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Materials and Methods

Sample Characterisation

Transmission electron microscopy

Figure S1. Representative STEM-HAADF image of the Rh/AI203 catalyst in (a) the

unused state and (b) the used state.
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Figure S2. Particle size distribution for Rh/AI;O3 in (@) the unused state and (b) the
used state
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Figure S3. Photograph of the aluminium EDE/DRIFTS reaction cell

Supplementary Text

Radiation damage evaluation

In order to check for any radiation damage, we dosed the sample for a total of 30 min and
checked the intensity of the first XANES peak (the “white-line”). As it can be seen in figure

S2-4 these radiation damage could be significant and affect the result of the experiment.
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Figure S4. Rh-K edge XANES trace as function of time under Ar at room temperature

before radiative damage prevention.
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Figure S5. Rh-K edge XANES spectra under Ar at 0 and 30 min before radiative

damage prevention

In order to reduce this effect, we have reduced the beam intensity by a factor of 9.7% and
added Mo and Zn filter in order to further reduce the intensity and the subsequent beam
damage, paired with a removal of all the water present in the system. This results in no

change after the same procedure is applied again to check for radiative damage.
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Figure S6. Rh-K edge XANES trace as function of time during under Ar at room

temperature after radiative damage prevention.
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Figure S7. Rh-K edge XANES spectra under Ar at 0 and 30 min after radiative damage

prevention

X-ray absorption spectroscopy results
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Figure S8 XANES of different position after cleaning cycle
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Figure S9 From left to right: a) DRIFTS signature for CO (left) and CO- (right) evolution; b) XANES evolution; c) evolution of CO,, CO,

and O concentration as function of time for the position 1.
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Figure S10 From left to right: a) DRIFTS signature for CO (left) and CO; (right) evolution; b) XANES evolution; ¢) evolution of CO,, CO,
and O concentration as function of time for the position 2.
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Figure S11 From left to right: a) DRIFTS signature for CO (left) and CO; (right) evolution; b) XANES evolution; c¢) evolution of CO,, CO,
and O concentration as function of time for the position 3.
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Figure S12 From left to right: a) DRIFTS signature for CO (left) and CO: (right) evolution; b) XANES evolution; c) evolution of CO,, CO,

and Oz concentration as function of time for the position 4.
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Figure S13 From left to right: a) DRIFTS signature for CO (left) and CO; (right) evolution; b) XANES evolution; c¢) evolution of CO,, CO,
and O concentration as function of time for the position 5.
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Figure S14. a) CO produced/O; consumed (top), CO; produced (bottom); b) DRIFTS

signal for CO2(g) and XANES trace as function of time for the position 1 during

temperature ramp.
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Figure S15. a) CO; produced/O; consumed (top), CO; produced (bottom); b) DRIFTS

signal for CO2(g) and XANES trace as function of time for the position 2 during

temperature ramp.
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Figure S16. a) CO, produced/O; consumed (top), CO, produced (bottom); b) DRIFTS
signal for CO2(g) and XANES trace as function of time for the position 3 during

temperature ramp.
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Figure S17. a) CO produced/O; consumed (top), CO; produced (bottom); b) DRIFTS
signal for CO2(g) and XANES trace as function of time for the position 4 during

temperature ramp.
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Figure S18. a) CO produced/O; consumed (top), CO; produced (bottom); b) DRIFTS
signal for CO2(g) and XANES trace as function of time for the position 1 during

temperature ramp.
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Figure S19: DRIFTS signal for CO adsorbed on Rh at spatial position 6.

X-ray photoelectron spectroscopy (XPS) data

Absorption (a.u.)
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Figure S20. XPS spectra at C energy of Rh/Al;O3 before and after reaction.
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Figure S21. Carbon speciation obtained through XPS of Rh/Al.Oz; before and after

reaction.
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Figure S22. Rh/Al>03 during CO oxidation reaction and Rh,C XANES data. The data
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Figure S23. Percentage mass concentration for CO and CO, (m/z 28 and 44
respectively) obtained through mass spectrometry during CO reaction on Rh/Al;O3z in

absence of oxygen, as function of temperature.
Computational calculations

The computed o for each surface are reported in Table S1. Consistent with previous
studies,(/) our calculated surface energies confirm the {001} surfaces to be the most stable
for all the systems investigated.

Table S1. Calculated properties of the (001), (011) and (111) surfaces of Rh. Surface area
(a?) is given in A2, whilst both unrelaxed (ounrel) and relaxed (ove) surface energies are given

in J/m?2.

PBE a2 Cunrel Orel
(001) 57.4754 3.85 2.80
(011) 81.2825 3.57 3.23
(111) 99.5504 2.93 2.92
Scan

(001) 57.4754 3.66 3.64
(011) 79.3530 3.76 3.70
(111) 97.1872 3.40 3.40

Carbon adsorption of carbon was calculated with reference to: bulk graphite, gas phase CO
and carbon formed by the oxidation of CO to C + O (see table 1). The values calculated are
consistent throughout the two functional benchmarked with the obvious exception of the
results with reference to graphite. This is explained by the higher formation energy of the

elemental carbon seen using PBE.



Table S2. Carbon adsorption. Values shown in eV with reference to: bulk graphite
(AEgraphite), atomic carbon (AEc suit) or CO — % O (AEco-0).

Rh(001) AEGraphite  *AEc Atom AEcoo ®AEcraphite  PAEc atom PAEco-0
1C -0.56 -8.60 0.00 -2.30 -8.31 0.00
2C -0.36 -8.40 0.20 -2.11 -8.13 0.18
3C -0.27 -8.31 0.29 -1.94 -7.95 0.36
4C -0.09 -8.13 0.47 -1.69 -7.70 0.61
Rh(011)

1C 2.04 -6.00 2.59 0.49 -5.53 2.78
2C 0.76 -7.28 1.32 0.49 -5.52 2.79
3C 0.79 -7.25 1.35 0.50 -5.51 2.80
4C 1.12 -6.92 1.67 0.51 -5.50 2.81
Rh(111)

1C 0.45 -7.59 1.00 -1.24 -7.26 1.05
2C 0.65 -7.39 1.21 -1.21 -7.22 1.09
3C 0.77 -7.27 1.32 -1.15 -7.17 1.14
4C 0.75 -7.29 1.30 -1.03 -7.04 1.27

apBE functional. °Scan functional.

Both functional also compute consistent carbon monoxide adsorption energies arose each
surface studied with the exception of the values given in reference to the carbonated (011)-
surface. This is explained by the low adsorption energy of carbon on this surface as

calculated by the PBE functional.

Table S3. Carbon monoxide adsorption. Values shown in eV with reference to either

gas phase CO (AEcomol) or the carbon loaded surface (AEcsur).

Rh(001) 2AEcomol SAEc surt ®AEco,mol PAEc surf
1CO -2.36 -2.36 -2.50 -2.50
2CO -2.35 -2.55 -2.46 -2.64
3CO -2.29 -2.58 -2.39 -2.75
4CO -2.28 -2.75 -2.41 -3.02
Rh(011)

1CO -2.28 -3.60 -2.37 -5.16
2CO -2.29 -3.61 -2.38 -5.17
3CO -2.28 -3.63 -2.37 -5.16




4CO -2.27 -3.94 -2.36 -5.17
Rh(111)

1CO -2.22 -3.22 -2.24 -3.30
2CO -2.17 -3.38 -2.26 -3.35
3CO -2.13 -3.46 -2.25 -3.39
4CO -2.14 -3.44 -2.22 -3.49

apBE functional. °"Scan functional.

Owing to the consistent performance of both functionals with regards to their predicted
adsorption values, it was decided to calculate the reaction mechanisms of each facet with the
PBE functional only. Equations S3-5 show the calculated reaction mechanisms depicted in

figures 5 (see manuscript), respectively.
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Fig.S24. Reaction landscape surface mediated: (left) Boudouard reaction, (right)
carbon oxidation. Reaction landscapes for: (black solid line) Rh(001) surface, (red
dotted line) Rh(011) surface and (blue dashed line) Rh(111) surface. All energies are
given in eV with important transition state bond distances shown in A. The negative
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