Polarity switching from p- to n-type in a single thermoelectric donor-acceptor copolymer by p-type doping
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Materials
[bookmark: _Hlk61341396][bookmark: _Hlk61017599][bookmark: _Hlk61017671]DPPTTT (poly (2,5-bis(2-octyldodecyl)-3,6-di(thiophen-2-yl)diketopyrrolo [3,4-c]pyrrole-1,4-dione-alt-thieno[3,2-b]thiophen)) (Mw=22.47 kDa) from Derthon Optoelectronic Materials Science Technology Co LTD; P3HT(Poly(3-hexylthiophene-2,5-diyl)) (Mw=85000 KDa) purchased from 1-material. Ferric chloride from Macklin, Nitromethane was purchased from Damao Chemical Reagent Factory, Iron sulfate hydrate, Iron nitrate nonahydrate from Aladdin industrial corporation, 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane, Iron p-toluenesulfanate and 1.2-dichloriobenzene were purchased from Energy Chemical, All chemicals were used as received. CN6-CP synthesized according to the reference1.
Film preparation
DPPTTT films doped with 10 wt. % to 84 wt. % FeCl3 was prepared by blend-cast doping and sequential doping process, P3HT films doped with 10 wt. % to 84 wt. % FeCl3 was prepared by blend-cast doping as a comparison.
[bookmark: _Hlk52114918]Blend-cast doping: The semiconductors DPPTTT and P3HT were dissolved in O-dichlorobenzene with a concentration of 0.05 wt. %. Dopants with 10 wt. % to 84 wt. % was added to the solutions. After being stirred for 15 minutes, the mixture solution was dropped into the glass substrates which were cleaned consecutively by ultrasonication with a detergent solution, acetone, and isopropyl alcohol, and then dried and treated with plasma for 5 min. The films were dried at three different humidity (at glovebox with H2O< 0.2 ppm and O2<0.02 ppm, and a humidity of 15 % and 65 % respectively).
Sequential doping: The semiconductors DPPTTT was also doped by sequential doping, with polymer dissolved in O-dichlorobenzene with a concentration of 0.05 wt. %, the pristine DPPTTT solution was being drop-casted in glass substrates, after being fully dissolved, and dried at room temperature with humidity of 15 %, and immersed in a dopant solution with 84 wt. % ferric chloride (FeCl3) in nitromethane of a series of periods.
Instrumentation
Thermoelectric properties
Electrical conductivity and Seebeck coefficient of samples were measured at NETZSCH SBA 458, in the atmosphere of nitrogen. A minimum of three to five measurements was obtained for an average value. The film thickness was measured at XP-2.

UV-Vis absorption spectroscopy
An analytic PE Lambda 950 plus at a scan rate of 20 nm s-1 was used to record UV-vis absorption spectra of thin polymer films prepared by spin-casting on glass slides with a spin speed of 2000 rpm, 30 s. All of the samples were prepared in a glovebox then the samples were placed on a sealed cuvette to prevent being oxidized.

Atomic force microscope (AFM)
AFM images of the DPPTTT films of pristine and doped by 21 wt. %, 84 wt. % FeCl3 were obtained in tapping mode using a Veeco/Digital Instruments Nanoscope III. The films were spin-coated on glass substrates and used for this purpose.

Kelvin probe
The contact potential difference of DPPTTT doped with 21 wt. % FeCl3 and doped with 84 wt. % FeCl3 was measured at Bruker Dimension ICON. 

Scanning electron microscope (SEM)
SEM images were measured at su-8010, samples were prepared by drop-casting in glass substrates.

Ultra-violet photoelectron spectroscopy (UPS) and X-ray photoelectron spectroscopy (XPS)
[bookmark: _Hlk61205023]UPS and XPS spectrums were measured at Thermo Fisher. Samples of DPPTTT and P3HT were prepared onto ITO glass via a spin-coating method. The He I (21.2 eV) emission line was employed as a UV source. The helium pressure in the analysis chamber during analysis was about 4.0×10−8 Torr. 

Cyclic voltammetry (CV)
Cyclic voltammetry was performed on a CHI660E Instruments in a classic three-electrode cell, with a glassy carbon working electrode, a platinum disc counter electrode, and a silver wire was used as a pseudo-reference electrode. Film measurements were carried out in a 0.1 M tetra-N-butylammonium hexafluorophosphate in acetonitrile. Polymer films were dropped cast on the glassy carbon working electrode from O-dichlorobenzene solutions. The scanning rate was 50 mV/s. Ferrocene/ferrocenium (Fc/Fc+) redox pair was used as the internal standard.
P-N junction and the responses of the transient and steady-state current of the organic diode were measured in CHI660E Instruments in a glovebox, with working electrode hold on one side, a counter electrode and reference electrode hold on the other side of the sample, and measured with the mode of cyclic voltammetry and current-time respectively.
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Figure S1. the scheme of DPPTTT solution doped by blend-cast method (a) and sequential doping method (b).
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Figure S2. AFM images (a-c) and profile (d-f) of pristine DPPTTT and DPPTTT doped by 21 wt. % and 84 wt. % FeCl3.
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Figure S3. ln(/0) as a function of temperature in the range of 150 K – 300 K.
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Figure S4. UV-vis-NIR spectra of pristine DPPTTT and pristine P3HT films.
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Figure S5. Cyclic voltammogram spectra of ferrocene.
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Figure S6 UPS spectra of fresh Au.
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Figure S7. The comparison of thermoelectric properties of ambipolar D-A copolymers
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Figure S8. XPS spectra of C 1s, N 1s, O 1s, S 2p, Fe 2p, and Cl 2p of DPPTTT and DPPTTT doped by 10 wt. %, 21 wt. % FeCl3, 47 wt. %, 84 wt. % FeCl3.
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Figure S9 The color of P3HT change as a function of FeCl3 concentration.
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Figure S10. The thermoelectrical properties of DPPTTT dipped in 84 wt. % FeCl3 solution for different time. 
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Figure S11. The image of p-n junction prepared by DPPTTT doped by 21 wt. % FeCl3 and 84 wt. % FeCl3.
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Figure S12. Current density versus bias voltage for DPPTTT doped with 21 wt. % and with 84 wt. % FeCl3.




Table S1, Thermoelectric properties of P-type solution-processable D-A polymer
	[bookmark: _Hlk60236715][bookmark: _Hlk60230800]
Materials
	Electrical conductivity (S/cm)
	Seebeck coefficient (μV/K)
	Power factor (μWm-1K-2)
	
Year

	Unipolar
	PDPPse-12
	~997
	/
	364 (55 oC)
	20192

	Unipolar
	PIDF-BT
	634.3
	32.5
	67.2
	20203

	Unipolar
	PIDF-BT
	610
	/
	/
	20204

	Unipolar
	PIDF-BT
	>210
	/
	35
	20205

	Unipolar
	PCPDTSBT-OC
	205.9
	28.8
	49.8
	20206

	Unipolar
	P(DTPTBT)
	155
	14.82
	3.4
	20207

	[bookmark: _Hlk60235204]Ambipolar
	DPPTTT
	130.56
	79.14
	22.43
	This work

	Unipolar
	PPDT2FBT-OC
	125.1
	66.0
	112.01
	20206

	Unipolar
	PDPP-ene
	~101 
	/
	10
	20208

	Unipolar
	PDPP-4T-EDOT
	~99.2
	~174.2
	~298.2
	20209

	Unipolar
	EHT6-20DPP
	93.28
	/
	56.73
	202110

	Unipolar
	PDPP(6-DO)2TT
	70
	/
	/
	20161

	Unipolar
	PDPP3T
	62
	45
	25
	201411

	Unipolar
	PDPP3T
	55
	226
	276
	201712

	Unipolar
	PIID810-TT
	42.8
	87.2
	37.8
	202013

	Unipolar
	PSBTBT
	21
	24
	3.5 (320K)
	201411

	Unipolar
	PDPP(2-OD)2TT
	12
	/
	/
	20161

	Unipolar
	PCDTFBT
	8.73
	213
	31.5
	201914

	Unipolar
	PCDTPT
	5.13
	211
	21.8
	201914

	Unipolar
	PDPP-4T
	4
	/
	/
	201815

	Unipolar
	PCPDTSBT
	2.13
	~190.53
	7.73
	201816

	Unipolar
	C8TBT
	2.11
	335 
	13.11 (90 oC)
	201717

	Unipolar
	PDPP(6-DO)TT
	2
	/
	/
	201718

	Unipolar
	PBDTDTBTF-3
	1.52
	60.83
	1.12 (70 oC）
	201819

	Unipolar
	P(DTCTBT)
	0.87
	43.43
	0.16
	20207

	Unipolar
	PDPP-T-TT-T
	0.5
	/
	/
	201815

	Unipolar
	PCQ
	0.3
	~600
	~10
	201820

	Unipolar
	PCPDTBT
	0.24
	~427.03
	4.41
	201816

	Unipolar
	CPE-C3-Na
	0.22
	~195
	0.84
	201421

	Ambipolar
	PDPH
	0.001
	80
	0.0007
	201822

	Ambipolar
	PNDI2TEG-2Tz
	0.0007
	60.3
	0.0002
	201823




Table S2 
Thermoelectric properties of N-type solution processable D-A polymer.
	
Materials
	Electrical conductivity (S/cm)
	Seebeck coefficient (μV/K)
	Power factor (μWm-1K-2)
	
Year

	Unipolar
	TBDOPV-T
	65
	-130
	106
	202024

	Ambipolar
	DPPTTT
	14.22
	-20.25
	0.66
	This work 

	Unipolar
	P(PzDPP-CT2)
	8.4
	/
	57.3
	201925

	Unipolar
	A-DCV-DPPTT
	~ 3.1
	~ −568 
	~95 
	201726

	Unipolar
	TBDOPV-2T
	2.3
	-325
	7.8
	202024

	Unipolar
	PNDIHexEG-2Tz
	1.9
	~ -163
	5.1
	202027

	Unipolar
	PNDI2TEG-2Tz
	~ 1.8 
	~ −159
	~ 4.6 
	201823

	Unipolar
	PNDIC82TEG-2Tz
	~ 1.6 
	~ −326
	~ 16.5
	202027

	Unipolar
	PNDI2TEG-2Tz
	1.36
	~ −167
	~ 3.8
	202027

	Unipolar
	PDPF
	1.30
	−235
	4.65
	201822

	Unipolar
	P(BTP-DPP)
	0.45
	/
	/
	201728

	Unipolar
	P(TDPP-CT2)
	0.39
	/
	9.3
	201925 

	Unipolar
	p(gNDI-gT2)
	0.3
	−93
	0.4
	201829

	Unipolar
	TEG-N2200
	0.17
	−153
	0.4
	201830

	Unipolar
	Q-DCM-DPPTT
	~ 0.11
	~ −383 
	~ 1.7
	201726

	Unipolar
	P(NDIOD-T2)
	0.008
	−850
	0.6
	201431

	Unipolar
	P(NDIOD-T2)
	0.007
	-670
	0.06
	201932

	Unipolar
	2s-trans-PNDIT2
	0.006
	~ −90
	0.05
	201833

	Unipolar
	P(NDIOD-T2)
	0.004
	–770
	0.2
	201431

	Unipolar
	P(NDIOD-T2)
	0.003
	/
	0.013
	201634

	Unipolar
	P(NDIOD-T2)
	0.003
	/
	0.012
	201835

	Unipolar
	P(NDIOD-T2)
	0.002
	-950
	0.18
	201736

	Unipolar
	PNDIT2
	0.001
	/
	0.01
	201833

	Unipolar
	P(NDIOD-T2)
	0.001
	−354.0
	~ 0.013
	202037

	Ambipolar
	PNDI2TEG-2T
	0.0002
	~ −50
	0.00007
	201823

	Ambipolar
	PDPH
	0.0002
	~ −100
	0.0001
	201822
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