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§1.  A neural network model comprised of KCs, DANs and MBONs.  

To simulate associative conditioning and extinction processes in Drosophila melanogaster, we 

created a computational model of the Drosophila mushroom body’s neural circuit dynamics. The 

model describes the activity and plasticity patterns of Kenyon cells (KCs), mushroom body output 

neurons (MBONs) and dopamine neurons (DANs) within 3 interconnected learning modules (γ1, 

α2 and α3) of the mushroom body (MB) (Fig. 5a). The KCs sparsely encode the odor stimuli used 

in our conditioning experiments. The DANs encode the shock punishments received by the fly and 

modulate the strengths of the synaptic connections between KCs and MBONs, thereby shaping the 

storage and extinction of memories stored in the MB. The MBONs gather signals from the KCs to 

control motor behaviors. We described the interactions of these 3 neuron-types by using a set of 

ordinary differential equations to model the circuit’s time-dependent patterns of neural activity and 

synaptic plasticity. The model thus depicts how associative information is stored and retrieved in 
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both the short-term (γ1 module) and long-term (α2 and α3 modules) learning compartments. 

We used a recurrent neural network to characterize the neural dynamics [Eqs. (1.1), (1.2), 

(1.3) and (1.4)]. The recurrent circuit architecture of our model is based directly on the physical 

connections revealed in recent electron microscopy studies of the fly brain connectome1 (Fig. 5a). 

If the number of synapses between any two neurons in the biological connectome is <10, as 

determined by electron microscopy, we set the synaptic strength between these two neurons in our 

model to be zero. This simplification significantly reduced the number of parameters in the model. 

However, we did not infer non-zero synaptic weight values in the model based on the numbers of 

synapses found in the biological connectome between neuron pairs, which might have 

oversimplified the important role of synaptic plasticity in mushroom body circuit dynamics. 

Instead, we estimated the values of all non-zero synaptic weights by parametric fitting of our 

experimental neural recording data.   

In our experiments, we performed olfactory conditioning using odor pairs with distinct 

molecular structures, implying that the two odors are likely to be encoded orthogonally. To capture 

this, the model has 4 KCs, each of which responds to a single odor. The 4 odors included in the 

model are an attractive CS+ odor, an attractive CS– odor, a repulsive CS+ odor, and a repulsive CS– 

odor. Using the subscript i to refer to an individual KC, Eq. (1.1) describes the sparse activation 

of each KC by its preferred odor input, 

   ,  (1.1) 

where  is the spiking rate of the i’th KC,  is the activation function of this KC,  

is a time-constant characterizing the rate at which the cell’s spiking rate converges to its steady 

state value,  equals 1 when the cell’s preferred odor is presented to the fly and 0 otherwise, 
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 is the time-dependent amplitude of neural input signals conveying the presence of odor 

i, and  is a bias term that sets the cell’s baseline spiking rate ( ) in the absence of odor i 

and prior to any conditioning, . When odor is present continuously at a 

uniform level, the activity levels of olfactory sensory neurons do not stay uniform but instead adapt 

over time. The model captures this phenomenon through the time-dependence of : 

   ,   (1.2) 

where  denotes the amplitude of odor i, and  and  are time-constants that 

respectively characterize the rates of adaptation in the presence of odor and following the offset of 

odor presentation. 

DANs are activated by electric shocks, and they also receive feedforward, feedback, and 

cross-module signals from KCs and MBONs (Fig. 5a). The MBONs gather signals from the KCs 

and also transmit signals between different MB learning units. For the DANs, we used the 

subscripts 1, 2 and 3 to refer to PPL1-γ1pedc, -α’2α2, and -α3. For the MBONs, these subscripts 

refer to each DAN’s corresponding MBON, namely MBON-γ1pedc>αβ, -α2sc and -α3. Defining 

 as the spike rate of DAN j,  as the spike rate of MBON j, and  and  

as activation functions, the dynamics of  and  are governed by  

 (1.3) 

   , (1.4) 
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where  and  are time-constants of spiking adapation,  is the synaptic weight 

from KC i to DAN j,  is the synaptic weight from MBON l to DAN j,  is the synaptic 

weight from KC i to MBON j,  is the synaptic weight from MBON l to MBON j,  , 

 and  are baseline spiking rates, and  and  are bias terms analogous to 

that in Eq. (1.1). When the fly receives an electric shock punishment,  equals 1; otherwise, 

it equals 0.  is the weight of punishment signals received by DAN j. Because PPL1- α´2α2 

did not respond to electric shocks (Fig. 2a), this DAN received no punishment signals in the model.  

Further, since in our experiments the presentation of different odors with similar innate valences 

led to comparable levels of DAN activation (Fig. 2i; Extended Data Fig. 3a), we modeled this 

result by setting  and . In other words, the model incorporates the 

finding that each odor of an attractive odor pair with similar innate valences drives equivalent 

levels of DAN spiking, as do the two odors of a repulsive odor pair with similar innate valences.  

§2.  Modeling the plasticity of synapses between KCs and MBONs.  

Based on the biological finding that concurrent activation of a DAN and KCs leads to plasticity of 

the odor-evoked spiking responses by the DAN’s corresponding MBON2,3, in our model the 

concurrent activation of KC i and DAN j modifies the weight of the KC i to MBON j synapse, 

, according to an anti-Hebbian learning rule (Fig. 5b). If the fly receives a punishment 

following odor presentation (a forward pairing),  decreases, whereas  increases if the 

punishment occurs before odor presentation (a backward pairing) (Fig. 5b). We modeled these 

effects as follows4: 
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  (2.1) 

  (2.2) 

  (2.3) 

    . (2.4) 

In Eqs. (2.1) and (2.2),  and  are low-pass filtered versions of the spiking signals 

conveyed to the MBON by KC i and DAN j. Unlike past modeling studies4 but in accord with 

prior experimental findings2,3, in our model there are distinct amplitudes (  and ) and time-

constants (  and ) characterizing the plasticity that arises from forward vs. backward 

pairings. In Eq. (2.3),  is a plasticity time-constant for MBON j.   is the synaptic weight 

between KC i and MBON j.  is an intermediate variable used to calculate  and  

is the time-constant of the low-pass filter in Eq. (2.4), which ensures that the synaptic weight 

 is a temporally low-pass filtered version of . This prevents rapid fluctuations of the 

synaptic weights in the model, which might have occurred if we had directly used  as the 

synaptic weight between KC i and MBON j.  

To characterize long-term memory consolidation processes, we let the time-constants of 

the synaptic weights of MBON-α2sc and -α3 (  and ) change with time. Namely, within the 

first 3 hrs after conditioning,  and  were set to a relatively low level; after 3 hrs,  and 

 were switched to a larger value. The reason for changing the values of  and  was that 
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long-term memory consolidation involves protein synthesis, which typically takes several hours5.  

In multiple of this paper’s figures and extended data figures, we plotted changes in neural 

spiking rates from baseline levels prior to conditioning: 

  (2.5) 

  (2.6) 

    . (2.7) 

§3.  Simplifications and simulations of the neural network model.  

We simulated the differential equations (1.1–1.4) and (2.1–2.4) using the MATLAB (Mathworks 

Inc.) function ode15s(), which solves differential equations numerically. This approach was time-

consuming and required ~14 s to provide results for a single, fixed set of parameter values. To 

accelerate the simulations and analyze the key features of the neural network across many different 

sets of parameter values, we simplified the model by applying several approximations.  

 First, we approximated the activation functions of KCs and DANs as linear functions. In 

our experiments, we did not use extremely high concentration odorants, which might have 

saturated the flies’ odorant receptors (Extended Data Fig. 3a). Thus, we approximated KC  

activation functions as linear, . Using this approximation and combining Eq. (1.1) 

with Eq. (2.5) yields:  

    . (3.1) 

In our imaging studies of DANs, we observed that they linearly integrate the valences of jointly 

presented stimuli, such that the spiking rate changes triggered by an odor and shock presented 
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jointly approximately equal the sum of the spiking rate changes triggered by the individual stimuli 

(Fig. 4e–h). Thus, DANs operate approximately in the linear range of their activation function, 

and Eq. (1.3) can be simplified as: 

    . (3.2) 

Unlike our results from DANs, we observed in our experiments that the spiking rates of 

MBONs can attain upper and lower bounds (Fig. 4a–d). Therefore, we did not approximate the 

activation functions of MBONs as linear. Instead, we used a piecewise linear function for the 

activation function of MBON j: 

    , (3.3) 

where  is the maximum spiking rate of MBON j. Based on our experimental data, we chose 

 = 71.6 s-1,  = 17.9 s-1,  = 31.2 s-1,  = 35.2 s-1,  = 9.0 s-1, and  = 

11.25 s-1 (Extended Data Figs. 4,6). Plainly, the baseline spiking rates of MBONs do not reach 

the upper and lower limits. Thus, we concluded that . Combining Eqs. (1.4) and 

(2.7) yields Eq. (3.4), which describes the spiking rate changes: 

    . (3.4) 

The time-constants ,  and  are sufficiently brief (~10 ms) that the dynamics of 
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 change. This allows us to simplify Eqs. (3.1), (3.2), and (3.4) as follows: 

  (3.5) 

  (3.6) 

    . (3.7) 

During resting bouts,  = 0 and  = 0. From Eqs. (3.5), (3.6) and (3.7), we 

found that ,  and  are all zero during resting bouts. During training, testing 

and imaging bouts, at least one of  and  is non-zero. Then, ,  and 

 may be non-zero. Considering that the durations of training, testing and imaging bouts 

are much less than the resting intervals between them (Fig. 3a,d; Fig. 4l; Fig. 5i), we focused on 

the discrete time points tk corresponding to each training, testing, and imaging bout, and we used 

the time-averaged mean neural spiking rates to represent the neurons’ activities. With this 

approach, Eqs. (3.5), (3.6), and (3.7) become: 
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    , (3.10) 
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training, testing, or imaging bout.  is the average weight from KC i to MBON j at the 

kth training, testing, or imaging bout. 

In the 3 equations above,  and  change with time, whereas the other synaptic 

weights remain constant. Given that the durations of training, testing and imaging bouts are much 

less than the durations of the resting intervals between them (Fig. 3a,d; Fig. 4l; Fig. 5i), we 

attained equations from which we could calculate the average  of Eq. (1.2): 

  (3.11) 

  (3.12) 

  (3.13) 

    , (3.14) 

where  and  are the weight of odor i activating KC i at the starting 

and ending time-points of the kth training, testing or imaging bout.  is the duration of the kth 

training, testing, or imaging bout.  is the duration of the resting bout after the kth training, 

testing, or imaging bout. Because  can be combined with other amplitude terms like  

and , we set  = 1. We set  = 20 s based on prior research on olfactory receptor 

neurons in Drosophila6 and optimized the value of  through our fits to experimental data. 

We used the time-averages of the KCs’ and DANs’ spiking rate changes to calculate the 
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imaging bouts are much less than the time-constant , we approximated  as follows: 

  (3.15) 

    , (3.16) 

where  and  are the values of  at the starting and ending 

time-points of the kth training, testing or imaging bout. 

Because the time-constant is much greater than  but much smaller than , 

 does not significantly change during the kth training, testing, or imaging bout but instead 

converges to  at the end of the subsequent resting bout: 

    . (3.17) 

By combining Eqs. (3.15), (3.16), and (3.17), we derived the recurrence formula Eq. (3.18): 
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  (3.21) 

  . (3.22) 

The integral term in Eq. (3.18) equals . It can be proved that the ΔW 

defined by Eq. (3.22) is a linear functional of the two input functions  and . Eq. 

(3.6) indicates that the spiking rate of each DAN is a linear combination of the punishment-related 

input and the spiking rates of KC and MBON inputs to the DAN. Therefore, the changes in the 

synaptic weights between KCs and MBONs are linear combinations of the contributions from the 

punishment and the spiking rates of KCs and MBONs: 

 . (3.23) 

To calculate the terms , , and 

 from the mean spiking rates of KCs, DANs and MBONs, we input 

two square wave functions (Eqs. (3.24) and (3.25)) into Eq. (3.22). Given the linear dependence 

noted above of ΔW on its inputs, we defined the anti-Hebbian amplitude function AAH(Δt) by Eq. 

(3.26). 
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  (3.25) 

, (3.26) 

where  and  are time averages of the input functions, Δt is the time difference between 

CS and US, and τ is the duration of the CS and US. (In our experiments, the CS and US lasted for 

an equal duration in the training bouts). The anti-Hebbian learning rule implies that the time 

difference between the CS and US, Δt ,  influences the changes in synaptic weights between KCs 

and MBONs. The amplitude function  captures this property (Fig. 5b). 

In the training bout, the electric shock punishment is delivered 5 s later than the odorant. 

Thus, the amplitude of the punishment term should be  where  = 5 s. From Eq. 

(3.7), we saw that the firing of the MBONs is synchronized with that of the KCs. Thus, the 

amplitude of the MBON terms should be , the same as that of the KC terms. We thereby 
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 . (3.27) 

In our experiments, we used a fixed . Thus, the parameters, , , , and  in Eqs. 

(2.1) and (2.2) are converted into two parameters,  and . We directly 

optimized these two parameters in our simulation. With these approximations, we obtained a 

recurrent set of equations [Eqs. (3.8–3.14) and (3.27)]. The time needed to simulate one set of 

parameters with this set of equations was ~0.02 s, which was ~700-fold faster than simulating the 

set of differential equations Eqs. (1.1–1.4) and (2.1–2.4). 

§4.  Estimating the parameter values of the model  

We fit the experimental data using the simplified model to estimate values for the set of model 

parameters, denoted as θ. We assumed that the measured neural spiking rates in experimental 

condition i were drawn from independent normal distributions, . Thus, the log-

likelihood of the experimental data given a set of parameter values, θ, is: 

    , (4.1) 

where,  and  are the mean and SEM values of the spiking rate in experimental condition i and 

 is the spiking rate in condition i as computed from the model with parameter set θ. 

Maximum likelihood estimation of the model’s parameters is equivalent to minimizing the 

weighted sum of squared errors (WSSE):  
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    . (4.2) 

To find the parameter set minimizing WSSE in Eq. (4.2), we used an algorithm that 

combined the MATLAB (Mathworks) genetic algorithm function ga() and the gradient descent 

algorithm function fmincon(). Although the gradient descent algorithm optimized the parameter 

set faster than the genetic algorithm, it sometimes caused the parameter set to be trapped in a local 

minimum of the WSSE. Therefore, we first used the genetic algorithm to find a rough estimate of 

the parameter set, and then we used gradient descent to further fine-tune the parameter set (see 

Supplementary Table 1). The function fmincon() provides the matrix of the second derivatives 

of WSSE (i.e. the Hessian matrix of WSSE, ) for the optimized parameter set (Eq. (4.3)):  

    , (4.3) 

where  is the set of optimized parameter values and the symbol  denotes second derivatives.  

Based on Eqs. (4.1) and (4.3),  equals the observed Fisher information provided 

by the optimized parameter set about the underlying, real biological parameter values. Using the 

Fisher information approach, the Hessian matrix can be used to estimate the confidence intervals 

of the parameter set: 

 , (4.4) 

where  is the optimized value of the ith parameter and is the element in the ith 

row and the ith column of the covariance matrix . The optimized values and confidence 

intervals of the parameter set are shown in Supplementary Table 1. When we used our model to 
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predict the neural spiking rates, we not only calculated the spiking rates with the maximum 

probability but also estimated the confidence interval of the predicted values (Fig. 5; Extended 

Data Fig. 9). The spiking rates with the maximum probability were calculated by inputting the 

optimized value of the parameter set into our model. To estimate the confidence interval of the 

simulated results, we sampled 10000 sets of parameters from the normal distribution with 

covariance matrix  and ran the simulation with each of them. We used the 16th-84th 

percentiles of the distribution of the model-predicted values to determine the confidence intervals.  

  

( ) 12WSSEH -
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§5.  Supplementary Table 1 | Definitions and symbols of all model parameters. 

Category Name Symbol Equation Value Lower 
bound 

Upper 
bound 

Anti-
Hebbian 
amplitudes 

Anti-Hebbian amplitude of KCs and 
MBONs  (3.27) -1.78E+01 -2.60E+01 -9.63E+00 

Anti-Hebbian amplitude on PPL1-
γ1pedc  (3.27) -1.46E+02 -1.96E+02 -1.09E+02 

Anti-Hebbian amplitude on PPL1-
α’2α2  (3.27) 0.00E+00 0.00E+00 0.00E+00 

Anti-Hebbian amplitude on PPL1-α3  (3.27) -5.46E+01 -7.32E+01 -4.07E+01 

Synaptic 
weights 

KC to PPL1-γ1pedc (Attractive odor)  (3.9), (3.27) -1.40E+00 -2.83E+00 3.65E-02 

KC to PPL1-α’2α2 (Attractive odor)  (3.9), (3.27) -5.62E-01 -2.04E+00 9.14E-01 

KC to PPL1-α3 (Attractive odor)  (3.9), (3.27) 2.67E+00 4.18E-01 4.93E+00 

KC to PPL1-γ1pedc (Repulsive odor)  (3.9), (3.27) 2.67E+00 5.83E-01 4.76E+00 

KC to PPL1-α’2α2 (Repulsive odor)  (3.9), (3.27) 6.59E+00 4.60E+00 8.57E+00 

KC to PPL1-α3 (Repulsive odor)  (3.9), (3.27) 1.18E+01 8.88E+00 1.47E+01 

Initial value of KC to MBON-
γ1pedc>α/β  (3.19) 2.42E+01 2.10E+01 2.73E+01 

Initial value of KC to MBON-α’2α2  (3.19) 1.32E+01 5.20E+00 2.12E+01 

Initial value of KC to MBON-α3   (3.19) 1.62E+01 1.36E+01 1.89E+01 

MBON-γ1pedc>α/β to PPL1-γ1pedc  (3.9), (3.27) -3.56E-02 -1.70E-01 -7.44E-03 

MBON-γ1pedc>α/β to PPL1-α’2α2  (3.9), (3.27) -2.02E-01 -2.89E-01 -1.41E-01 

MBON-γ1pedc>α/β to PPL1-α3  (3.9), (3.27) -3.08E-01 -4.34E-01 -2.18E-01 

MBON-γ1pedc>α/β to MBON-α2sc  (3.10) -2.21E-01 -8.96E-01 -5.45E-02 

MBON-γ1pedc>α/β to MBON-α3   (3.10) -8.83E-17 -2.90E-01 0.00E+00 

MBON-α2sc to PPL1-α’2α2  (3.9), (3.27) 1.24E-01 3.87E-02 3.99E-01 

MBON-α2sc to PPL1-α3  (3.9), (3.27) 1.11E-18 0.00E+00 2.41E-01 

MBON-α3 to PPL1-α3  (3.9), (3.27) 4.51E-21 0.00E+00 7.01E-02 

Time- 
constants 

τMBON-STM (KC to MBON-
γ1pedc>α/β)   (3.27) 1.49E+03 1.08E+03 2.05E+03 

τMBON-STM (KC to MBON-α’2α2 and 
KC to MBON-α3)  (t ≤ 3 hrs) (3.27) 6.65E+03 5.48E+03 8.08E+03 

τMBON-LTM (KC to MBON-α’2α2 and 
KC to MBON-α3)  (t > 3 hrs) (3.27) 3.53E+05 5.64E+04 2.20E+06 

τKC-adaptation  (3.12), (3.13) 6.47E+02 4.45E+02 9.40E+02 

( )0AHA
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