

1 **MATERIALS AND METHODS**

2

3 **Data and code availability**

4 Bulk and single-cell RNA-seq, and ATAC-seq data have been deposited at GEO under accession
5 number GSE192728 and are publicly available as of the date of publication.

6

7 **Mice**

8 All mouse experiments were approved by the Institutional Animal Care and Use Committee
9 (IACUC) at Brigham and Women's Hospital. Constitutive-Cas9-GFP mice (028555) were
10 purchased from Jackson Laboratory and further crossed with SMARTA (Jackson Laboratory
11 030450) for *in vivo* screening. *Calca*^{-/-} mice¹ were provided by Hiroki Kurihara (The University
12 of Tokyo, Tokyo) and distributed by RIKEN BioResource Research Center. *Ramp1*^{-/-} mice² were
13 provided by Wade Kingery (Veterans Affairs Palo Alto Health Care System) with permission by
14 Kazutake Tsujikawa (Osaka University, Osaka). *Ramp3*^{-/-} mice³ were provided by Kathleen Caron
15 lab (the University of North Carolina at Chapel Hill). *Stat1*^{flx/flox} mice were provided by John
16 O'Shea lab (NIH, U.S.) and further crossed with CD4^{Cre} (Jackson Laboratory 022071).

17

18 **LCMV infection and plaque assay**

19 1 x 10⁶ plaque-forming units (PFU) of Armstrong were injected intraperitoneally (I.P.) for acute
20 LCMV infection. At day 8 of Armstrong infection, splenocytes were isolated and restimulated
21 with LCMV peptide (GP₆₁₋₈₀ or GP₃₃₋₄₁) or PMA/ionomycin in the presence of GolgiPlug, Golgi-
22 Stop for intracellular cytokine analyses. IA^b-GP₆₆₋₇₇ and H-2D^b-GP₃₃₋₄₁ tetramers (provided by
23 NIH etramer Core Facility) were used for antigen-specific analyses. Vero cells were cultured on
24 6-well plates for 24 hours before doing viral load assay. Viral load was detected by incubating
25 cultured Vero cells with diluted homogenized tissue samples for 1 hour followed by agarose
26 overlay. After four days of culture, Vero cells were stained with neutral red, and plaques were
27 quantified 14 hour later.

28

29 **T cell isolation and *in vitro* differentiation**

30 Naïve CD4⁺ T cells were isolated from the spleen and peripheral lymph nodes (pLN) of WT or
31 Cas9-GFP mice followed by flow cytometry sorting for CD4⁺ CD25⁻ CD44⁻ CD62L⁺ cells. Sorted

32 naïve CD4⁺ T cells were activated with plate-bound anti-CD3 (1 μ g/ml, clone 145-2C11, Bio X
33 Cell) and anti-CD28 (1 μ g/ml, clone PV-1, Bio X Cell) and further polarized with cytokines for
34 Th1 (IL-12, 20ng/mL, R&D Systems) or Th2 (IL-4, 20ng/mL, R&D Systems). For Th1/Th2
35 dichotomous culture, medium was supplemented with both IL-12 (0.2ng/mL) and IL-4 (0.2ng/mL).

36

37 **Bulk RNA-Seq time course**

38 *In vitro* cultured T cells were collected at each time point into RLT-plus buffer, and RNA was
39 extracted with RNeasy Plus Mini Kit (Qiagen). Extracted RNA was further used for cDNA
40 amplification with the SMARTA-Seq2 protocol ⁴ for 12 cycles. cDNA was further sonicated, and
41 sequencing libraries were prepared using a NEBNext Ultra II RNA Library Prep Kit for Illumina
42 (NEB) and sequenced by HiSeq X with 2 x 150 paired-end reads.

43

44 **Bulk RNA-seq data analyses**

45 Sequenced reads were trimmed for adaptor sequences and amplification primers, and masked for
46 low-complexity or low-quality sequence with Trimmomatic V0.30 ⁵. Clean sequencing reads were
47 mapped to the mouse genome version mm10 using bowtie2 v2.3.4.3 ⁶. Fragments Per Kilobase of
48 transcript per Million mapped reads (FPKM) were calculated using cufflinks V2.0.2 ⁷.
49 Differentially expressed genes (DEGs) were defined with DESeq2 ⁸ unless otherwise noted, , and
50 false discovery rates (FDRs) were was computed using the Benjamini-Hochberg Procedure for
51 multiple hypotheses testing correction. Gene sets were tested for enrichment in Gene Ontology
52 terms using Enrichr ⁹⁻¹¹. Gene set enrichment scores and p-values were computed with GSEA ^{12,13}.

53

54 **T cell isolation after LCMV infection for scRNA-seq**

55 At day 8 of Armstrong infection, splenocytes were isolated and sorted for activated CD4⁺ T cells
56 (CD4⁺, CD44⁺) and naïve CD4⁺ T cells (CD4⁺, CD44⁻, CD62L^{high}) separately. Activated CD4⁺ T
57 cells and naïve CD4⁺ T cells were mix with 10:1 ratio before doing single cell RNA-seq (10x
58 Genomics).

59

60 **Single cell RNA-seq**

61 *In vitro* cultured T cells or *in vivo* isolated T cell populations were sorted and incubated with
62 hashtag antibodies (BioLegend). 8 samples labeled with distinct hashtag antibodies were mixed

63 with equal cell numbers for each channel (10x Genomics). Libraries for *in vitro* samples were
64 prepared using the Chromium Single Cell 5' Library & Gel Bead Kit (10x Genomics), and for *in*
65 *vivo* samples using the Chromium Single Cell 3' Library & Gel Bead Kit (10x Genomics). All
66 libraries were sequenced on a HiSeq X (Illumina) with paired-end reads of 28 cycles for read 1
67 and 91 cycles for read 2.

68

69 **Single cell RNA-seq data preprocessing**

70 Single cell RNA-seq reads were demultiplexed and aligned to the mm10 mouse reference genome
71 using 10x Genomics Cell Ranger V2.2.0 ¹⁴ (10x Genomics). 5,774 single cells were detected for
72 LCMV infection CD4⁺ T cell dataset, and 4,403 high quality cells were retained after quality
73 control (at least 1200 and no more than 3000 genes were detected in a cell (UMI count > 0). LCMV
74 Armstrong infection data were normalized using log normalization (log1p counts per 10,000), and
75 top 2000 highly variable genes were identified using the FindVariableFeatures function in Seurat
76 V4.0.2 ¹⁵. The RunPCA function was applied to the z-normalized expression of the highly variable
77 genes, and the top 20 PCs were used for downstream analyses.

78

79 **Single cell RNA-seq clustering and differential expression analysis**

80 Cell clusters were identified using the FindNeighbors and the FindClusters (resolution = 0.5)
81 functions in Seurat, which constructed a *k*-nearest neighbor (*k*-NN; *k*=30) graph for cells in the PC
82 space and then optimized the modularity function to identify clusters with the smart local moving
83 (SLM) community detection algorithm ¹⁶. A Uniform Manifold Approximation and Projection
84 (UMAP) embedding was computed using the RunUMAP function with the top 20 PCs.
85 Specifically, min.dist and n.neighbors were set to 0.5 and 50 respectively to better preserve the
86 global structure. Differentially expressed genes for each cluster were identified using the
87 FindAllMarkers function in Seurat, using Wilcox rank-sum test comparing cells in each cluster to
88 cells in all other clusters, and false discovery rates (FDRs) were computed using the Benjamini-
89 Hochberg Procedure for multiple hypotheses testing correction (**Table S2**). Default parameters
90 were used in the analyses above unless otherwise noted.

91

92 **Pseudotime and trajectory analysis**

93 Trajectory and pseudotime for cells of interest (clusters 0-4) were inferred by Slingshot¹⁷ with the
94 top 2 UMAP dimensions (results were very similar to using top 20 PCs; data not shown). Slingshot
95 identifies global cell fate structure by constructing a minimum spanning tree on cluster centers,
96 and then fitting simultaneous principal curves to obtain smooth trajectory curves and inferring
97 pseudotime.

98

99 **Signature scores in single cell profiles**

100 Signature scores were computed using the AddModuleScore function in Seurat and cell-cycle
101 scoring was performed using the CellCycleScoring function in Seurat. Cell-cycle genes provided
102 by Seurat in the cc.genes object were used.

103

104 **sgRNA library construction**

105 3 sgRNAs targeting each selected candidate gene were designed using the online design tool
106 (<https://portals.broadinstitute.org/gpp/public/analysis-tools/sgrna-design>). sgRNA library for
107 pooled screening were generated and cloned into lentiviral vector at the Brie library from the
108 Genetic Perturbation Platform at the Broad Institute. As a quality control, a deep sequencing
109 analysis was performed showing a good representation of all sgRNAs in the pooled plasmids (data
110 not shown). For lentivirus production, HEK293T cells were transfected with sgRNA library
111 together with pMD2.G (Addgene 12259#) and psPAX2 (Addgene 12260#) using PolyJet
112 (SignaGen Laboratories). At 48-hour post-transfection, cell culture supernatant was collected and
113 frozen down at -80°C for following transduction.

114

115 ***In vitro* screening**

116 On day 0, naïve T cells were isolated from Cas9 mice and activated with plate-bound anti-CD3
117 (1µg/ml, Bio X Cell) and anti-CD28 (1µg/ml, Bio X Cell) in the absence of polarization cytokines
118 for 24 hours. On day1, spin transduction was conducted at 1,000g for 1 hour at 37°C with
119 lentivirus-sgRNA library. After transduction, cells were rested with IL-2 (10ng/ml, Miltenyi
120 Biotec) for 2days before restimulation with cytokines for another 2 days to get Th1 (IL-12⁺) or
121 Th2 (IL-4⁺) cells. On day5, intracellular cytokine staining (IFN γ , clone XMG1.2, Biolegend; IL-
122 13, clone eBio13A, eBioscience) was performed using the BD Fixation/Permeabilization Solution
123 Kit (BD Biosciences) after stimulating cells for 4 hours with the PMA/Ionomycin (Sigma-Aldrich)

124 plus protein transport inhibitors (BD Biosciences). According to the expression of IFN γ or IL-13,
125 four distinct cell populations (negative, low, intermediate (IM), or high) were sorted from the
126 transduced cells (Vex $^+$) for sgRNA abundance sequencing. As a control sample without
127 phenotypic selection, all Vex $^+$ cells were sorted for comparison.

128

129 ***Ex vivo* and *in vivo* screens**

130 LSK cells from Cas9-SMARTA mice were isolated, transduced with sgRNA library lentivirus and
131 then transferred to irradiated recipient mice as previously described ¹⁸. After 8 weeks of immune
132 reconstitution, Naïve CD4 $^+$ T cells expressing both Cas9 and the sgRNA Vex reporter (Vex $^+$) were
133 isolated from chimeric mice for *ex vivo* and *in vivo* cell differentiation. For *ex vivo* screens, sorted
134 naïve CD4 $^+$ T cells were differentiated *in vitro* for 3 days with plate-bound anti-CD3 / anti-CD28
135 in the presence of IL-12 (20ng/mL, R&D Systems) for Th1 or IL-4 (20ng/mL, Miltenyi Biotec)
136 for Th2. Intracellular cytokine (IFN γ or IL-4) staining was performed on day3 with well
137 differentiated Th1 / Th2 cells for sorting distinct populations (negative, low, intermediate (IM), or
138 high). For *in vivo* screens, sorted Naïve CD4 $^+$ T cells were transferred to WT recipient mice on
139 day-1 followed by LCMV Armstrong infection at day0. Activated transferred T cells (CD4 $^+$,
140 CD44 $^+$, Cas9 $^+$ and Vex $^+$) were isolated from the spleen and sorted for distinct cell populations
141 (negative, low, intermediate (IM), or high) of Th1 (IFN γ $^+$) and Tfh (PD-1 $^+$ & CXCR5 $^+$) cells at
142 day8 post infection.

143

144 **sgRNA cassette sequencing and data analysis**

145 To evaluate the sgRNA abundance in each sorted cell population, the genomic DNA was extracted
146 from each sample with QIAamp DNA FFPE kit (QIAGEN). The sgRNA cassette was amplified
147 and sequenced with help from the Genetic Perturbation Platform at the Broad Institute. Sequencing
148 reads were analyzed with PoolQ (Version 3.3.2) to quantify read counts for each sgRNA from the
149 pooled library in a sorted cell population. Raw read counts were further normalized by the number
150 of total sequencing reads in each sample, as follows: $\log_2(\text{Counts_for_each_sgRNA} /$
151 $\text{Total_counts_in_PCR_well} * 10^6 + 1)$. To evaluate the sgRNA depletion / enrichment, normalized
152 sequencing depth for each sgRNA was further compared with the control sample (all Vex $^+$ cells)
153 to calculate a Log₂ fold change (LFC) score. To compare the sgRNA abundance across distinct

154 sorted cell populations (IFN γ ^{high}, IFN γ ^{IM}, IFN γ ^{low}, IFN γ ^{neg}), a delta LFC value (LFC^{high} + LFC^{IM} -
155 LFC^{low} - LFC^{neg}) was further calculated for each guide RNA.

156

157 ATAC-seq

158 ATAC-seq was performed following the Omni-ATAC protocol ¹⁹. 10,000 cells were sorted for
159 each ATAC-seq sample preparation. Sequencing libraries were barcoded using Ad1 and Ad2
160 primers and were sequenced on HiSeq X (Illumina) with 150bp paired-end reads.

161 Ad1: AATGATACGGCGACCACCGAGATCTACACTCGTCGGCAGCGTCAGATGTG

162 Ad2: CAAGCAGAAGACGGCATACGAGATxxxxxxxxxGTCTCGTGGGCTCGGAGATGT

163 Sequenced reads were trimmed for adaptor sequence and low-quality sequence with Trimmomatic

164 V0.30 ⁵, and mapped to reference mouse genome (version mm10) using bowtie2 v2.3.4.3 ⁶.

165 Samtools ²⁰ were used to remove PCR duplicates, sort and index the bam files.. Peak calling was
166 performed with MACS2 ²¹ and peaks were visualized using Integrative Genomics Viewer (IGV)

167 ²².

168

169 Integrative analysis of ATAC- and RNA-seq data

170 Paired bulk ATAC- and RNA-seq for 4-hour *in vitro* cell differentiation (Th1 or Th2 condition)
171 with or without CGRP treatment were analyzed together. Differential chromatin accessibility was
172 determined using the csaw package ²³, generating 50-bp sliding windows along the whole genome,
173 and counting the number of reads overlapping the windows using the windowCounts function. The
174 windows were then filtered using the local enrichment method: for each window, reads were
175 counted in its 1,000bp surrounding neighborhood (+/-500bp from the window center) using the
176 regionCounts function, the increase in read abundance in the 50bp window *vs.* the 1,000 bp
177 neighborhood was calculated using the filterWindowsLocal function, and windows were excluded
178 from downstream analysis if the increase is less than 3-fold. Specifically, read counts (both
179 windowCounts and regionCounts function) were computed using paired-end reads with read-pair
180 fragment length not exceeding 650bp, discarding alignments in the ENCODE Blacklist regions ²⁴
181 or with mapping quality scores lower than 10. Count data were then normalized across samples
182 using the offset normalization method, and tested for differential accessibility using edgeR
183 (glmQLFit and glmQLFTest) ²⁵. Window level differential accessibility results for consecutive
184 windows were combined using the mergeResults function. Merged regions were annotated with

185 ChIPseeker ²⁶ using the TxDb.Mmusculus.UCSC.mm10.knownGene ²⁷ and org.Mm.eg.db ²⁸
186 databases. Differentially accessible regions (**Figure 6H**) were clustered using hierarchical
187 clustering (Euclidean distance on row-scaled normalized accessibility, Wald ("ward.D" in the
188 hclust function in the R stats v4.1.2 package) agglomeration method). Samples were clustered in
189 the same way. Default parameters were used unless otherwise specified.

190

191 Differential expression analysis was performed using edgeR (glmQLFit and glmQLFTest). Only
192 genes detected (≥ 10 reads) in all samples of at least one group (Th1/Th2 and Vehicle/CGRP
193 combination) were used. Default parameters were used unless otherwise specified.

194

195 **Quantification and statistical analysis**

196 Statistical analysis of non-sequencing data was performed with the GraphPad Prism software
197 (GraphPad, version 9.2.0). Unless otherwise specified, data are presented as the mean with \pm
198 S.D. and statistical significance was determined using unpaired two-tailed t test. P values < 0.05
199 are considered significant (ns, not significant; *, $p < 0.05$; **, $p < 0.01$; ***, $p < 0.001$).

200

201 **Reference**

202

203 1 Oh-hashi, Y. *et al.* Elevated sympathetic nervous activity in mice deficient in alphaCGRP.
204 *Circ Res* **89**, 983-990 (2001). <https://doi.org:10.1161/hh2301.100812>

205 2 Tsujikawa, K. *et al.* Hypertension and dysregulated proinflammatory cytokine production
206 in receptor activity-modifying protein 1-deficient mice. *Proc Natl Acad Sci U S A* **104**,
207 16702-16707 (2007). <https://doi.org:10.1073/pnas.0705974104>

208 3 Dackor, R., Fritz-Six, K., Smithies, O. & Caron, K. Receptor activity-modifying proteins 2
209 and 3 have distinct physiological functions from embryogenesis to old age. *J Biol Chem*
210 **282**, 18094-18099 (2007). <https://doi.org:10.1074/jbc.M703544200>

211 4 Picelli, S. *et al.* Full-length RNA-seq from single cells using Smart-seq2. *Nat Protoc* **9**, 171-
212 181 (2014). <https://doi.org:10.1038/nprot.2014.006>

213 5 Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina
214 sequence data. *Bioinformatics* **30**, 2114-2120 (2014).
<https://doi.org:10.1093/bioinformatics/btu170>

215 6 Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. *Nat Methods*
216 **9**, 357-359 (2012). <https://doi.org:10.1038/nmeth.1923>

217 7 Trapnell, C. *et al.* Transcript assembly and quantification by RNA-Seq reveals
218 unannotated transcripts and isoform switching during cell differentiation. *Nat
219 Biotechnol* **28**, 511-515 (2010). <https://doi.org:10.1038/nbt.1621>

220 8 Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion
221 for RNA-seq data with DESeq2. *Genome Biol* **15**, 550 (2014).
<https://doi.org:10.1186/s13059-014-0550-8>

222 9 Chen, E. Y. *et al.* Enrichr: interactive and collaborative HTML5 gene list enrichment
223 analysis tool. *BMC Bioinformatics* **14**, 128 (2013). <https://doi.org:10.1186/1471-2105-14-128>

224 10 Kuleshov, M. V. *et al.* Enrichr: a comprehensive gene set enrichment analysis web server
225 2016 update. *Nucleic Acids Res* **44**, W90-97 (2016). <https://doi.org:10.1093/nar/gkw377>

226 11 Xie, Z. *et al.* Gene Set Knowledge Discovery with Enrichr. *Curr Protoc* **1**, e90 (2021).
<https://doi.org:10.1002/cpz1.90>

227 12 Mootha, V. K. *et al.* PGC-1alpha-responsive genes involved in oxidative phosphorylation
228 are coordinately downregulated in human diabetes. *Nat Genet* **34**, 267-273 (2003).
<https://doi.org:10.1038/ng1180>

229 13 Subramanian, A. *et al.* Gene set enrichment analysis: a knowledge-based approach for
230 interpreting genome-wide expression profiles. *Proc Natl Acad Sci U S A* **102**, 15545-
231 15550 (2005). <https://doi.org:10.1073/pnas.0506580102>

232 14 Zheng, G. X. *et al.* Massively parallel digital transcriptional profiling of single cells. *Nat
233 Commun* **8**, 14049 (2017). <https://doi.org:10.1038/ncomms14049>

234 15 Hao, Y. *et al.* Integrated analysis of multimodal single-cell data. *Cell* **184**, 3573-
235 3587.e3529 (2021). <https://doi.org:10.1016/j.cell.2021.04.048>

236 16 Waltman, L. & van Eck, N. J. A smart local moving algorithm for large-scale modularity-
237 based community detection. *The European Physical Journal B* **86**, 471 (2013).
<https://doi.org:https://doi.org/10.1140/epjb/e2013-40829-0>

244 17 Street, K. *et al.* Slingshot: cell lineage and pseudotime inference for single-cell
245 transcriptomics. *BMC Genomics* **19**, 477 (2018). <https://doi.org:10.1186/s12864-018-4772-0>

246

247 18 LaFleur, M. W. *et al.* A CRISPR-Cas9 delivery system for in vivo screening of genes in the
248 immune system. *Nat Commun* **10**, 1668 (2019). <https://doi.org:10.1038/s41467-019-09656-2>

249

250 19 Corces, M. R. *et al.* An improved ATAC-seq protocol reduces background and enables
251 interrogation of frozen tissues. *Nat Methods* **14**, 959-962 (2017).
<https://doi.org:10.1038/nmeth.4396>

252

253 20 Li, H. *et al.* The Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**,
2078-2079 (2009). <https://doi.org:10.1093/bioinformatics/btp352>

254

255 21 Zhang, Y. *et al.* Model-based analysis of ChIP-Seq (MACS). *Genome Biol* **9**, R137 (2008).
<https://doi.org:10.1186/gb-2008-9-9-r137>

256

257 22 Robinson, J. T. *et al.* Integrative genomics viewer. *Nat Biotechnol* **29**, 24-26 (2011).
<https://doi.org:10.1038/nbt.1754>

258

259 23 Lun, A. T. & Smyth, G. K. csaw: a Bioconductor package for differential binding analysis
260 of ChIP-seq data using sliding windows. *Nucleic Acids Res* **44**, e45 (2016).
<https://doi.org:10.1093/nar/gkv1191>

261

262 24 Amemiya, H. M., Kundaje, A. & Boyle, A. P. The ENCODE Blacklist: Identification of
263 Problematic Regions of the Genome. *Sci Rep* **9**, 9354 (2019).
<https://doi.org:10.1038/s41598-019-45839-z>

264

265 25 Chen, Y., Lun, A. & Smyth, G. From reads to genes to pathways: differential expression
266 analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood
267 pipeline. *F1000Research* **5**, 1438 (2016). <https://doi.org:10.12688/f1000research.8987.2>

268

269 26 Yu, G., Wang, L.-G. & He, Q.-Y. ChIPseeker: an R/Bioconductor package for ChIP peak
270 annotation, comparison and visualization. *Bioinformatics* **31**, 2382-2383 (2015).
<https://doi.org:10.1093/bioinformatics/btv145>

271

272 27 Team BC & Maintainer BP. TxDb.Mmusculus.UCSC.mm10.knownGene: Annotation
273 package for TxDb object(s). *R package version 3.4.7* (2019).

274

275 28 Carlson, M. org.Mm.eg.db: Genome wide annotation for Mouse. *R package version 3.8.2*
(2019).

276