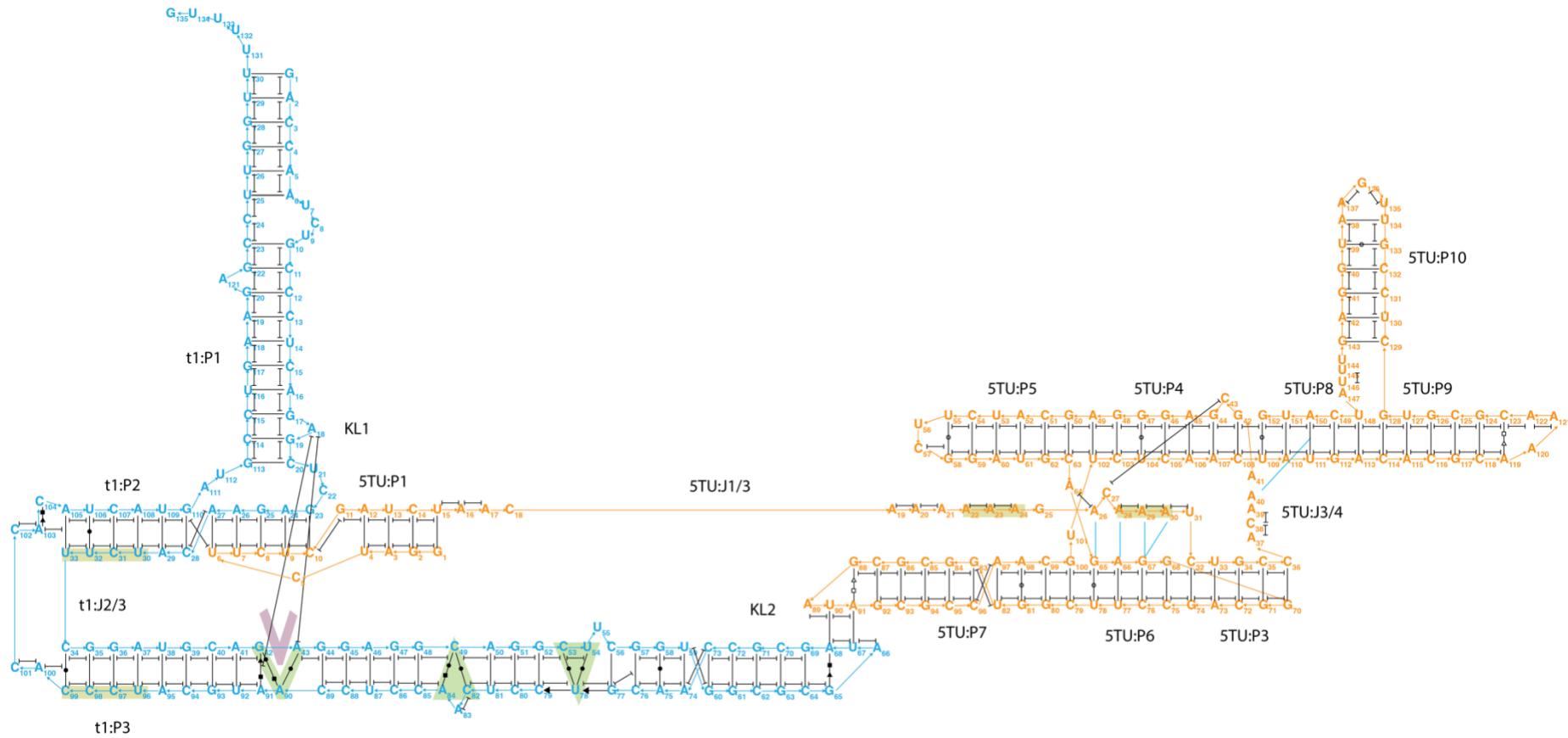




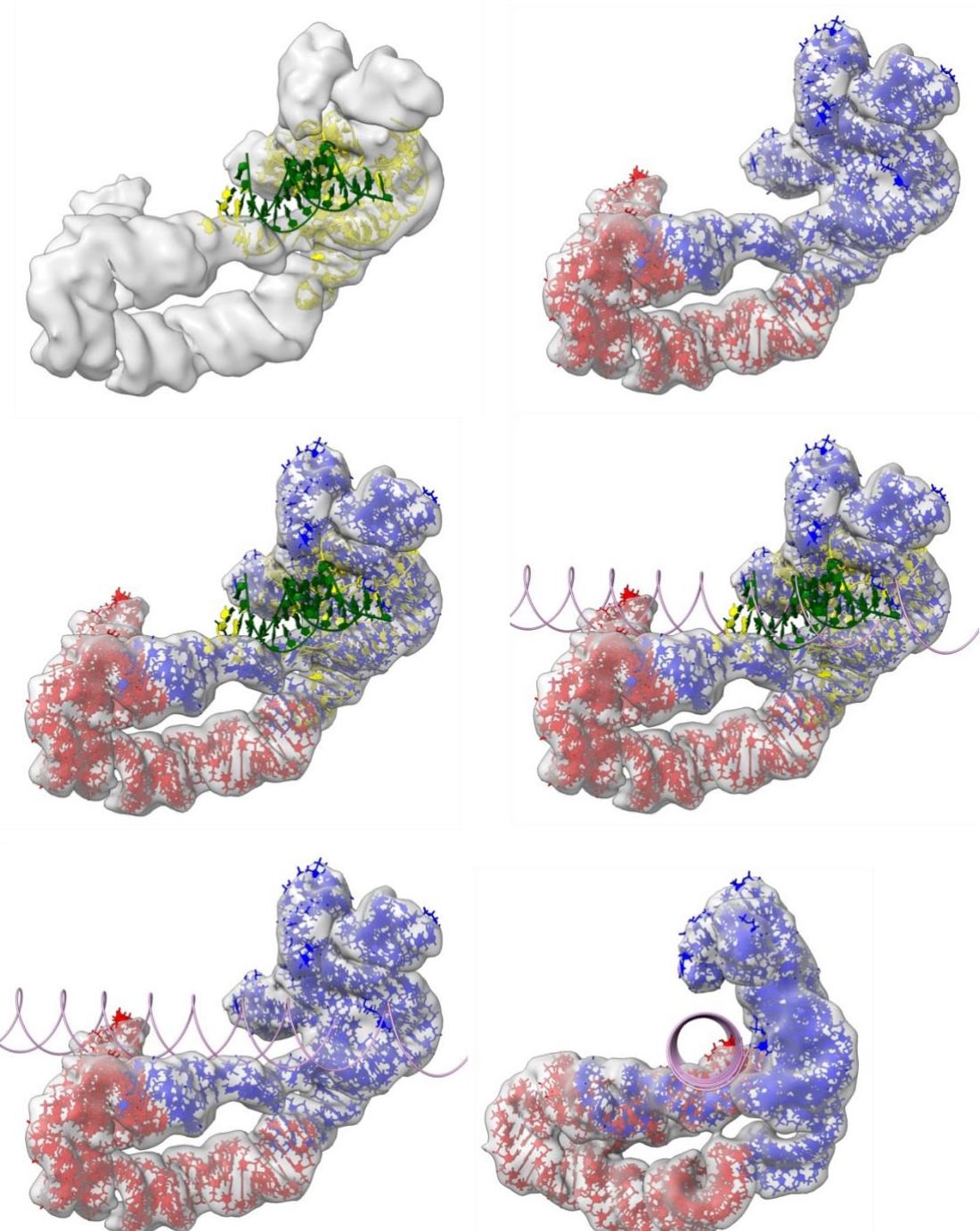
522
523
524
525
526
527
528


Supplementary Fig. 17. Structural details of KL1. Detailed views of core nucleotides with EM map shown as a mesh selectively 3 Angstrom around the residues of interest: (a) Missing density across from G11, (b) C5,C22 base stack. Refined model is shown with a ribbon cartoon backbone and bases coloured by identity (Yellow - Cytosine, Green - Guanine, Red - Adenine, Cyan - Uracil).

a

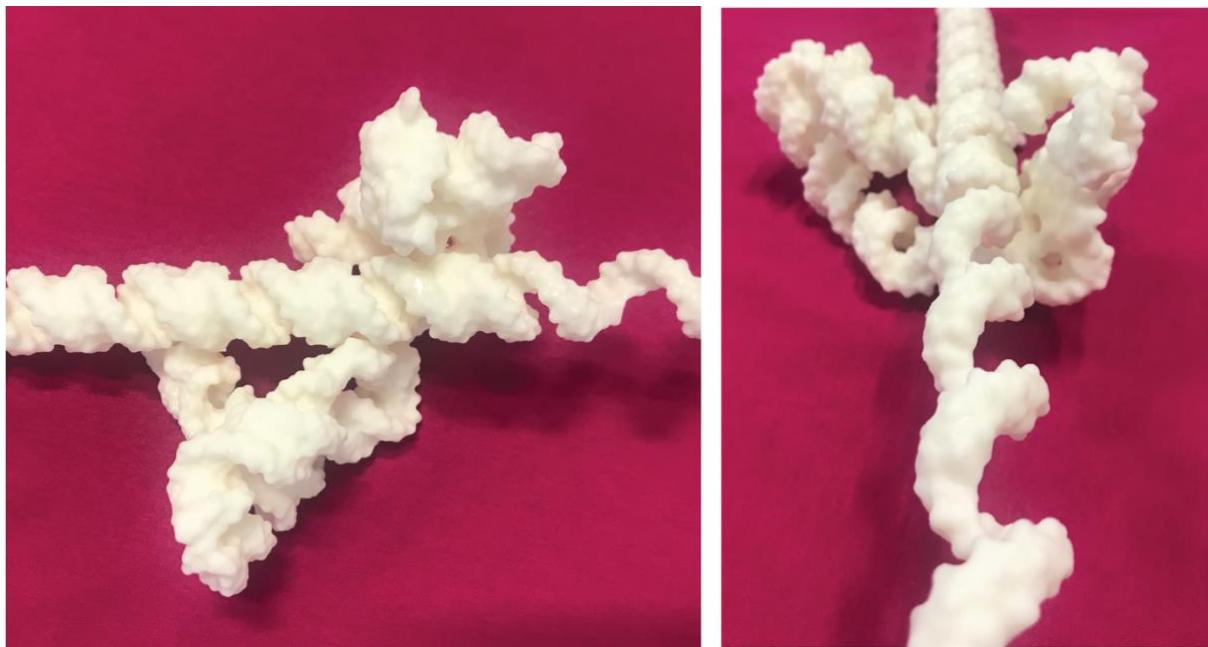


b



542
543
544
545
546
547
548

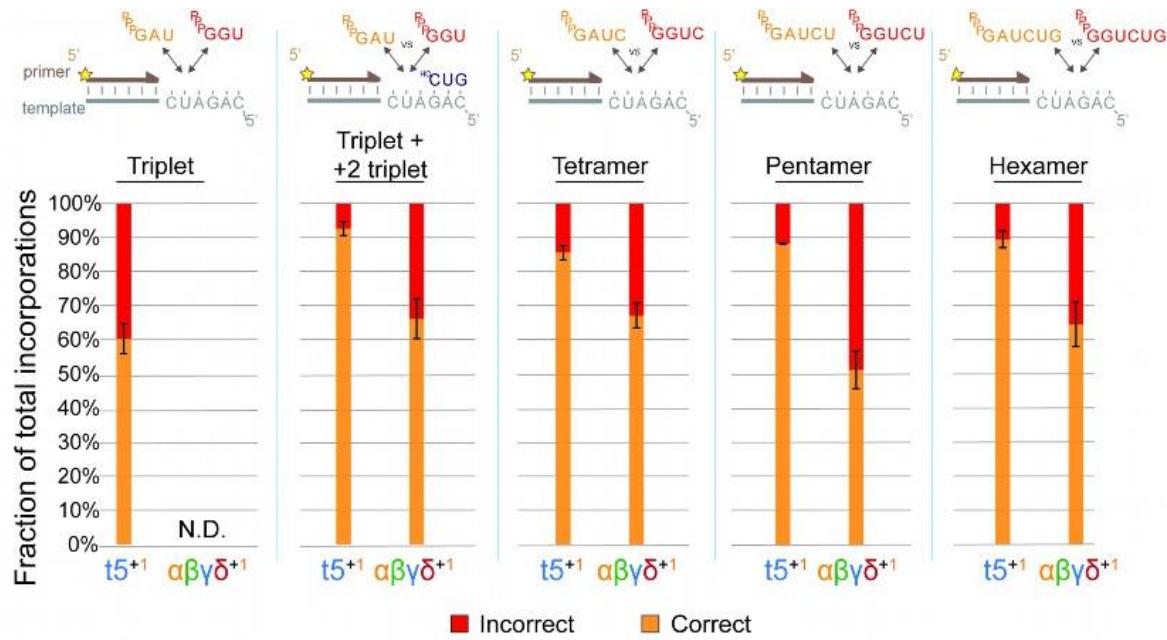
Supplementary Fig. 19. Structural comparison of class I ligase and 5TU. (a) Secondary structure model of cIL showing stem regions (P1-P7) and central base stacks (connected boxes) and A-minor interactions (grey lines). (b) Secondary structure model of TPR showing stem regions (P1-P10) with similar positioning of helices and annotation as in panel a. Mutational differences are indicated: substitution (red), inserts (blue), deletions (blue arrows).



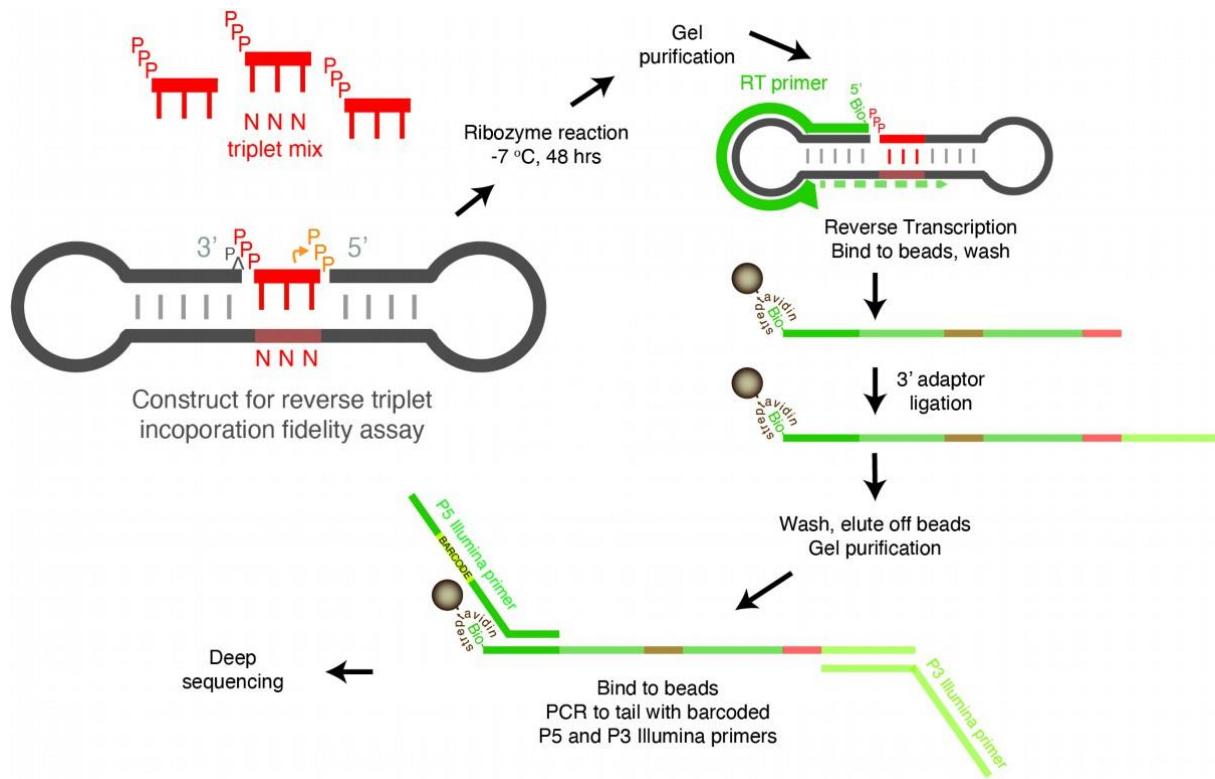
551 **Supplementary Fig. 20: Map of the secondary and tertiary interactions of TPR model.** Secondary structures of 5TU (orange) and t1 (cyan)
 552 are shown with annotation of base pairs (black lines), base stacks (black capped lines) and A-minor interactions (cyan lines). Selected tertiary
 553 motifs are annotated by green and purple symbols: V shape for A18 intercalation in G42-A43-A90 motif. Triangles for 120-degree bending
 554 motif involving C53-U54-U78 and C49, A84-C82. Primary sequence motifs are marked in yellow: C96-C99, U30-U33, A22-24, A26-A30.

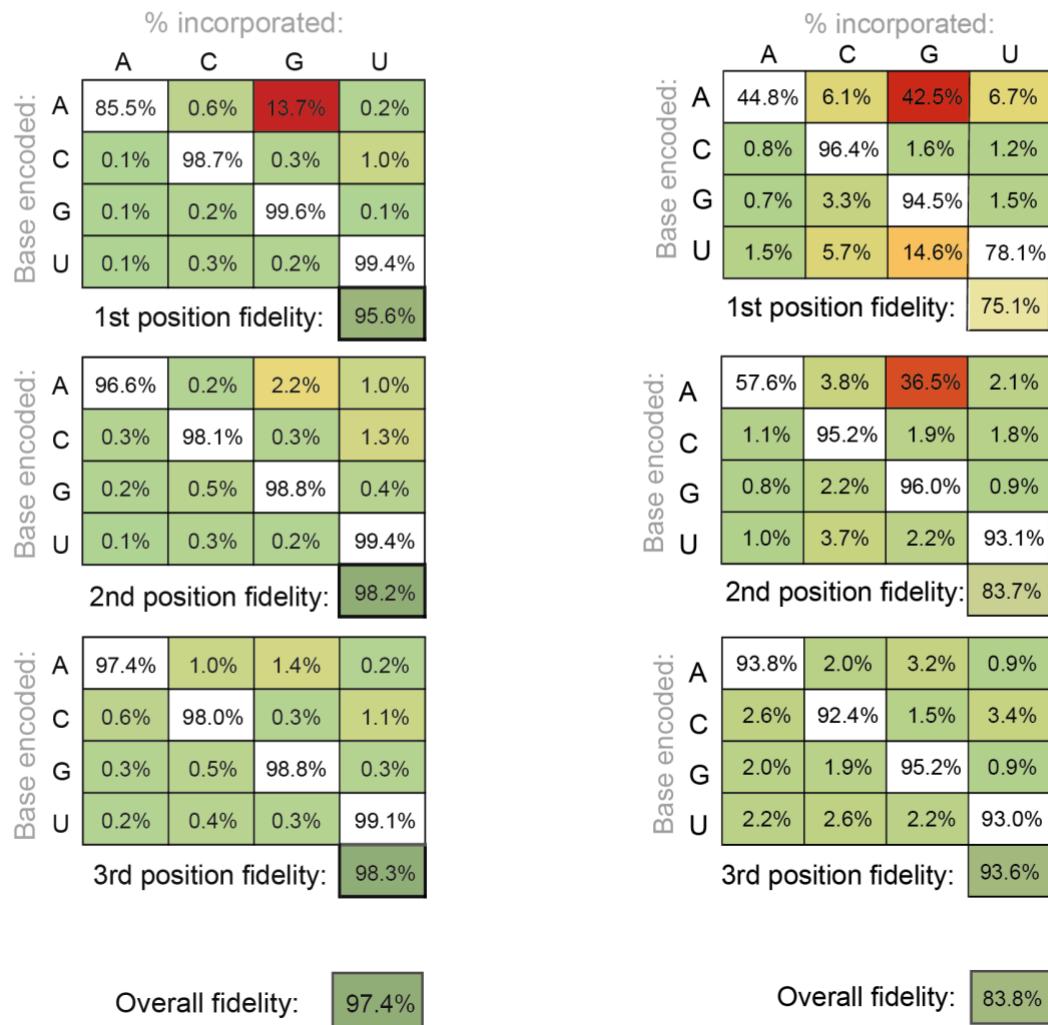
555
 556
 557
 558
 559
 560
 561
 562

Supplementary Figure 21: Alignment of the TPR and Class 1 ligase structures. Top left panel shows our TPR volume with the class 1 ligase structure colored yellow with green template. Top right panel shows the fit of our model to the volume. The middle panel shows an overlay of the class 1 ligase and our model with an extended template shown on the right. The bottom panel shows only our model with the extended template from two views.

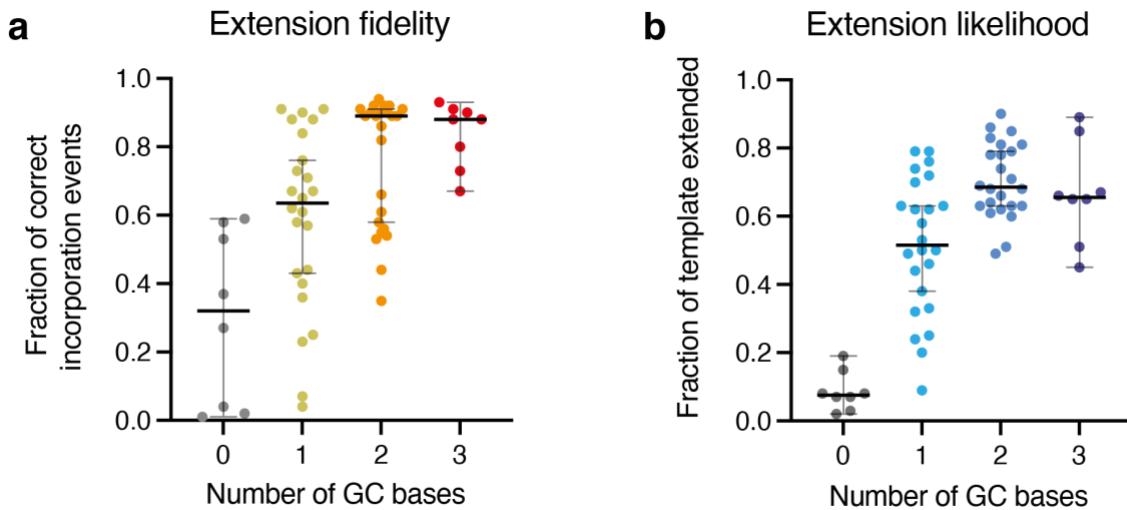

563

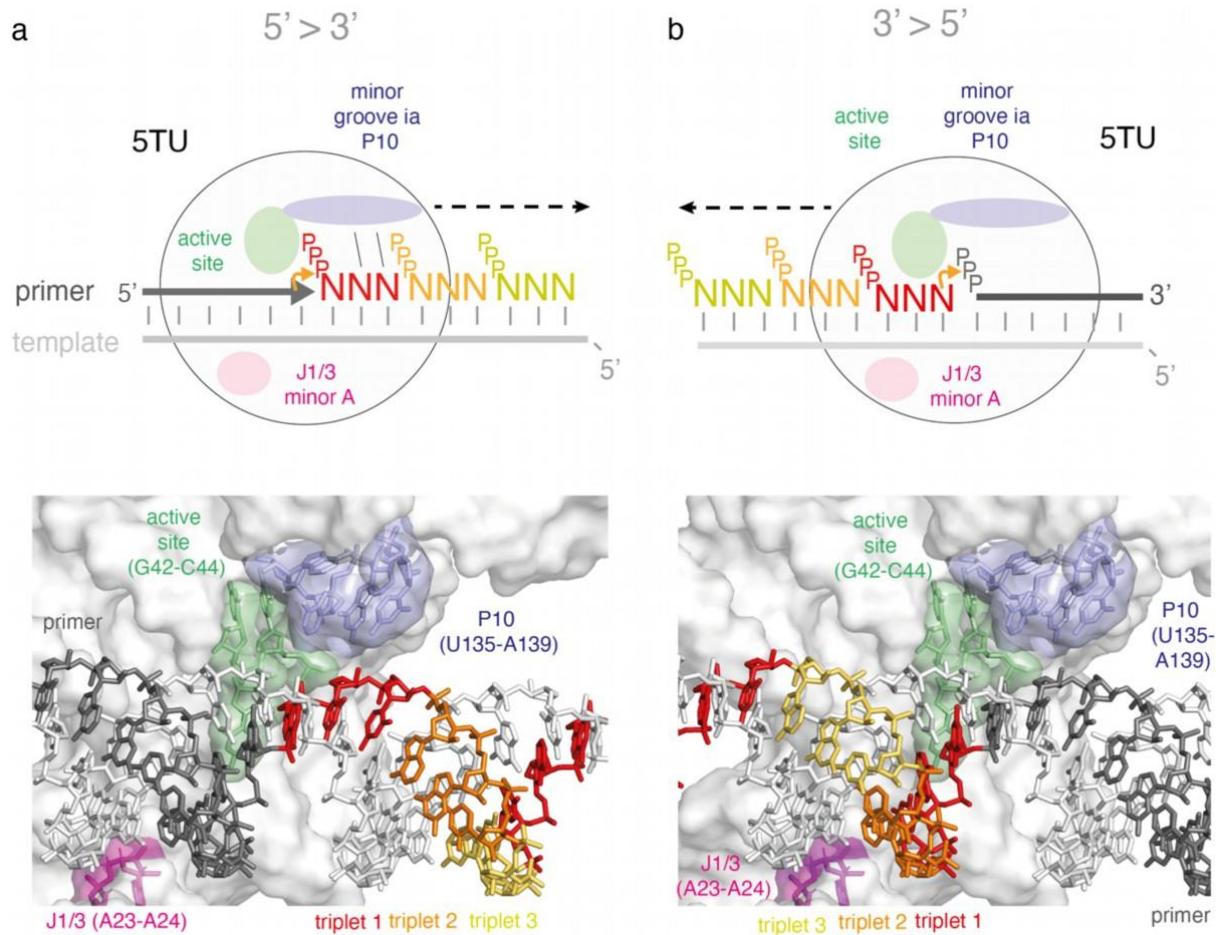
564


565 **Supplementary Figure 22: 3D model of TPR and primer-template duplex.** The TPR and a
566 primer-template duplex were 3D printed separately and were fitted together in accordance with
567 the 3D modelling (SI Fig. 21). The model shows that the minor groove of the primer-template
568 duplex can contact the J1/3, P10 and t1:P1 while being in close proximity to the active site of
569 P4. The model is shown in side view and from the perspective of the yet uncopied template.

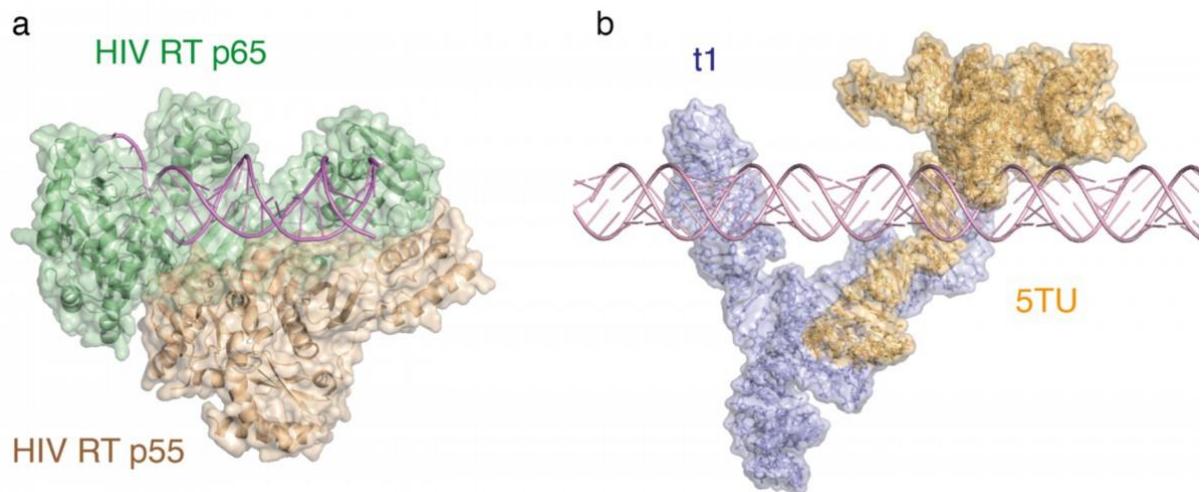

570

571

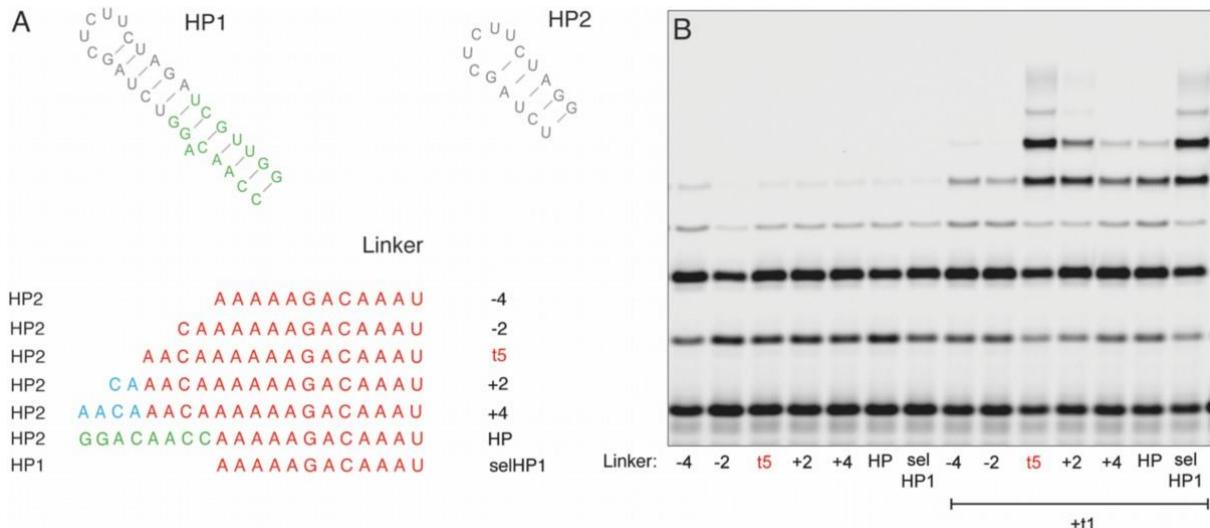

572
573
574 **Supplementary Figure 23: TPR substrate contacts and fidelity.** Fraction of correct to
575 incorrect substrate incorporation to a FITC-labelled primer for substrates of increasing length.
576 Reactions were performed in the presence of equimolar correct and incorrect substrates with
577 full length t5⁺¹ ribozyme, and αβγδ⁺¹ ribozyme which lacks the P10 domain. Products were
578 quantitated by densitometry after urea-PAGE separation. Due to differential activity in these
579 ribozyme/substrate combinations some reactions did not produce enough products for
580 quantitation. As a result the fidelity of αβγδ⁺¹ with the triplet only substrate was not determined,
581 and n=2 for the αβγδ⁺¹ ribozyme with “triplet +2 triplet” and pentamer conditions. For all other
582 conditions n=3. Mean ratios are shown, with standard deviations.
583



592
593
594
595
596
597
598
599
600
601


Supplementary Figure 25: Fidelity of different polymerisation modes. Schematic of 5' to 3' forward (a) and 3' to 5' reverse (b) polymerisation. +1 and -1 triplets shown in red, +2 in yellow and +3 in pale green and associated fidelity profiles of forward triplet (a) and reverse (b) incorporations, as determined by FidelitySeq (extra SI figure 23), revealing high overall fidelity, with a tolerance for G:U wobble pairs at the first position for forward synthesis and a lower overall fidelity and broader error profile for reverse synthesis (b). Position and overall fidelities are calculated as geometric means.

602
 603 **Supplementary Figure 26: 3'-5' triplet extension and triplet GC content.** Non-canonical
 604 3'-5' triplet incorporation fidelity and extension correlate with triplet GC content. **(a)**
 605 Comparison of the fidelity of triplet incorporation and the number of GC bases in the triplet.
 606 Fidelity scores for each of the 64 triplet combinations were determined using the number of
 607 sequencing-reads from correct incorporation events as a fraction of all incorporation events for
 608 that template sequence. **(b)** Comparison of the likelihood of triplet incorporation and the
 609 number of GC bases in the triplet. The likelihood of extension was determined using the
 610 number of reads for each template which have had a triplet incorporated as a fraction of the
 611 total number of reads for that template. Error bars represent median values and 95% confidence
 612 intervals.
 613



614
615
616 **Supplementary Figure 27: Structural context of different polymerisation modes. (a, b)**
617 Cartoon (top) and local TPR holoenzyme structure model showing the two RNA synthesis
618 modes of the TPR, in the canonical 5'-3' direction (a) and the non-canonical reverse mode (3'-
619 5 direction), with primer (dark grey), template (light grey), 1st triplet to be incorporated in
620 respective modes (triplet 1 (red)), triplet 2 (orange), triplet 3 (yellow) (next triplet 4 (again red)).
621 Also shown P10 (light blue), active site (light green) and J1/3 (magenta).
622

623
624

625 **Supplementary Figure 28: Heterodimeric polymerases HIV RT and 5TU+t1 TPR.** Side
626 by side comparison of heterodimeric HIV RT structure (5TXM.pdb)²⁸ (left) with 2 subunits
627 (catalytic subunit p65 (green) and accessory subunit p55 (wheat)) and DNA-primer template
628 duplex (pink) and heterodimeric all-RNA TPR structure holoenzyme model (right) with 5TU
629 catalytic subunit (orange) and accessory subunit t1 (light blue) and model RNA primer -
630 template duplex (light pink).
631
632

633
634

635 **Supplementary Figure 29: J1/3 linker length and TPR activity.** (a) TPR activity as a
636 function of J1/3 linker length, preceded either with 5TU 5' hairpin (HP2) or 5' hairpin used in
637 original t5 selection (HP1) showing different constructs (HP2-4, HP2-2, t5wt, HP2+2, HP2+4,
638 HP2HP, selHP1) and (b), primer extension activity of different constructs either in the absence
639 (left) or presence (+ t1, right) of the t1 accessory subunit. Only the correct J1/3 spacing (t5wt)
640 or a shorter J1/3 in combination with a larger (HP1) 5'- hairpin shows full triplet polymerase
641 activity.

642

643 **Supplementary Tables**

644

645 **Supplementary Table 1. Cryo-EM data collection, refinement and validation statistics.**

646

	5TU+t1	t5 ⁺¹
Data collection and processing		
Magnification	130000	105000
Voltage (kV)	300	300
Electron exposure (e-/Å ²)	~60	65
Defocus range (μm)	-0.5 to -2.2	-1.2 to -2.6
Pixel size (Å)	0.647	1.1
Symmetry imposed	None	None
Initial particle images (no.)		
Final particle images (no.)	26167	5485
Map resolution (Å)	5.94	7.99
FSC threshold (0.143)		
Refinement		
Initial model used (PDB code)	PDB:3IVK, 1F5U	
Model resolution (Å)	6.4	
FSC threshold (0.143)		
Map sharpening <i>B</i> factor (Å ²)	275	
Model composition	9206 atoms 3097 hydrogens 287 nucleotide residues	
R.m.s. deviations		
Bond lengths (Å)	0.004 (0)	
Bond angles (°)	0.869 (0)	
Validation	2.16	
MolProbity score	2.28	
Clashscore		

647

648

649 **Supplementary Table 2. Epistasis of 5TU bp positions.**

650

651 **Double mutants at canonical basepairing positions in 5TU with statistically significant**
652 **epistasis**

653

Genotype	Restores basepair?	Fitness of genotype	Epistasis
T33G A73G	False	-0.513	1.756
C35T G71T	False	-3.531	-1.510
T44A A107T	True	-0.956	5.829
G46C C105G	True	1.294	3.023
G65T T78G	True	-5.645	2.073
G65T T78A	True	-1.522	5.203
G86T C93A	True	-0.194	3.600
G86T C93G	True	-1.278	3.687
C87A G92T	True	0.159	5.373
T134A A138C	False	-4.680	1.237

654

655

656

657 **Double mutants at noncanonical basepairing positions in 5TU with statistically significant**
658 **epistasis**

659

Genotype	Fitness of genotype	Epistasis
G50C T101G	-2.637	-0.679
G88T A91G	-5.391	1.264
G88A A91C	-4.851	3.244
G88A A91G	-4.398	2.115

660

661

662 **Supplementary Table 3. Epistasis of t1 bp positions.**

663

664 **Double mutants at canonical basepairing positions in t1 with statistically significant**

665 **epistasis**

666

Genotype	Restores basepair?	Fitness of genotype	Epistasis
A2T T129A	True	0.107	3.290
C3A G128T	True	-1.030	1.761
C3G G128T	True	-1.243	1.913
C3G G128C	True	-0.539	3.268
A5T T126A	True	-0.780	1.042
C11A G122T	True	0.073	1.024
C12A G120T	True	1.566	1.784
C12T G120A	True	1.630	0.580
C15G G117C	True	-3.409	1.910
A16G T116C	True	1.596	2.750
A16T T116G	True	0.557	3.963
G17T C115G	True	-0.423	3.460
G19A C114A	False	-1.546	2.124
C20G G113C	True	-1.319	4.456
C20T G113A	True	1.398	3.670
C28T G110A	True	0.874	3.356
C28G G110A	False	-1.493	1.606
C28A G110A	False	-0.364	4.252
C28T G110T	False	-1.442	1.330
A29G T109C	True	0.997	4.391
C31A G107C	False	-4.910	6.387
G35A C98G	False	-6.500	2.929
G36A C97A	False	-3.861	1.670
G36A C97T	True	-0.157	1.230
G36T C97A	True	-0.428	5.309
A37T T96G	True	-0.312	0.575
A37G T96A	False	-3.443	-2.363
A37C T96G	True	0.787	1.750
T38G A95C	True	0.185	1.848
A41T T92C	False	-1.212	0.777
A41C T92A	False	-2.214	1.537
A41T T92A	True	-0.903	3.034
G44T C89A	True	0.219	2.654
G44T C89G	True	-0.509	1.839
G44A C89A	False	-1.045	1.023
G45T C88T	False	-0.272	1.081
G45C C88T	False	-0.355	1.264
A46T T87A	True	-0.324	0.774

G47A C86A	False	-0.754	0.697
G47C C86A	False	-0.437	1.848
G47T C86G	True	-0.954	1.586
G48A C85T	True	-0.302	1.323
G48A C85A	False	-0.739	1.876
A50T C79T	False	-1.760	-0.702
G51C C80G	True	-1.849	7.637
G52T T81A	True	-2.787	-0.955
C56G G77C	True	-0.126	0.763
T59A A74T	True	-0.959	-0.794
G60C C73T	False	-1.409	-1.136
G61C C72T	False	0.273	2.301
G61A C72A	False	-0.462	-0.660
G63T C70A	True	-0.179	2.505

667

668

669

670

671

672 **Double mutants at noncanonical basepairing positions in t1 with statistically significant**
 673 **epistasis**

674

Genotype	Fitness of genotype	Epistasis
C8G C124T	0.949	-1.168
C13G A119T	0.114	1.994
C13A A119T	0.145	2.100
A103C C104A	-2.667	3.788
C49T A84C	-1.900	-1.315
C49T C82G	-0.241	0.916
C53A T78A	0.532	0.730

675

676

677

678 **Supplementary Table 6. Oligonucleotide sequences**

679 All sequences are written in a 5'-to-3' direction. DNA sequences are coloured grey. RNA
 680 sequences are coloured black. All RNAs were denaturing PAGE-purified, and DNAs were not,
 681 unless otherwise noted ('GP').

682
 683

Application	Oligonucleotide	Sequence (5'-3') & Origin
Fill-in	5T7	GATCGATCTGCCCGCGAAATTAATACGACTCACTATA Sigma
	HDVrt	CTTCTCCCTTAGCCTACCGAAGTAGCCAGGTCGGACCGCGAGGAGG TGGAGATGCCATGCCGACCC Sigma, GP
Transcription of 5TU	5TU	GGGAUCUUCUCGAUCUAACAAAAAGACAAAUCUGCCACAAAGCUUG AGAGCAUCUUCGGAUGCAGAGGCGGCAGCCUUCGGUGGCGCGAUAGC GCCAACGUUCUCAACUAUGACACGCAAAACGCGUGCUCCGUUGAAUG GAGUUUAUCAUG GMP transcribed from DNA template constructed from GoTaq PCR using (5TU-5T7-f and 5TU-HDVrec-r) as PCR template, and 5T7 and HDVrt as primers.
	5TU-5T7-f	GATCGATCTGCCCGCGAAATTAATACGACTCACTATAGGATCTTCT CGATCTAACAAAAAGACAAATCTGCCACAAAGCTTGAGAGCATCTT CGGATGCAGAGGCGGCAGCCTTCGG Sigma
	5TU-HDVrec-r	GATGCCATGCCGACCCCATGATAAACTCCATTCAACGGAGCACCGT TTTGCCTGTCATAGTTGAGAACGTTGGCGCTATCGGCCACCGAAGG CTGCCGCC Sigma
Transcription of t1	t1	GGACCAAUCUGCCCCUCAGAGCUCUGAGAACAUUCGGAUGCAGAGGA GGCAGGCUUCGGUGGCGGAUGCGCCAACGUCCUCAACCUCAAUG CAUCCCACCAUGAUGAUGCCUGAAGAGCCUUGGUUUUUUG GMP transcribed from DNA template constructed from GoTaq PCR using (t1-5T7-f and t1-HDVrec-r) as PCR template, and 5T7 and HDVrt as primers.
	t1-5T7-f	CCCGCGAAATTAATACGACTCACTATAGACCAATCTGCCCTCAGAGC TCGAGAACATCTCGGATGCAGAGGAGGCAGGCTTGGTGGCGCGAT AGCGCCAACGT Sigma
	t1-HDVrec-r	GATGCCATGCCGACCCAAAAAACCAAGGCTCTTCAGGCATCATCAT GTGGTGGGATGCATTGGAGGTTGAGGACGTTGGCGCTATCGGCCAC CG Sigma
Testing ribozyme activity (Fig 1b, SI Fig 1c, Fig 3e)	Biocy3P10	Biotin-cy3-CUGCCAACCG IDT (used as primer in ribozyme-mediated extensions)
Template for testing	t6FP10GAA18	pppGGUCCAUUCUUCUUCUUCUUCUUCUUCUUCUUCUUCUUCU CUUCUUCUUCUUCUUCUUCGGUUGGCAG

		Underlined bases were spiked with 1% incorrect bases each (97% correct bases)
5TU-R1		<u>GGCTGCCGCC</u> CTGCATCCGAAGATGCTCTCAAGCTTGTGGCAGA IDT Underlined bases were spiked with 1% incorrect bases each (97% correct bases)
5TU-R2		GATGCCATGCCGAC <u>CCCATGATAAA</u> CTCCATTCAACGGAGCACCGT <u>TTTGC</u> GTGTCATAG IDT Underlined bases were spiked with 1% incorrect bases each (97% correct bases)
t1-F1		AACAAACAAACAAACAAAAAGACCAATCTGCCCTCAGAGCTCGAGA <u>ACATCTT</u> CGGATGCAGAGGAGGCAGGCTCGGTGGCGCGATAGCGCC AACGT IDT Underlined bases were spiked with 1% incorrect bases each (97% correct bases)
t1-R1		GATGCCATGCCGAC <u>CCCAAAAAACCAAGG</u> CTTCAGGCATCATCAT <u>GTGGT</u> GGGATGCATTGGAGGTGAGGACGTTGGCGCTATCGCGCCAC CG IDT Underlined bases were spiked with 1% incorrect bases each (97% correct bases)
P51t1rec		AATGATA <u>CGGCGACCACCGAGA</u> TCTACACTCTTCCCTACACGACGC TCTTCCGATCTNNNAACGAACAAACAAACAAACAAAAAG IDT
P52t1rec		AATGATA <u>CGGCGACCACCGAGA</u> TCTACACTCTTCCCTACACGACGC TCTTCCGATCTNNNCGTGAACAAACAAACAAACAAAAAG IDT
P53t1rec		AATGATA <u>CGGCGACCACCGAGA</u> TCTACACTCTTCCCTACACGACGC TCTTCCGATCTNNNGAACAAACAAACAAACAAAAAG IDT
P54t1rec		AATGATA <u>CGGCGACCACCGAGA</u> TCTACACTCTTCCCTACACGACGC TCTTCCGATCTNNNTCGAAACAAACAAACAAACAAAAAG IDT
P7HDVba		CAAGCAGAAGACGGCATACGAGATGTGACTGGAGTTCAAGACGTGTGC TCTTCCGATCNNNGATGCCATGCCGACCC IDT

684

685

686

687 **References**
688

- 689 1. Attwater, J., Raguram, A., Morgunov, A. S., Gianni, E. & Holliger, P. Ribozyme-
690 catalysed RNA synthesis using triplet building blocks. *Elife* **7** (2018).
691 <https://doi.org/10.7554/eLife.35255>
- 692 2. Rubinstein, J. L. & Brubaker, M. A. Alignment of cryo-EM movies of individual
693 particles by optimization of image translations. *J Struct Biol* **192**, 188-195 (2015).
694 <https://doi.org/10.1016/j.jsb.2015.08.007>
- 695 3. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms
696 for rapid unsupervised cryo-EM structure determination. *Nat Methods* **14**, 290-296
697 (2017). <https://doi.org/10.1038/nmeth.4169>
- 698 4. Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization
699 improves single-particle cryo-EM reconstruction. *Nat Methods* **17**, 1214-1221 (2020).
700 <https://doi.org/10.1038/s41592-020-00990-8>
- 701 5. Kappel, K. *et al.* De novo computational RNA modeling into cryo-EM maps of large
702 ribonucleoprotein complexes. *Nat Methods* **15**, 947-954 (2018).
703 <https://doi.org/10.1038/s41592-018-0172-2>
- 704 6. Kappel, K. *et al.* Accelerated cryo-EM-guided determination of three-dimensional
705 RNA-only structures. *Nat Methods* **17**, 699-707 (2020).
706 <https://doi.org/10.1038/s41592-020-0878-9>
- 707 7. Zadeh, J. N. *et al.* NUPACK: Analysis and design of nucleic acid systems. *J Comput
708 Chem* **32**, 170-173 (2011). <https://doi.org/10.1002/jcc.21596>
- 709 8. Kim, C. H. & Tinoco, I., Jr. A retroviral RNA kissing complex containing only two
710 G.C base pairs. *Proc Natl Acad Sci U S A* **97**, 9396-9401 (2000).
711 <https://doi.org/10.1073/pnas.170283697>
- 712 9. Shechner, D. M. *et al.* Crystal Structure of the Catalytic Core of an RNA-Polymerase
713 Ribozyme. *Science* **326**, 1271-1275 (2009). <https://doi.org/10.1126/science.1174676>
- 714 10. Croll, T. I. ISOLDE: a physically realistic environment for model building into low-
715 resolution electron-density maps. *Acta Crystallogr D Struct Biol* **74**, 519-530 (2018).
716 <https://doi.org/10.1107/S2059798318002425>
- 717 11. Goddard, T. D. *et al.* UCSF ChimeraX: Meeting modern challenges in visualization
718 and analysis. *Protein Sci* **27**, 14-25 (2018). <https://doi.org/10.1002/pro.3235>
- 719 12. Pettersen, E. F. *et al.* UCSF ChimeraX: Structure visualization for researchers,
720 educators, and developers. *Protein Sci* **30**, 70-82 (2021).
721 <https://doi.org/10.1002/pro.3943>
- 722 13. Rodrigues, J., Teixeira, J. M. C., Trellet, M. & Bonvin, A. pdb-tools: a swiss army
723 knife for molecular structures. *F1000Res* **7**, 1961 (2018).
724 <https://doi.org/10.12688/f1000research.17456.1>

725 14. Liebschner, D. *et al.* Macromolecular structure determination using X-rays, neutrons
726 and electrons: recent developments in Phenix. *Acta Crystallogr D Struct Biol* **75**, 861-
727 877 (2019). <https://doi.org/10.1107/S2059798319011471>

728 15. Afonine, P. V. *et al.* New tools for the analysis and validation of cryo-EM maps and
729 atomic models. *Acta Crystallogr D Struct Biol* **74**, 814-840 (2018).
730 <https://doi.org/10.1107/S2059798318009324>

731 16. Stasiewicz, J., Mukherjee, S., Nithin, C. & Bujnicki, J. M. QRNAs: software tool for
732 refinement of nucleic acid structures. *BMC Struct Biol* **19**, 5 (2019).
733 <https://doi.org/10.1186/s12900-019-0103-1>

734 17. Weiner, S. J. *et al.* A new force field for molecular mechanical simulation of nucleic
735 acids and proteins. *Journal of the American Chemical Society* **106**, 765-784 (1984).
736 <https://doi.org/10.1021/ja00315a051>

737 18. Perez, A. *et al.* Refinement of the AMBER force field for nucleic acids: improving
738 the description of alpha/gamma conformers. *Biophys J* **92**, 3817-3829 (2007).
739 <https://doi.org/10.1529/biophysj.106.097782>

740 19. Williams, C. J. *et al.* MolProbity: More and better reference data for improved all-
741 atom structure validation. *Protein Sci* **27**, 293-315 (2018).
742 <https://doi.org/10.1002/pro.3330>

743 20. Punjani, A. & Fleet, D. J. 3D variability analysis: Resolving continuous flexibility and
744 discrete heterogeneity from single particle cryo-EM. *J Struct Biol* **213**, 107702
745 (2021). <https://doi.org/10.1016/j.jsb.2021.107702>

746 21. Zhang, J. J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: a fast and accurate
747 Illumina Paired-End reAd mergeR. *Bioinformatics* **30**, 614-620 (2014).
748 <https://doi.org/10.1093/bioinformatics/btt593>

749 22. Hannon, G. J. *FASTX-Toolkit*, <http://hannonlab.cshl.edu/fastx_toolkit> (2010).

750 23. Crawford, K. H. D. & Bloom, J. D. alignparse: A Python package for parsing
751 complex features from high-throughput long-read sequencing. *J Open Source Softw* **4**
752 (2019). <https://doi.org/10.21105/joss.01915>

753 24. Rubin, A. F. *et al.* A statistical framework for analyzing deep mutational scanning
754 data. *Genome Biol* **18**, 150 (2017). <https://doi.org/10.1186/s13059-017-1272-5>

755 25. Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate - a Practical and
756 Powerful Approach to Multiple Testing. *Journal of the Royal Statistical Society Series*
757 *B-Statistical Methodology* **57**, 289-300 (1995). <https://doi.org/10.1111/j.2517-6161.1995.tb02031.x>

759 26. Horning, D. P. & Joyce, G. F. Amplification of RNA by an RNA polymerase
760 ribozyme. *Proc Natl Acad Sci U S A* **113**, 9786-9791 (2016).
761 <https://doi.org/10.1073/pnas.1610103113>

762 27. Afgan, E. *et al.* The Galaxy platform for accessible, reproducible and collaborative
763 biomedical analyses: 2016 update. *Nucleic Acids Research* **44**, W3-W10 (2016).
764 <https://doi.org/10.1093/nar/gkw343>

765 28. Das, K., Martinez, S. E. & Arnold, E. Structural Insights into HIV Reverse
766 Transcriptase Mutations Q151M and Q151M Complex That Confer Multinucleoside
767 Drug Resistance. *Antimicrob Agents Chemother* **61** (2017).
768 <https://doi.org/10.1128/AAC.00224-17>

769