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§1. A neural network model comprised of KCs, DANs and MBONs.

To simulate associative conditioning and extinction processes in Drosophila melanogaster, we
created a computational model of the Drosophila mushroom body’s neural circuit dynamics. The
model describes the activity and plasticity patterns of Kenyon cells (KCs), mushroom body output
neurons (MBONSs) and dopamine neurons (DANSs) within 3 interconnected learning modules (y1,
a2 and a3) of the mushroom body (MB) (Fig. 5a). The KCs sparsely encode the odor stimuli used
in our conditioning experiments. The DANs encode the shock punishments received by the fly and
modulate the strengths of the synaptic connections between KCs and MBONSs, thereby shaping the
storage and extinction of memories stored in the MB. The MBONSs gather signals from the KCs to
control motor behaviors. We described the interactions of these 3 neuron-types by using a set of
ordinary differential equations to model the circuit’s time-dependent patterns of neural activity and

synaptic plasticity. The model thus depicts how associative information is stored and retrieved in
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both the short-term (yl module) and long-term (02 and a3 modules) learning compartments.

We used a recurrent neural network to characterize the neural dynamics [Egs. (1.1), (1.2),
(1.3) and (1.4)]. The recurrent circuit architecture of our model is based directly on the physical
connections revealed in recent electron microscopy studies of the fly brain connectome! (Fig. 5a).
If the number of synapses between any two neurons in the biological connectome is <10, as
determined by electron microscopy, we set the synaptic strength between these two neurons in our
model to be zero. This simplification significantly reduced the number of parameters in the model.
However, we did not infer non-zero synaptic weight values in the model based on the numbers of
synapses found in the biological connectome between neuron pairs, which might have
oversimplified the important role of synaptic plasticity in mushroom body circuit dynamics.
Instead, we estimated the values of all non-zero synaptic weights by parametric fitting of our
experimental neural recording data.

In our experiments, we performed olfactory conditioning using odor pairs with distinct
molecular structures, implying that the two odors are likely to be encoded orthogonally. To capture
this, the model has 4 KCs, each of which responds to a single odor. The 4 odors included in the
model are an attractive CS™ odor, an attractive CS™ odor, a repulsive CS* odor, and a repulsive CS~
odor. Using the subscript i to refer to an individual KC, Eq. (1.1) describes the sparse activation
of each KC by its preferred odor input,

d

Tk E Xkci = fa,Kc,i (Wadar,i (t) Xodor i (t) + bKC,i ) —Xkci (1.1)

where x, ., (t) is the spiking rate of the i th KC, f, ., is the activation function of this KC, 7,

is a time-constant characterizing the rate at which the cell’s spiking rate converges to its steady

state value, x,,, . (t) equals 1 when the cell’s preferred odor is presented to the fly and 0 otherwise,
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w

odor i

(¢) is the time-dependent amplitude of neural input signals conveying the presence of odor

i, and by, is a bias term that sets the cell’s baseline spiking rate ( B ;) in the absence of odor i

and prior to any conditioning, By, = f, xc. (b ) When odor is present continuously at a

KC,i
uniform level, the activity levels of olfactory sensory neurons do not stay uniform but instead adapt

over time. The model captures this phenomenon through the time-dependence of w,,, . (7):

d xodnr,i (t)

1- (¢
Z Wodor,i = Wndnr,[ + M (Aador,i - Wndor,i ) H (1 2)

TK C,adapt TK C,recover

where A4

Lior; denotes the amplitude of odor i, and 7 .., a0d T4 0., ar€ time-constants that
respectively characterize the rates of adaptation in the presence of odor and following the offset of
odor presentation.

DANS are activated by electric shocks, and they also receive feedforward, feedback, and
cross-module signals from KCs and MBONSs (Fig. 5a). The MBONSs gather signals from the KCs
and also transmit signals between different MB learning units. For the DANs, we used the
subscripts 1, 2 and 3 to refer to PPL1-ylpedc, -0’202, and -a3. For the MBONSs, these subscripts

refer to each DAN’s corresponding MBON, namely MBON-y1pedc>af}, -a2sc and -a3. Defining

Xpav.; as the spike rate of DAN j, X, ; as the spike rate of MBON j, and f, ,,\ ; and f, ,0n

as activation functions, the dynamics of x,,, ; and x,,,, ; are governed by

Wpunish,jxpunish (t) + ZWKD,i,j (xKC,i - BKC,i )
i

Japav.; B b ~Xpav,j (1.3)
+ZWMD,l,j (xMBON,l ~ Bygon i ) T0pan,;
1

Tpan,j EXDAN,_/ =

ZWKM,i,j (xKC,i - BKC,i )

— 1 _
TMBON, j EXMBONJ = fa,MBON,j B b XvBon,j (1.4)
+ZWMM,I,_/‘ (XMBON,I ~ Dypon . ) +Dygon,
7
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where 7, . and 7,,,, ; are time-constants of spiking adapation, wy,,, ; is the synaptic weight
from KCito DANj, w,,,, ; is the synaptic weight from MBON / to DAN j, wy,, , ; is the synaptic
weight from KC i to MBON j, w,,, , ; is the synaptic weight from MBON /to MBON j, B, ,
B,y ; and B, ; are baseline spiking rates, and by, , and b, ; are bias terms analogous to
thatin Eq. (1.1). When the fly receives an electric shock punishment, x, ., (z) equals 1; otherwise,

1t equals 0- Wpunish,_/

is the weight of punishment signals received by DAN j. Because PPL1- a"2a2
did not respond to electric shocks (Fig. 2a), this DAN received no punishment signals in the model.
Further, since in our experiments the presentation of different odors with similar innate valences

led to comparable levels of DAN activation (Fig. 2i; Extended Data Fig. 3a), we modeled this

result by setting wy,,, ; =Wy, ; and wy, 5, =Wy, ;. In other words, the model incorporates the

finding that each odor of an attractive odor pair with similar innate valences drives equivalent

levels of DAN spiking, as do the two odors of a repulsive odor pair with similar innate valences.

§2. Modeling the plasticity of synapses between KCs and MBON:.

Based on the biological finding that concurrent activation of a DAN and KCs leads to plasticity of
the odor-evoked spiking responses by the DAN’s corresponding MBON?, in our model the
concurrent activation of KC i and DAN j modifies the weight of the KC i to MBON ; synapse,

Wiy . » according to an anti-Hebbian learning rule (Fig. Sb). If the fly receives a punishment

following odor presentation (a forward pairing), w;

w.,; decreases, whereas wy,, . . increases if the

punishment occurs before odor presentation (a backward pairing) (Fig. Sb). We modeled these

effects as follows*:
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d

7 Ve =Kes (xKC,i =By, ) ~VesVkc. (2.1
d

EyDAN,j = kys (xDAN,j _BDAN,j)_VUSyDAN,j (2.2)

d Ugn i
EMKM,i,j = |:(XKC,i — By, )yDAN,j - (xDAN,j =By )ch,i ] TS (2.3)

u,j
d

Tw,j E WKM,i,A/ = uKM,i,j - WKM,[,_/ (2-4)

In Egs. (2.1) and (2.2), yi., and y,,, ; are low-pass filtered versions of the spiking signals

conveyed to the MBON by KC i and DAN ;. Unlike past modeling studies* but in accord with

prior experimental findings®~, in our model there are distinct amplitudes (kg and k) and time-
constants ( ., and y,.) characterizing the plasticity that arises from forward vs. backward
pairings. In Eq. (2.3), 7, ; is a plasticity time-constant for MBON j. w,, ., is the synaptic weight
between KC i and MBON ;. uy,, . ; is an intermediate variable used to calculate wy,, , . and 7, ;

is the time-constant of the low-pass filter in Eq. (2.4), which ensures that the synaptic weight

Wi, 18 @ temporally low-pass filtered version of uy,, , .. This prevents rapid fluctuations of the
synaptic weights in the model, which might have occurred if we had directly used uy,, , . as the

synaptic weight between KC i and MBON .
To characterize long-term memory consolidation processes, we let the time-constants of

the synaptic weights of MBON-02sc and -a3 (7, , and 7, ;) change with time. Namely, within the
first 3 hrs after conditioning, 7, , and 7, ; were set to a relatively low level; after 3 hrs, 7, , and

7,5 were switched to a larger value. The reason for changing the values of 7, , and 7, ; was that
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long-term memory consolidation involves protein synthesis, which typically takes several hours’.
In multiple of this paper’s figures and extended data figures, we plotted changes in neural

spiking rates from baseline levels prior to conditioning:

AXge; =Xge; — Bye, (2.5)
AxDAN,j =Xpan,j — BDAN,j (2.6)
AXMBON,I = Xupon,g ~ BMBON,I . 2.7)

§3. Simplifications and simulations of the neural network model.

We simulated the differential equations (1.1-1.4) and (2.1-2.4) using the MATLAB (Mathworks
Inc.) function odel5s(), which solves differential equations numerically. This approach was time-
consuming and required ~14 s to provide results for a single, fixed set of parameter values. To
accelerate the simulations and analyze the key features of the neural network across many different
sets of parameter values, we simplified the model by applying several approximations.

First, we approximated the activation functions of KCs and DANSs as linear functions. In
our experiments, we did not use extremely high concentration odorants, which might have

saturated the flies’ odorant receptors (Extended Data Fig. 3a). Thus, we approximated KC

activation functions as linear, f (x) = x. Using this approximation and combining Eq. (1.1)
with Eq. (2.5) yields:

d
Tke,i E AXe i = Wogors (t) Xodori (t) —Axpe, - 3.1)

In our imaging studies of DANs, we observed that they linearly integrate the valences of jointly

presented stimuli, such that the spiking rate changes triggered by an odor and shock presented
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jointly approximately equal the sum of the spiking rate changes triggered by the individual stimuli
(Fig. 4e—h). Thus, DANs operate approximately in the linear range of their activation function,

and Eq. (1.3) can be simplified as:

d
Tpan,j EAXDAN, i = Wounish, j X punish (t ) + ZWKD,I‘, ijKC,i + ZWMD,Z, ijMBON,l —Axp . Jo (3.2)
i 7

Unlike our results from DANs, we observed in our experiments that the spiking rates of
MBONS can attain upper and lower bounds (Fig. 4a—d). Therefore, we did not approximate the
activation functions of MBONSs as linear. Instead, we used a piecewise linear function for the

activation function of MBON j:

0 x<0
Jermon (x) =1 x 0<x<x,,; , (3.3)
Xy X2Xy

where x,, ; is the maximum spiking rate of MBON ;. Based on our experimental data, we chose
Xy, =716, x,,, =1795s", x), ,=31.28", B pon; =352, Bypoy, =9.0s",and B, =

11.25 s'! (Extended Data Figs. 4,6). Plainly, the baseline spiking rates of MBONs do not reach

the upper and lower limits. Thus, we concluded that b, ; = B,y ;- Combining Egs. (1.4) and

(2.7) yields Eq. (3.4), which describes the spiking rate changes:

J ZWKM,i,ijKC,i
J— i — —_—
TyBow,j EAXMBON, i fa,MBON,j Ax B By s0w. j AX g0, Jo (3.4
+ZWMM,1, BYvson T Pupon,
7

The time-constants 7., 7,y ; and 7, ; are sufficiently brief (~10 ms) that the dynamics of

Egs. (3.1) and (3.2) quickly reach steady-state values when the input values of x,,, () and
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X sy (¢) change. This allows us to simplify Egs. (3.1), (3.2), and (3.4) as follows:

AX"KC,i = Wodor,[ (t)xodor,i (t) (35)
Axpy, 7 = Wounish, j punish (t ) + ZWKDJ, ijKC,i + ZWMD,I,‘/'AXMBON,I (3.6)
i 7
Axypon ;= Jason, j (ZWKMJ, DX, + ZWMM,I, AXyson s + Buson J —Bygov, - (3.7)
i 7

During resting bouts, x,,,.,(¢) =0and x .. (1) = 0. From Egs. (3.5), (3.6) and (3.7), we
found that Ax,.,, Ax,,, ; and Ax,,, ; are all zero during resting bouts. During training, testing
and imaging bouts, at least one of x . (t) and x,, ., (t) is non-zero. Then, Ax,.,, Ax,,, ; and
AX,50y.; may be non-zero. Considering that the durations of training, testing and imaging bouts

are much less than the resting intervals between them (Fig. 3a,d; Fig. 41; Fig. 5i), we focused on
the discrete time points # corresponding to each training, testing, and imaging bout, and we used
the time-averaged mean neural spiking rates to represent the neurons’ activities. With this

approach, Egs. (3.5), (3.6), and (3.7) become:

AxKC,i (tk ) = wodor,i (tk )xodor,i (tk ) (38)

AxDAN,j (tk ) =W punish, i punish (tk ) + ZWKDJ,j Axye, (tk ) + ZWMD,l,j AX 50w (tk ) (3.9)
' 7

1

ZWKM,i,_/ (tk )Ach,i (tk )

+ZWMM,17_/ AxMBON,l (tk ) + BMBON,j
7

AxMBON,j (tk) = fa,MBON,_j _BMBON,_/ > (3.10)

where Ax,., (2 ), Axp;(2,), @and Ax, ., (2, ) are the average neural spiking rates during the
k™ training, testing, or imaging bout. w,, (¢,) is the average weight of odor i on KC i at the ™
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training, testing, or imaging bout. Wirr i

(¢,) is the average weight from KC i to MBON ; at the
k™ training, testing, or imaging bout.

In the 3 equations above, w

odor i

and wy,, , . change with time, whereas the other synaptic

weights remain constant. Given that the durations of training, testing and imaging bouts are much

less than the durations of the resting intervals between them (Fig. 3a,d; Fig. 4l; Fig. 5i), we

attained equations from which we could calculate the average w,,, ; of Eq. (1.2):
Wi (B, Start) =4, (3.11)
(¢ , tart ~Lon k| TKC adapt (t)=1
Wodor i (tk,el’ld) _ Wodor g ( k siar )e o xudur,l ( k) (312)
j Aodur,i - (Aodor,i - Wudor,i (tk s Stal"t)) € ok Ko xudor,i (tk ) = 0
Wodor,i (tk+1 S tal’t) = Aodor,i - (Aodor,i - Wodor,i (tk en d)) eftaff WG (3 . 13)
Wi () = I:Wodw,,l_ (.. start)+w,,, , (., end)]/2 , (3.14)

where w

odor i

(., Start) and w

odor i

(tk,end ) are the weight of odor i activating KC i at the starting

and ending time-points of the k™ training, testing or imaging bout. ¢, , is the duration of the A

on,

training, testing, or imaging bout. 7, , is the duration of the resting bout after the k™ training,

testing, or imaging bout. Because A

odor i

can be combined with other amplitude terms like wy,, . .

odor i

and wy,,, ,, weset 4,,,., =1 Weset 7. 4, =20 s based on prior research on olfactory receptor
neurons in Drosophila® and optimized the value of 7, ..., through our fits to experimental data.

We used the time-averages of the KCs” and DANs’ spiking rate changes to calculate the

synaptic weight changes between KCs and MBONSs. Since the durations of training, testing, and
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imaging bouts are much less than the time-constant 7, ;, we approximated uy,, , ; as follows:

tU’I,(
Ugnr i (tk,end) ~ .[0 : (Ach,inAN,j - AxDAN’ijCJ)dt U (tk,start) (3.15)
U s s (Leostart) = ug, (1, end)e ™ (3.16)

where u,, ., (tk,start) and uy,,; . (tk,end ) are the values of u,,, . (t) at the starting and ending

time-points of the k" training, testing or imaging bout.

Because the time-constant 7, is much greater than 7, , but much smaller than ¢

on,k

off k2

W, does not significantly change during the k™ training, testing, or imaging bout but instead

converges to u.,, . . at the end of the subsequent resting bout:
g KM i, q g

Wirs i (tk) Sy (tk,start) . (3.17)

By combining Egs. (3.15), (3.16), and (3.17), we derived the recurrence formula Eq. (3.18):

Wi i, j (tk+1 ) ~ (J.tomk (AXKC,inAN,j - AxDAN,ijC,i ) dt+ Wi i, j (tk )) e (3.18)

0
The initial value of this formula is the synaptic weight from KC i to MBON ;. Before our
experiments, the fly does not have a bias or preference between the CS* and CS™ odors. Therefore,

we set the initial values of the synaptic weights from all KCs to MBON j to be the same:

(3.19)

WKM,i,j (tl) = WKM,initial,j
To calculate the integral term of the Eq. (3.18), we derived the analytic solution of Egs.

(2.1) and (2.2), and defined a functional AW

Ves (£) = kese 7 [[ g (1)l (3.20)
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Yos (£) = kyge 7 [ & (1) (3.21)

AW(Axcs (t)anUs (t)) = J;m (Axcs (Z)yUS (t)_AxUS (t)ycs (t))dt

(3.22)
- J-ot (Axcs (l) kUse_mt _[Ot e’ Xys (tl )dtl = Axyg (t) kCSe_Mt J-ot e Yes (tl ) ol ) a

The integral term in Eq. (3.18) equals AW(Ax

KC.i (t),AxDAN’j (t)) It can be proved that the AW
defined by Eq. (3.22) is a linear functional of the two input functions Ax. (¢) and Ax,, (). Eq.

(3.6) indicates that the spiking rate of each DAN is a linear combination of the punishment-related
input and the spiking rates of KC and MBON inputs to the DAN. Therefore, the changes in the
synaptic weights between KCs and MBONS are linear combinations of the contributions from the

punishment and the spiking rates of KCs and MBONS:

AW (A, (£), A%, (1))

B AW [AXKC,I' (t) 2 WpuniSh,,]'xP””iSh (t) + ZWKD,Z',_[AXKC,Z' (t) + ZWMD,I,_ijMBONJ (t)J
i /

_ Wpunish,jAW(AxKC’i (t) X s (t)) + ZWKDJ’].AW (Ach,i (t) A (i))

+ZWMD,1,J'AW (Ach,i (t) > AXysgon (t))
7

(3.23)

To calculate the terms AW(AxKCJ(t)x (t)) : AW(AxKC,l.(t),AxKC,i(t)) , and

> punish

AW(AXKCJ (t) Ax (t)) from the mean spiking rates of KCs, DANs and MBONSs, we input

’ MBON, I
two square wave functions (Egs. (3.24) and (3.25)) into Eq. (3.22). Given the linear dependence
noted above of AW on its inputs, we defined the anti-Hebbian amplitude function 44x(Af) by Eq.

(3.26).

Ax,, O<t<t

0 otherwise

(3.24)

-]



Ax,s At<t<At+rt

0 otherwise

(3.25)

()|

AW (Axcs (£), Axys (1))

A, (At)= o
cs Mys
kﬂ (1 —e st )2 e‘}’US(‘Af‘T) At<—t1
2
Yus
(kﬂ—kﬁJ(Ar +7)+ k%(e%“*“) — e (A 1) —k%(e*m(“”) —1) —T<A1<0, (3.26)
B Yus Vs Vus Yes
(kis_kﬁ)(r —At) +k_12/S(e—}’US(T‘At) _1)_@(6—%5(&”) _ Do s +1) 0<AI<T
Yus  Yes Yus Ves
—k%(l _e Tt )2 e_7CS(At_T) At>t
Yes

where Ax., and Ax, are time averages of the input functions, At is the time difference between

CS and US, and 7 is the duration of the CS and US. (In our experiments, the CS and US lasted for
an equal duration in the training bouts). The anti-Hebbian learning rule implies that the time

difference between the CS and US, Az, influences the changes in synaptic weights between KCs

and MBONSs. The amplitude function A4, (At) captures this property (Fig. Sb).
In the training bout, the electric shock punishment is delivered 5 s later than the odorant.

Thus, the amplitude of the punishment term should be A4, (At

punish

) where At =5s. From Eq.

punish

(3.7), we saw that the firing of the MBONSs is synchronized with that of the KCs. Thus, the

amplitude of the MBON terms should be 4, (0), the same as that of the KC terms. We thereby

achieve Eq. (3.27) using Egs. (3.18) and (3.23),



Ay (At

punish ) Wpunish,j'xpunish (tk )

Winros (Lt ) = | Axee, (2,) o (0) ZWKDJ,_/ Axye, (4) Wy (2) e’ (3.27)
" +ZWMD,/,j AXypon (tk )

!

In our experiments, we used a fixed At Thus, the parameters, kg, kg, 7 and y,, in Egs.

punish *

(2.1) and (2.2) are converted into two parameters, A4, (Atpunish

) and A,,(0). We directly

optimized these two parameters in our simulation. With these approximations, we obtained a
recurrent set of equations [Egs. (3.8-3.14) and (3.27)]. The time needed to simulate one set of
parameters with this set of equations was ~0.02 s, which was ~700-fold faster than simulating the

set of differential equations Egs. (1.1-1.4) and (2.1-2.4).

§4. Estimating the parameter values of the model

We fit the experimental data using the simplified model to estimate values for the set of model

parameters, denoted as #. We assumed that the measured neural spiking rates in experimental

condition i were drawn from independent normal distributions, N ( ,ui(H),o;z). Thus, the log-

likelihood of the experimental data given a set of parameter values, 6, is:

; o,

2
— (0
lnL(H):—Z(lnGi+%1n27zj—%2(w) , (4.1)
where, x, and o, are the mean and SEM values of the spiking rate in experimental condition i and

y,.(o) is the spiking rate in condition i as computed from the model with parameter set 6.

Maximum likelihood estimation of the model’s parameters is equivalent to minimizing the

weighted sum of squared errors (WSSE):



WSSE=3"(x. -1 (0)) [o? . (4.2)

To find the parameter set minimizing WSSE in Eq. (4.2), we used an algorithm that
combined the MATLAB (Mathworks) genetic algorithm function ga() and the gradient descent
algorithm function fmincon(). Although the gradient descent algorithm optimized the parameter
set faster than the genetic algorithm, it sometimes caused the parameter set to be trapped in a local
minimum of the WSSE. Therefore, we first used the genetic algorithm to find a rough estimate of
the parameter set, and then we used gradient descent to further fine-tune the parameter set (see
Supplementary Table 1). The function fmincon() provides the matrix of the second derivatives

of WSSE (i.e. the Hessian matrix of WSSE, H,,,. ) for the optimized parameter set (Eq. (4.3)):

HWSSE—VaZx—u, /a : (4.3)

where 0 is the set of optimized parameter values and the symbol V denotes second derivatives.
Based on Eqs. (4.1) and (4.3), H,,,, /2 equals the observed Fisher information provided

by the optimized parameter set about the underlying, real biological parameter values. Using the
Fisher information approach, the Hessian matrix can be used to estimate the confidence intervals

of the parameter set:

ai,

é.il%\/ Hye2)') (4.4)

where 6, is the optimized value of the i parameter and ((H 2)") is the element in the it
i p p WSSE

row and the /" column of the covariance matrix ( H,,;, / 2)_1 . The optimized values and confidence

intervals of the parameter set are shown in Supplementary Table 1. When we used our model to
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predict the neural spiking rates, we not only calculated the spiking rates with the maximum
probability but also estimated the confidence interval of the predicted values (Fig. 5; Extended
Data Fig. 9). The spiking rates with the maximum probability were calculated by inputting the
optimized value of the parameter set into our model. To estimate the confidence interval of the

simulated results, we sampled 10000 sets of parameters from the normal distribution with
covariance matrix (H,yg, / 2)7l and ran the simulation with each of them. We used the 16"-84™h

percentiles of the distribution of the model-predicted values to determine the confidence intervals.
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§5. Supplementary Table 1 | Definitions and symbols of all model parameters.

Category Name Symbol Equation Value II;:))‘L:I:; Egl?:;
Q’gg’:&bbia” amplitude of KCs and A, (O) (3.27) A78E+01 -2.60E+01  -9.63E+00
Anti- C‘?g;;gbbia” amplitude on PPL1- A, (Atpmh )wpum.shj1 (3.27) 1.46E+02 -1.96E+02  -1.09E+02
;Ir‘:lztl)iltaur:ies Ant-Fiebbian amplitude on PPL1- A, (Atpum.sh )wpm.sh2 (3.27) 0.00E+00  0.00E+00  0.00E+00
Anti-Hebbian amplitude on PPL1-a3 A, (Atpmh )wpmsh’3 (327)  -5A46E+01  -7.32E401  -4.07E+01
KC to PPL1-y1pedc (Atiractive odor) Wiy | 1> Wip | (39),(327) -140E+00 -283E+00  3.65E-02
KC to PPL1-a’2a2 (Attractive odor) Wi 12> W22 (39),(327)  -562E-01 -204E+00  9.14E-01
KC to PPL1-a3 (Attractive odor) Wpa3 Wepas (39),(327)  267E+00  4.18E-01  4.93E+00
KC to PPL1-y1pedc (Repulsive odor) Wy 31> Wip 4. (39),(327)  267E+00  583E-01  4.76E+00
KC to PPL1-’2a2 (Repulsive odor) Wi 55 Wyp 4 (39),(327)  B659E+00  4.60E+00  8.57E+00
KC to PPL1-03 (Repulsive odor) Wi 33s Wip.a s (39),(327)  1.18E+01  888E+00  1.47E+01
:/'}igae'd‘ggﬁff KC to MBON- Wit initial (3.19) 242E+01  210E+01  2.73E+01
Initial value of KC to MBON-a'2a2 Wiht imitial 2 (3.19) 132E+01  520E+00  2.12E+01
Synaptic Initial value of KC to MBON-a3 Wers imivial 3 (3.19) 162E+01  136E+01  1.89E+01
weights ’ ’
MBON-y1pedc>a/B to PPL1-yipedc Wy (39),(327)  -356E-02 -170E-01  -7.44E-03
MBON-y1pedc>a/B to PPL1-a’202 Wi 12 (39),(327)  -202E-01  -289E-01  -141E-01
MBON-y1pedc>a/B to PPL1-a3 W13 (39),(327)  -308E-01 -434E-01  -2.18E-01
MBON-y1pedc>a/B to MBON-a2sc Wi 12 (3.10) 221E-01 -896E-01  -5.45E-02
MBON-y1pedc>a/B to MBON-a3 Wy 13 (3.10) -8.83E-17  -2.90E-01  0.00E+00
MBON-a2sc to PPL1-a’202 Wynas (39),(327)  124E-01  387E-02  3.99E-01
MBON-a2sc to PPL1-a3 Wypa s (39),(327)  1.11E-18  000E+00  2.41E-01
MBON-a3 to PPL1-a3 Wyn 33 (39),(327)  451E-21  000E+00  7.01E-02
\T/':"fe%zt%'\)" (KC to MBON- T, (3.27) 149E+03  1.08E+03  2.05E+03
Time- L“éstooﬁgémﬁ? toMBON-a202and 7 .7, (t<3hrs) (3.27) 6.65E+03  5.48E+03  8.08E+03
constants Ke o MOy © ooNazazand g 7,5 (t> 3 hrs) (327)  B.53E+05 564E+04  2.20E+06
TKC-adaptation Thc recover (3.12),(3.13) 6ATE+02  4.45E402  9.40E+02
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