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SI Supplementary figures 

 

Figure S1: Magnetofossil shapes and sizes used for micromagnetic modeling. (a) Inverse 
elongation 1 /  vs. long axis for 3441 magnetofossil crystals classified as equant (cubocta-
hedral, octahedral), prismatic, or tooth/bullet-shaped, obtained from TEM micrographs of 
magnetotactic bacteria and magnetic extracts. Three representative examples from ref. (1) are 
shown above: s  is the crystal width. Dashed lines “1” represent the magnetic stability limits 
of isolated, single-domain magnetite crystals after ref. (2). The solid line “2” is the upper 
stability limit for magnetosome chains with gaps 0.1g s/   between crystals (3). Above this 
limit, magnetic vortices (V) or multiple magnetic domains (MD) nucleate spontaneously. 
The pair of solid lines “3” is the lower stability limit for magnetosome chains with gaps 

0.6g s/   (upper curve) and 0g s/   (lower curve) at room temperature (4). Below this limit, 
magnetosome chains are superparamagnetic (SP). (b) Histogram of short axis length for all 
equant crystals in (a), compared with the rescaled Beta distribution 1 2; ,s s  ( / )  with 

150s   nm, 1 4  , 2 6   (black line). (c) Histogram of short axis length for all prismatic 
crystals in (a), compared with the rescaled Beta distribution 1 2; ,s s  ( / )  with 130s   
nm, 1 5  , 2 7.3   (black line). (d) Histogram of inverse elongation for all prismatic 
crystals in (a), compared with the rescaled Beta distribution 1 21 1 ; ,   ( / - / )  with 
1 0.694/  , 1 10  , 2 4   (black line). Data from ref. (1) (5) (6) (7) (8) (9) (10) (11) 
(12) (13) (14) (15) (16) (17) (18) (19). 
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Fig. S2. Representative examples of native and collapsed double-stranded magnetosome 
chains obtained from TEM micrograph. (a) Native, twisted double-stranded chain of equant 
magnetosomes. Notice the magnetosome size tapering at both ends. (b) Native double-
stranded chain of prismatic magnetosomes (20). Notice the staggered magnetosome arrange-
ment. (c) Kinked single-stranded chain of prismatic magnetosomes (21). (d) Double-stranded 
chain of prismatic magnetosomes resulting from complete folding of a single-stranded chain. 
Notice the side-by-side arrangement of magnetosomes, and one-sided tapering of magneto-
some size. 
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Figure S3: Eighteen simulated double-stranded chains made of equant staggered magnetoso-
mes with 1 9N  , 2N  8, and other parameters chosen according to Table S3. 
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Figure S4: Eighteen simulated double-stranded chains made of prismatic staggered magneto-
somes with 1N  7, 2N  6, and other parameters chosen according to Table S3. 
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Figure S5: Eighteen simulated double-stranded chains resulting from complete folding of a 
single-stranded chain made of equant magnetosomes with 1 9N  , 2N  8, and other para-
meters chosen according to Table S3. 
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Figure S6: Eighteen simulated collapsed double chains resulting from complete folding of a 
single-stranded chain made of prismatic magnetosomes with 1N  7, 2N  6, and other para-
meters chosen according to Table S3. 
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Figure S7: Simulated FORC measurements obtained from micromagnetic simulations of six 
combinations of magnetosome shape (equant or prismatic), and chain geometry (single-
stranded, native double-stranded, and double-stranded from complete folding of a single-
stranded chain). 
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Figure S8: High-resolution FORC measurements of wild-type AMB-1 (a) and the AMB-1 
mutant (b), normalized by the saturation magnetization sM . Every 10th of the 636 curves is 
shown for clarity. Notice the slight loop constriction of the AMB-mutant at 0M  . 
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SI Glossary of magnetic terms 

Anhysteretic remanent magnetization (ARM): remanent magnetization obtained by placing the 
specimen in an alternating magnetic field superimposed to a small direct current (DC) field. 
ARM is strongly selective towards non-interacting SD particles and magnetic systems that 
behave equivalently, such as chains. This selectivity is similar, but not identical, to that of the 
central ridge. The anhysteretic susceptibility, a dcARM H  /  is defined as the ARM norma-
lized by the DC field dcH  (in A/m) used during acquisition. 

Applied field (B ): in the FORC measurement protocol, it defines the magnetic field applied during 
magnetic measurements. 

ARM ratio (a/IRM): The ARM ratio a IRM / , where IRM is the isothermal remanent magneti-
zation acquired in a DC field equal to the maximum amplitude of the AC field used to obtain 
the ARM, is a magnetic grain size indicator. Non-interacting SD particles and intact magneto-
some chains are characterized by a 1 mm A  / . 

Bias field (Bu): vertical coordinate of the FORC diagram. It has a direct physical interpretation 
only in the case of interacting SD particles, where it corresponds to the internal interaction field 
acting on individual particles. 

Biogenic soft (BS): typically used to describe the magnetic signature of conventional (i.e., not 
giant) magnetofossils made of equant magnetosomes. The coercivity distribution is characterized 
by a median field of 45 mT and a mean dispersion parameter of 0.18. The magnetic 
anisotropy required to explain the range of coercivities covered by this component (10-100 
mT) originates largely from the chain structure, since individual crystals are almost isotropic. 

Biogenic hard (BH): typically used to describe the magnetic signature of conventional (i.e., not 
giant) magnetofossils made of elongated magnetosomes. The coercivity distribution is characte-
rized by a median field of 70 mT and a mean dispersion parameter of 0.1. The magnetic 
anisotropy required to explain the range of coercivities covered by this component (30-140 
mT) originates from the chain structure and from magnetosome elongation. 

Blocking volume: the minimum volume that a SD magnetic particle must have to maintain a 
stable magnetization at a given temperature. 

Central ridge: name given to a distinct feature of FORC diagrams, which consists of a narrow 
ridge extending along, or very close to the horizontal axis defined by uB  0 . It is a distinctive 
feature of isolated magnetic systems possessing only few magnetic states. Notable examples are 
non-interacting SD and vortex particles, and systems of particles that mimic these domain states, 
such as magnetosome chains. Because of its quasi-unidimensional nature, the central ridge is 
separable from other contributions to the FORC diagram. In nature, the central ridge is often 
uniquely associated with secondary SD magnetic particles and magnetofossils, since primary 
production of non-interacting SD magnetite requires very fast cooling and magnetic particles 
with larger sizes are rarely limited to the narrow range of vortex particles. 

Coercivity (Bc): in the context of magnetic hysteresis, it is defined as the absolute value of the 
applied field for which the magnetization is zero during the measurements of a major hysteresis 
loop; that is, c 0M B ( )  for the ascending branch M , and c 0M B  ( )  for the descending 
branch M . It is a common measure of the “magnetic hardness” of a specimen. In case of 
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magnetic particle assemblages, cB  depends strongly on the domain state and on magnetic inte-
ractions. In SD particles, cB  is a measure of their magnetic anisotropy energy, with larger values 
in case of strong elongation or strong magnetocrystalline anisotropy. In MD particles, cB  
depends essentially on how strongly pinned are domain walls by crystal defects. cB  is also used 
to denote the horizontal coordinate of FORC diagrams, but in this case, it has a different mea-
ning. 

Coercivity of remanence (Bcr): it is defined as the DC field that must be applied in the opposed 
direction to cancel the saturation remanent magnetization rsM  and obtain a zero remanent 
magnetization. In FORC measurements, it coincides with the reversal field rB  of the curve that 
yields r , 0M B B ( )  in 0B  . It is a measure of the “magnetic hardness” of the remanent 
magnetization of a specimen, having thus a similar meaning as cB . The so-called coercivity ratio 

cr cB B/  is always 1 if FORC curves are limited by the major hysteresis loop, as usually observed 
in geologic materials. The coercivity ratio of particle assemblages depends on the domain state 
of particles, with values close to 1 for SD assemblages and values 1  for MD particles. 

Coercivity or switching field distribution: the strict definition refers to the statistical distribution 
swf B( )  of switching fields in systems possessing large numbers of magnetic states (e.g. those of 

individual particles. Because switching fields are rarely directly measurable, a coercivity of swit-
ching field distribution is broadly identified with any field-dependent function f B( ) , whose 
integral coincides with a certain type of total specimen magnetization (for instance the saturation 
remanent magnetization), or total magnetization of a subset of particles in a specimen. Vice 
versa, coercivity distributions can be defined as the first derivative of so-called magnetization 
curves M B( ) , obtained with a specific measurement protocol. In these cases, the argument of 
the function, B , is a generic field that is not strictly identifiable with the coercive field of hyste-
resis, or with a switching field. Coercivity distributions commonly used in the literature include 
those associated with IRM acquisition, DC demagnetization, AF demagnetization of IRM or 
ARM, and the central ridge. 

Coercivity distribution (AF demagnetization, faf): the derivative af/M B   of the AF demagne-
tization curve of a remanent magnetization (ARM or IRM), obtained in successive demagnetiza-
tion steps with maximum AF amplitude afB . The integral of aff  is by definition equal to the 
initial remanent magnetization. Therefore, aff  can be identified with the coercivity distribution 
of magnetic minerals carrying the specific type of remanent magnetization. 

Coercivity distribution (DC demagnetization, fdcd): the derivative r/M B ¡  of the DCD de-
magnetization curve rM B( )  with respect to the DC demagnetization field rB . The integral of 
dcdf  is by definition equal to the saturation remanent magnetization rsM . Therefore, dcdf  can 

be identified with the coercivity distribution of magnetic minerals carrying a remanent magne-
tization. It is obtained from FORC measurements by dcd , /f x M x B x     0¡( ) ( ) . 

Coercivity distribution (IRM acquisition, firm): the derivative /M B   of the IRM acquisition 
curve M B( )  with respect to the IRM acquisition field rB . The integral of irmf  is by definition 
equal to the saturation remanent magnetization rsM . Therefore, irmf  can be identified with the 
coercivity distribution of magnetic minerals carrying a remanent magnetization. It is similar, 
but not identical, to the coercivity distribution obtained from DC demagnetization, the diffe-
rence being that IRM acquisition starts from a fully demagnetized state. 
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Coercivity distribution (irreversible hysteresis, firr): the derivative irr/M B ¡  of the irreversible 
component irrM  of the ascending branch of the major hysteresis loop with respect to the applied 
field B . The integral of irrf  is sM , where sM  is the saturation magnetization. Unlike other 
coercivity distributions, irrf  is defined for positive and negative arguments, as the major hyste-
resis loop exists for positive and negative fields, whereby irr( )f B  0  represents the irreversible 
contributions from magnetic states that do not exist in a null field. Non-interacting SD particles 
are characterized by irr( )f B  0 0 . This coercivity is obtained from FORC measurements by 
dcd r r, /f x M B B B   ¡( ) ( )  with rB B x  . 

Coercivity distribution (central ridge, fcr): it is obtained by integrating the central ridge contri-
bution cr c u( , )B B  to the FORC function over uB . The integral of crf  over cB  yields the total 
contribution of irreversible magnetization processes to the central ridge. This is a fraction of all 
irreversible contributions to the hysteresis loop, so that cr irrf f  for any positive field, with 
cr irrf f  for non-interacting uniaxial SD particles. 

Direct current demagnetization (DCD): the procedure used to null the saturation remanence 
rsM  of a specimen, consisting in the application and removal of a field crB , called coercivity of 

remanence, in the opposed direction to rsM . Because crB  is not known a priori, increasingly 
large ‘reversal’ fields rB  are applied and removed, and the resulting remanent magnetization 

rM  is measured after each step. In doing so, rM  goes from rsM  for r 0B  , to rsM  when 
rB  has reached the saturation field, passing through r 0M   for r crB B . The resulting rema-

nent magnetization curve is called DC demagnetization curve. It is formally equivalent to the 
subset r , 0M B B ( )  of FORC measurements. 

Domain state: describes the magnetization geometry inside a ferrimagnetic crystal, depending on 
whether it contains a single homogeneously magnetized domain (single domain, SD) or several 
such domains (multidomain, MD). Materials with small magnetocrystalline anisotropy feature 
an intermediate state, where the magnetization form vortices or other patterns that tend to 
cancel the stray field (flux closure). Magnetic properties are strongly influenced by the domain 
state, which in turn depends on the size, shape, and arrangement of particles, as well as time and 
temperature. 

Ferrimagnetism: a class of magnetic materials which includes ferromagnetism (parallel atomic 
spins), and strict ferrimagnetism (two antiparallel spin lattices with unequal magnetic moments). 
The common characteristics of these materials is that they possess a spontaneous magnetization, 
defined as the magnetization of any microscopic (sub-domain) volume of the material. The 
saturation magnetization of ferrimagnetic particles is equal to the spontaneous magnetization of 
the material of which they are made. 

First-order reversal curves (FORCs): series of partial hysteresis curves directly originating (order 
1) from the major hysteresis (order 0). In the most commonly used measurement protocol, a 
FORC curve is measured as follows: (1) a positive saturation field sB  is applied, which resets 
the specimen to a positive saturation state, (2) the field is decreased until a predefined, so-called 
reversal field r sB B  is reached, (3) the field is paused for a predefined time at rB  (typically 1 
s), (4) measurements are taken at regular field intervals while the applied field is increased from 

rB  to positive saturation. The set of curves r ,M B B( )  obtained for a list of rB  values established 
by the protocol is a scan of the space enclosed by the major hysteresis loop. It defines the FORC 
function    1∕2 2

rM B B  / . Each value of   in the transformed coordinates c r 2B B B ( )/  
and u r 2B B B ( )/  represents the contribution of a fictive rectangular hysteresis loop (called 
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hysteron) with coercive field cB  subjected to a constant bias field uB . In the case of ensembles 
of interacting SD particle assemblages, cB  and uB  are identifiable with the coercivity and the 
interaction field of each particles. The central ridge is the limit case of no interactions, in which 
case uB  is condensed along u 0B  . In other systems,   reflects reversible and irreversible 
magnetization processes responsible for the differences between consecutive FORCs, being no 
longer associable with the coercivity and interaction field distribution of discrete particles. 

Fluctuation field (Bfluc): a fictive field defined as the difference between the fields required to trigger 
a given transition between magnetic states without and with the effect of thermal fluctuations 
(random excursions of the magnetization caused by thermal agitation). These fluctuations are 
then equivalent to a fluctuating external field with amplitude flucB . Magnetic particles become 
effectively superparamagnetic when flucB  is as large as the field required for the transition 
without fluctuations. 

Flux closure (FC): magnetic configuration of a single particle, a group of particles, or any other 
ferrimagnetic system, which produces a closed internal magnetic flux, which minimizes or 
nullifies the net magnetic moment. The vortex state (VO) of single particles is an example of 
flux closure configuration. Magnetic domains in soft materials also tend to form flux closure 
configurations in sufficiently small external fields. 

FORC diagram: the graphical representation of the FORC function    1∕2 2
rM B B  /  

obtained from FORC measurements. It is usually represented with the transformed coordinates 
c r 2B B B ( )/  (coercive field) and u r 2B B B ( )/  (bias field) on the horizontal and vertical 

axes, respectively. 

Hysteresis loop: the in-field magnetization ( )M B  of a specimen measured while decreasing the 
field from a maximum value maxB  to a minimum value min maxB B , which yields the descen-
ding branch ( )M B  of the loop, and then increasing the field from minB  to maxB , which yields 
the ascending branch ( )M B . All non-SP ferrimagnetic materials are characterized by M 
M  if s min max sB B B B     , where sB  is the saturation field. The hysteresis loop is called 
major if min sB B   and max sB B  . 

Hysteresis squareness or remanence ratio (Mrs/Ms): describes the vertical opening of the major 
hysteresis loop and is defined as the ratio between saturation remanent magnetization and satu-
ration magnetization. It is called squareness, because hysteresis loops characterized by rs sM M/  

1  have a rectangular shape. The remanence ratio depends on the specimen anisotropy and 
on the domain state. Fully aligned SD particles are characterized by rs s 1M M / , while non-
interacting, uniaxial SD particles are characterized by rs s 0.5M M / . Large MD particles with 
unpinned domain walls are characterized by rs s 0M M / , while intermediate values are obtai-
ned with VO particles. The hysteresis loop of SP particles is closed, and thus rs s 0M M / . 

Irreversible hysteresis: fictive major hysteresis loop obtained by selecting only the irreversible 
magnetization changes (see magnetic irreversibility) along the major hysteresis loop. 

Isothermal remanent magnetization (IRM): remanent magnetization obtained by applying and 
subsequently removing a direct current (DC) field to a previously demagnetized specimen, 
whereby this operation is performed at a constant temperature. Only magnetic states that are 
irreversibly changed by the applied field contribute to the IRM, while the other states maintain 
the randomly oriented magnetic moments of the original demagnetized state and do not contri-
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bute to the IRM. The saturation remanent magnetization rsM  is a particular IRM obtained 
with a saturating field, that his, a field that is sufficiently strong to irreversibly change all 
magnetic states. 

Magnetic hysteresis: the phenomenon by which the magnetization of a specimen cycled between 
a minimum value minB  and a maximum value maxB  depends on the direction of the field sweep 
(from minB  to maxB  or vice-versa). Magnetic hysteresis arises from irreversible changes of 
magnetic states in the specimen. 

Magnetic reversibility and irreversibility: ferrimagnetic materials can respond in a reversible or 
an irreversible manner to changes of the external conditions (e.g. the applied field). A small 
change of the external conditions produces an irreversible magnetization change if the magneti-
zation does not revert to the original configuration after restoring the original external condi-
tions. The total magnetization change is usually a mixture of reversible and irreversible processes. 
Magnetic hysteresis is a well-known example of irreversibility: sweeping the applied field 
between two extreme values produces magnetization changes along two distinct paths, called the 
ascending and descending branches of the hysteresis loop. Magnetization changes are always 
reversible in field amplitudes larger than the saturation field. FORC diagrams are two-dimen-
sional representations of mixed reversible and irreversible magnetization changes. Purely reversi-
ble systems, such as above the saturation field or in SP particle assemblages, do not contribute 
to the FORC function. 

Magnetic shape anisotropy: the tendency of the spontaneous magnetization of a ferrimagnetic 
particle to align with the long axis (e.g. in an iron needle). 

Magnetic state (or configuration): describes a specific magnetization configuration inside a ferr-
imagnetic particle, a group of ferrimagnetic particles, or any other ferrimagnetic system, which 
is stable against small field changes: application and removal of a small additional external field 
brings the system back to its original configuration. A transition to another magnetic state occurs 
when the magnetization change induced by external conditions (e.g. the applied field) becomes 
irreversible: in this case, reverting the system to its original conditions does not resume the origi-
nal magnetic state. Examples of magnetic state transitions are those between the two single-
domain configurations (parallel and antiparallel) of a uniaxial particle, and between single-do-
main and vortex in a VO crystal. Magnetic state transitions are usually, but not always, charac-
terized by a sudden jump of the net magnetic moment, even if external conditions change 
smoothly. The appearance and disappearance of a magnetic state are often called nucleation and 
annihilation, respectively. 

Magnetic viscosity: describes the delayed response of a magnetic system to any change of the 
external conditions (typically the applied field). Magnetic viscosity is mainly observed in small 
SD particles close to the limit where they become superparamagnetic, and, sometimes, in MD 
particles. The manifestation of viscosity depends on the timescale: the same particles can be 
stable during laboratory measurements, and viscous over geologic times. 

Magnetic vortex (VO): describes a magnetization whose direction is described by a vortex field. 
In the ideal vortex state, atomic spins are parallel to all free surfaces of the enclosing volume, so 
that no stray field is produced, and the net magnetic moment is carried only by spins close to 
the vortex axis (the so-called vortex tube). Vortex states occur in material with weak magneto-
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crystalline anisotropy, such as magnetite, over a size range between the upper SD stability limit 
and the lower limit for the nucleation of domain walls (MD). 

Magnetization (M ): in a magnetic material, it is defined as the total magnetic moment of atomic 
or molecular spins in an infinitesimal volume element, divided by volume. In the context of 
magnetic measurements, it is defined as the net magnetic moment of the specimen, normalized 
by the specimen volume, mass, or area. 

Magnetocrystalline anisotropy: the tendency of the spontaneous magnetization of a ferrimagnetic 
material to align with preferred crystalline axes, called easy axes of magnetization. 

Magnetostatic interaction: the influence of the stray field produced by one magnetic particle on 
another magnetic particle. Interacting magnetic particles are therefore subjected to the external 
field (e.g. during hysteresis or FORC measurements), and an internal, so-called interaction field 
produced by the particles, which depends on their magnetic states. Weak magnetostatic 
interactions, typically occurring between particles separated by several diameters, introduce a 
small bias to magnetic transitions between their states. In case of random particle dispersions, 
these biases are random, and produce a random vertical shift of single particle contribution to 
the FORC diagram. Therefore, the FORC diagram of weakly interacting particles is a vertically 
blurred version of the FORC diagram of the same isolated particles without interactions. Strong 
magnetostatic interactions between closely spaced particles, such as those occurring between 
magnetosomes in a chain, can produce a strong magnetic coupling that replaces individual 
magnetic states with a collective state. For instance, isolated magnetosomes possess individual 
SD behaviors with different switching fields (controlled mainly by crystal elongation), while 
magnetosomes in a linear chain display a collective SD behavior with a single switching field. 

Multi-domain (MD): domain state used to describe magnetic crystals containing several discrete, 
homogeneously magnetized domains separated by domain walls. In the absence of external 
fields, domains tend to be magnetized in a manner that cancels all stray fields, compatibly with 
size, shape, and magnetocrystalline anisotropy. In so-called magnetically soft materials, such as 
magnetite, domain walls can easily move when a small external field is applied. Therefore, the 
magnetization of magnetically soft MD crystals is typically much less stable than that of SD or 
VO particles and depends essentially on pinning by crystal defects. The lower MD size limit for 
magnetite is a few microns, depending on shape and other factors. 

Remanent magnetization (Mr): the magnetization of a specimen in a null external field. All ferri-
magnetic materials except SP particles can hold a non-zero remanent magnetization. 

Reversal field (Br): the field at which a FORC measurement starts. Application of Br to the positi-
vely saturated specimen brings the specimen in a mixed magnetic state that is reverted to positive 
saturation while a FORC is measured. 

Saturation field (Bs): the field amplitude above which the major hysteresis loop becomes comple-
tely closed. Application of sB  converts all magnetic states into a SD-like configuration. It is 
therefore applied before each FORC measurement to reset the specimen to the same initial 
magnetic state. 

Saturation magnetization (Ms): the magnetization acquired in a magnetic field that is sufficiently 
large to align all atomic or molecular spin moments. In a ferrimagnetic material, sM  approaches 
asymptotically the spontaneous magnetization of the material. It is the only type of specimen 
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magnetization that is simply proportional to the amount of magnetic material that is contained 
in it and is therefore a good indicator of magnetic concentration. 

Saturation remanent magnetization (Mrs): It is defined as the specimen magnetization in a null 
external field, which remains after removing a saturation field. It coincides with the zero-field 
magnetization of the upper and lower branches of the major hysteresis loop. It is usually also the 
largest remanent magnetization of a specimen in a null field. The ratio rs s/M M  depends on the 
domain state of particles and the magnetic interactions existing between them. Assemblages of 
non-interacting, randomly oriented, uniaxial SD particles are characterized by rs s/M M  0.5. 
Smaller values are obtained for vortex particles, and rs s/M M  0  in large MD particles 
containing unpinned domain walls. 

Single domain (SD): describes crystals that are sufficiently small to contain only one magnetic 
domain. They possess the maximum possible magnetic moment, equal to the product of the 
spontaneous magnetization and the particle volume. Every particle becomes SD in a saturating 
external field, regardless of size. However, the domain state of a particle is usually referred to its 
remanent magnetization. 

Stable single domain (SD): describes SD particles whose magnetization is stable over the experi-
mental time range (seconds to hours for magnetic measurements, millions of years in paleo-
magnetism). The definition is extended to all systems with same magnetic behavior as SD 
particles, such as magnetosome chains. 

Superparamagnetism (SP): describes SD particles whose magnetic anisotropy energy is small 
enough for thermal fluctuations to overcome the energy barrier required to rotate the magneti-
zation between stable orientations (two for a uniaxial particle). Accordingly, superparamagnetic 
particles do not possess a stable magnetization and do not exhibit an open hysteresis loop. The 
transition from stable SD to SP depends on temperature and measurement time. The lower 
stability limit for SD magnetite particles is 20 nm at room temperature. 

Switching field (Bsw): the field that is required to nucleate a transition between magnetic states. It 
is often referred to uniaxial SD particles; in this case, it is the field required to switch between 
two opposed SD states (parallel and antiparallel to the easy magnetic axis). 
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SI Results 

Comparison with previous work on magnetofossil identification. Using these 
findings, a better verification of some of the magnetofossil identification criteria proposed 
by Kopp and Kirschvink (22) is possible. The so-called ‘single domain criterion’ is rigorously 
verified by the presence of a central ridge in high-resolution FORC diagrams. Among bulk 
parameters that are more rapidly measured, the ARM (anhysteretic remanent magneti-
zation) ratio is the most selective towards SD particles (23). ARM, being a biased AF demag-
netization technique, selects magnetic states with lowest magnetic moments, which, in large 
non-SD particles, are vanishingly small. In the case of multi-stranded chains, FC states 
would be preferentially selected by the ARM, but not by the central ridge. Indeed, Pan et 
al. (24) reported 3-5 times smaller ARM values in concentrates of wild-type bacteria 
producing multi-stranded chains, compared to single-stranded cases (Table 1). This has 
important implications for the interpretation of sedimentary ARM records. For instance, 
the decrease of the ARM of magnetofossil components with respect to rsM , which has been 
observed during a strong eutrophication event (25) (26), and for which chain collapse and/or 
greigite-producing MTB were invoked, can instead be simply explained by an environmen-
tally-driven increase of the relative abundance of MTB producing multi-stranded chains. 

The so-called ‘chain criterion’ is the second most important factor for magnetofossil 
identification. It is sometimes the only one that enables to distinguish magnetofossils from 
other SD magnetite sources, and, at the same time, the most difficult to prove, as exempli-
fied by the case of magnetite particles in the ALH84001 Martian meteorite (27) (28). Direct 
electron microscopy observation of chain structures lacked the necessary resolution to verify 
magnetite composition (29), while the only available magnetic test, which gave a negative 
result, is based on a bulk magnetic characterization method that is not strictly selective 
toward SD particles (30). The chain criterion is naturally invalidated by forms of complete 
chain collapse that eliminate the central ridge and other specific magnetofossil signatures 
(31) (32). Our results, obtained by comparing the sedimentary signature with micromagnetic 
simulations and the AMB-1 mutant demonstrate that, if chain collapse occurs in a 
sedimentary environment, it is limited to forms that preserve the native uniaxial geometry. 
A possible collapse mechanism positively tested with our simulations is the complete folding 
of single-stranded chains. 

Preservation of uniaxial magnetofossil geometries has important implications for the 
verification of the chain criterion, namely: (i) the hysteresis squareness is the same as for 
isolated, intact chains, even if FC nucleation in multi-stranded chains produces non-SD 
FORC signatures, (ii) the FORC central ridge is preserved and maintains a minimum 
coercivity of 20 mT, (iii) the central ridge coercivity distributions of single- and multi-
stranded chains add coherently to two coercivity components with properties similar to soft 
(equidimensional magnetosomes) and hard (elongated magnetosomes) components in ref. 
(25). Due to the intrinsic non-uniqueness of magnetic measurements, conditions (ii) and (iii) 
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can be mimicked by isolated SD particles with a minimum elongation of 1.2 and 
appropriated elongation distributions peaking at 1.5 and 2.0, respectively. Magnetite 
crystals formed inorganically in aqueous solution tend to be irregular and nearly equi-
dimensional (33), not fulfilling the above conditions. Their magnetic signature is consistent 
with that of magnetite produced in soils and by dissimilatory iron reduction (components 
EX and P in ref. (25)). If well dispersed in the sediment matrix, these particles contribute to 
the central ridge mainly between 0 and 20 mT (34). The few natural examples of non-
interacting, elongated SD magnetite crystals (e.g. in volcanic glass) feature a broad distri-
bution of aspect ratios consistent with the unidirectional growth from equidimensional 
seeds. The associated coercivity distribution is broad and includes the 0-20 mT range (35) 

(36). Despite a similar growth mechanism (37), tooth- or bullet-shaped magnetosomes possess 
the above-mentioned chain criterion properties, due to the minimum magnetic anisotropy 
imparted by the chain structure. 

Another peculiarity of magnetofossil signatures is the sensitivity of coercivity distribu-
tions to different types of transitions between magnetic states. ARM and central ridge are 
selective towards isolated SD particles and magnetofossils, while coercivity distributions 
obtained from other types of magnetization include the whole assemblage of magnetic 
particles. The additional contribution of these particles makes the detection of magneto-
fossils through the identification of soft and hard components more difficult (25), or even 
impossible. Magnetofossil detection should therefore be preferably performed using high-
resolution FORC diagrams or AF demagnetization curves of ARM. 
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SI Materials and methods 

Deletion plasmid construction and generation of the AMB-1 mutant ΔmamJΔlimJ 
ΔMIS The MIS deletion construct was created by Gibson assembly. The upstream (AB 
recombination fragment, 904 bp) and downstream (CD recombination fragment, 842 bp) 
regions of the islet were amplified by PCR from the AMB-1 genomic DNA with the 
following primer sets: jwP1A (5’-gaattcctgcagcccgggggatccACTAGTgttcccctccatcacctatac-
3’) and jwP1B (5’- CCCATCCACTAAATTTAAATAagcggcggtatagcccatg-3’) for the AB 
recombination fragment, jwP1C (5’-TATTTAAATTTAGTGGATGGGctattcgaaccgcct 
gctc-3’) and jwP1D (5’-caccgcggtggcggccgctctagaACTAGTgatagcgagaaccgtcatac-3’) for the 
CD recombination fragment. The Gibson assembly was used to clone AB and CD 
fragments into the SpeI site (underlined in the above primers) of pAK0 (38), which is a suicide 
plasmid carrying a kanamycin resistance cassette and a counterselectable sacB gene, to 
generate pAK1121. A spacer (highlighted bold in the above primers) at the end of AB and 
the beginning of CD fragments was used to connect the AB and CD fragments during 
Gibson assembly. ΔmamJΔlimJΔMIS was generated by a two-step recombination method 

(39). The deletion plasmid pAK1121 was conjugated into ΔmamJΔlimJ AMB-1 strain (40) by 
using WM3064 as the donor strain. For the first recombination step, the colonies were 
selected on agar plates containing kanamycin (medium composition given by the ATCC 
under AMB-1 reference), to obtain the recombinants that have the deletion plasmid 
integrated into the genomic DNA. For the second recombination step, cells were grown in 
10 ml of AMB-1 growth medium without kanamycin, and then counterselected on agar 
plates containing 2% sucrose, to obtain recombinants that lost the integrated plasmid. 
These sucrose-resistant colonies were then screened for the absence of MIS by culture PCR 
with the following primers: jwP2F (5’-catcaccatgaccctgaccg-3’) and jwP2R (5’-gacgttttgaa-
ggggctggac-3’). 
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Micromagnetic simulations. This section explains in detail how synthetic chains are 
constructed and FORC measurements simulated with micromagnetic simulations. Mathe-
matical symbols for simulation parameters and other parameters are listed in Table S1 and 
Table S2, respectively. Parameter values used for the simulations are listed in Table S3. 

1 Magnetosomes 

Magnetofossil micromagnetic simulation are controlled by two groups of parameters 
describing the properties of individual crystals on the one hand, and their arrangement in 
intact or collapsed chains on the other. Relevant crystal properties include size, shape, and, 
to a minor extent, crystallographic orientation with respect to shape. 

1.1 Sizes and shapes 

Magnetosomes occur in a variety of complex, strain-specific crystal shapes (45) (7) (10) (46) (11) 

(47) (48) (19) (49). Because magnetic properties of single-domain (SD) magnetite particles are 
mainly controlled by their elongation, magnetofossils can be subdivided into three main 
categories for magnetic modeling purposes: equant or isometric crystals, such as cubocta-
hedra and octahedra, which do not possess a systematic elongation, prismatic crystals, which 
are moderately elongated, and tooth- or bullet-shaped crystals, which are highly elongated 
in their mature stage. These three categories form three distinct clusters in a so-called Butler-
Banerjee diagram of short-to-long axis ratio vs. length (Fig. S1a). The size and shape distri-
bution within each cluster is determined by different bacterial strains and natural variations 
within each strain, related to the growth stage or environmental conditions. The apparent 
elongation of cuboctahedral and octahedral crystals is due in part to projection effects of 
the micrographs from which shape and size data are retrieved, and in part to random 
deviation from a perfectly isometric shape. 

Magnetofossil sizes are mostly comprised within the limits required for intact magneto-
some chain to possess a stable SD-like remanent magnetization, with the magnetic moment 
of each crystal being parallel to the chain axes and not switchable by thermal activations at 
room temperature (3) (4). The stability range for isolated crystals is much smaller (2), with a 
non-negligible proportion of isometric crystals being either too small or too large to carry a 
stable single-domain remanence without the stabilizing effect of magnetostatic interactions 
within a chain. Unlike the crystal length, widths within each shape category are almost 
independent of elongation. Therefore, individual crystal shapes are effectively described by 
independent width and axis ratio distributions (Fig. S1b-d). These distributions are well 
approximated by rescaled versions of the Beta function 
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where Γ  is the Gamma function and 1,2  two shape parameters. 
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1.2 Shape axes 

The shape of simulated magnetosomes is controlled by three orthogonal axes 1 2 3, ,( )a a a  
with lengths 1 2 3, ,a a a( ) where 3a  is sub-parallel to the chain axis (Fig. S9). Equidimen-
sional magnetosomes are ideally represented by 1 2 3a a a s   , where s  is the magneto-
some width, while ideal elongated magnetosomes are characterized by 1 2a a s   and 

3 1a a  , where 1   is the crystal elongation. An ideal chain is assumed to contain mature 
magnetosomes with identical, cell-specific width 0s  and elongation 0 .  

 

Figure S9: (a) Size and orientation parameters for prismatic magnetosomes, modelled as 
chamfered circular cylinders. (b) Size and orientation parameters for equant magnetosomes, 
modelled as rotation ellipsoid. (c,d) Definition of longitudinal ( lg ) and transversal ( tg ) 
gaps between prismatic magnetosomes. The dotted line represents the minimum half-gap 

min 2g /  between crystals. Longitudinal and transversal gaps are defined as the mean distance 
between corresponding faces in (c), and as smallest distances in (d). 
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Magnetosomes in real chains feature small, random variations of their axis orientation 
and length, relative to the ideal case. In order to reproduce such variations, the orientation 
of the 3a  axes is described by a Fisher-Von Mises distribution 
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where   is the angle between 3a  and the chain axis, and s  a so-called concentration para-
meter governing the dispersion of   around 0  . Large values of s  correspond to small 
deviations of 3a  from the chain axis, whereby the standard deviation of   is proportional 
to 1

s
-  for s 1  . The other two axes are oriented randomly. The actual axes lengths of 

the n-th magnetosome are given by 
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where nx , nz  are random Gaussian variates with standard deviation s 1  , limited to 
±0.8, and 0 1t n( )   is a size tapering function, which depends on the position of the n-
th magnetosome with respect to the closest chain extremity. A cylindrical symmetry of the 
crystal shape is maintained through ,1 ,2i ia a , since the axes are used merely to simulate a 
uniaxial magnetic anisotropy due to the crystal elongation. The magnetosome shapes are 
thus controlled by the following set of chain-specific parameters: the crystal width 0s  and 
elongation 0e  of mature crystals, the dispersion s  of long axes orientations with respect to 
the chain axis, the standard deviation s  of random size variations, and the tapering func-
tion t . 

Shape axes are constructed by applying the following rules for each magnetosome: 

(1) A set of orthogonal axes ˆˆ ˆ, ,( )x y z  is generated, with ẑ  being parallel to the chain axis. 

(2) The axes are rotated about ẑ  by a random angle uniformly distributed between 0 and 
2 . 

(3) The axes are rotated about a random axis perpendicular to ẑ , by an angle generated by 
a random realization of the Fisher-Von Mises distribution in eq. (2). 

(4) The axes lengths are calculated according to eq. (3). 

1.3 Crystallographic orientation 

Crystal orientation is identified with the 100[ ] axes of magnetite. In the case of ideal 
cuboctahedral or prismatic magnetosomes, it is assumed that one of the 111[ ]  axes is parallel 
to the chain axis, since this is the typical orientation observed for these shapes (16) (49) (50). The 
other 111[ ]  axes appear to be randomly oriented (16) (51). The crystal orientation of simulated 
magnetosomes is a randomized version of the ideal case, with the 111[ ]  axis closest to the 
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chain axis being governed by a Fisher-Von Mises distribution (eq. 2) with concentration 
parameter c . The crystal axes are generated with the following steps: 

(1) A set of orthogonal 100[ ] axes ˆˆ ˆ, ,( )x y z  is generated, with 1 2 1 2 1 2ˆ 2 ,6 ,3/ / /[ ]x    , 
1 2 1 2 1 2ˆ 2 ,6 ,3/ / /[ ]y     , and 1 2 1 2ˆ 0, 2 3 ,3/ /[ ( / ) ]z    . The principal diagonal of the 

cube with edges given by ˆˆ ˆ, ,( )x y z  is the 111[ ]  axis parallel to ẑ . 

(2) The axes are rotated about ẑ  by a random angle uniformly distributed between 0 and 
2 . 

(3) In case of elongated magnetosomes, the axes are rotated about a random axis perpendi-
cular to ẑ  in the exact same manner as for the shape axes (i.e. using the same rotation 
axis and rotation angle). This rotation generates the whole crystal misalignment with 
respect to the chain axis. 

(4) The axes are rotated about a random axis perpendicular to ẑ , by an angle generated by 
a random realization of a Fisher-Von Mises distribution with chain-specific concen-
tration parameter c . This rotation generates an additional misalignment of the crystal-
line axes with respect to the shape axes. 

1.4 Magnetosome shape 

Magnetosome shape determines the uniaxial magnetic anisotropy of micromagnetic 
simulations, expressed by the so-called demagnetizing tensor D . The calculation of D  is 
performed through an intermediate step where the real magnetosome shape is approximated 
by an idealized shape. The idealized shape of equidimensional (cuboctahedral) magnetoso-
mes is a rotation ellipsoid with axes lengths 1 2a a=  and 3a . Elongated prismatic magneto-
somes are represented by chamfered cylinders with diameter 1 2a a=  and length 3a . The 
circular cylinder approximates an hexagonal prism with 110{ }  side faces and 111{ }  top/ 
bottom faces, as typically seen in MV-1 magnetosomes (52). Additional 100{ }  and 111{ }  
faces eliminating right angles between side and top/bottom faces (47) (49) are simulated by 45° 
chamfers of width 0s w , such that the diameter of top/bottom faces is reduced by 02s w  
(Fig. S9). The chamfer width parameter w  is subjected to the same randomization as the 
shape axes length, so that actual chamfer widths are given by 0 01 x s w( ) , where x  is a 
normally distributed random variate with standard deviation s 1  , limited to ±0.8, and 

0w  is the chain-specific mean relative chamfer width. 

2 Construction of single-stranded chains 

The construction of a single-stranded chain with N  magnetosomes begins with the defi-
nition of chain-specific parameters that control the characteristics of individual crystals and 
their arrangement in space (Table S1). Chain-specific parameters for individual crystals are: 
the width 0s  the elongation 0e  and the relative chamfer width 0w  (prismatic crystals only) 



25 
 

of ideal mature magnetosomes, the concentration parameters s  and c  of the Fisher-Von 
Mises distributions of shape and crystalline axes with respect to the chain axis, and the 
standard deviation s  of relative axis length and chamfer width variations. Other parameters 
control the chain geometry: its length, through the number N  of magnetosomes and the 
gaps between magnetosomes, random off-axis magnetosome offsets, crystal size tapering 
though a tapering function, and chain bending. 

The tapering function for the n-th magnetosome 
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t t
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describes a linear increase of the mean crystal width 0s t  from 0 ts s  for the first ( 1n  ) and 
last n N  magnetosomes to 0s  for the t 1n n   and tn N n   magnetosomes, respec-
tively (Fig. S10). The tapering function is thus controlled by the relative size ts  of the end 
magnetosomes and the number t 2n N /  of end magnetosomes affected by tapering. 

 
Figure S10: (a) Chain tapering geometry. The magnetosome size increases linearly from 0 ts s  
for the 1n   magnetosome to 0s  for the 1tn n   magnetosome. (b,c) Chain bending for 
prismatic and equant magnetosomes, obtained by rotating the top crystal about the axis 
marked by the large dot. The bending angle is b . 
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The arrangement of magnetosomes in a straight chain is controlled by the mean gap 0g  
between neighbor crystals, and by the longitudinal and transversal randomization of their 
positions. Longitudinal gaps are defined as the mean distance between facing cylinder sur-
faces used to model prismatic crystals (Fig. S9c), or the shortest distance between the 
ellipsoidal surfaces used to model equant crystals (Fig. S9d). The longitudinal randomiza-
tion of magnetosome positions causes individual gaps to differ from the expected value 0g  
for the whole chain, and is realized by defining these gaps as 01g g g( )  , where g  is a 
normally distributed random variate with standard deviation 1z  , limited to 1 . 
Furthermore, g must be sufficiently large to guarantee a predefined minimum distance 

min 0g   for the whole facing surfaces. This minimum distance is initially imposed by the 
thickness of the magnetosome membrane, which has been reported to vary between 3 and 
7 nm (53) (54) (55), yielding ming  values comprised between 6 and 14 nm. It is not clear 
whether the magnetosome membrane is preserved after cell dissolution, until what remains 
of the original chains is fixed in the sediment matrix, for instance by adhesion on clay 
platelets (56). 

Transversal randomization of the magnetosome positions with respect to the original 
axial alignment along the z-axis of a cartesian coordinate system is described by distance 
vectors 0,x y s ( )d   from the chain axis, where x  and y  are normally distributed 
random variates with standard deviation x . 

The straight shape of ideal chains can be altered in several ways, which include bending, 
kinking, and various forms of collapse that might occur after cell dissolution. Chain bending 
is the elastic response to small external loads and is commonly observed in intact MTB cells 

(21) (51). The maximum elastic bending angle, defined as the angle between segments con-
necting consecutive crystal centers, is of the order of 0 0 0.1g s/ »  (21). Above this limit, 
kinking occurs, until the chain extremities become close enough to form collapsed struc-
tures with magnetic flux closure, such as folded chains (e.g. Fig. 2b in ref. (57)), rings, and 
handles (58). Chain bending is therefore the only deviation of non-collapsed single chains 
from the ideal straight shape. The typical length scale over which a single magnetosome 
chain remains straight under the influence of thermal activation is >30 times larger than 
magnetosome size (59), which means that the maximum value of the bending angle b  
between consecutive magnetosomes is of the order of few degrees. Chain bending is realized 
by rotating each magnetosome by the bending angle b  with respect to the previous one, 
about a rotation axis that intersects the original chain axis while being perpendicular to it 
and tangential to the crystal surface (Fig. S10b-c). As a result, the mean gap between crystals 
does not change, as long as the bending angle is sufficiently small to maintain the minimum 
distance ming  between crystals. Otherwise, the longitudinal gap is increased until this con-
dition is met. 

In practice, chain construction is based on the following steps: 
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(1) Build N  magnetosomes as described in Section S6.2, with predefined crystal orienta-
tions with respect to a straight chain axis parallel to z. 

(2) Define 1N   longitudinal gaps using the parameters 0g , ming , z , and taking the 
magnetosome orientations into account. 

(3) Construct a straight chain by placing the center of the first magnetosome at the origin, 
and subsequently adding the remaining magnetosomes with their centers on the z-axis, 
and distances along z defined by the 1N   gaps calculated in (2). At this stage, the 
chain axis coincides with the z-axis of the coordinate system and all magnetosome 
centers lie exactly on the chain axis. Gaps are random realizations of a normal distri-
bution with mean 0g  and standard deviation z , with upper limit 02g  and lower limit 
set by the minimum distance ming . 

(4) Transversal magnetosome positions are randomized by adding , ,0x y ( )  to the center 
coordinates of each magnetosome, where x  and y  are normally distributed random 
variates with standard deviation x . 

(6) Chain bending is applied. For this purpose, the straight chain is first rotated randomly 
about the z-axis. Then, all 2n   magnetosomes are rotated by b  about the y-axis. 
Next, all 3n   magnetosomes are rotated using the same procedure, and so on, until 
the last magnetosome has been rotated. The bended chain is rotated back about the z-
axis by the same azimuthal angle used to prepare chain bending, so that the bending 
axis orientation is random within the xy-plane. 

3 Construction of double-stranded chains 

Several types of MTB produce strands of two or more closely arranged magnetosome 
chains made of equidimensional, prismatic, or tooth-shaped magnetosomes (60) (20) (1) (61) (62). 
In these double- or multi-stranded chains, the arrangement of magnetosomes is staggered, 
such that crystals of one chain face the gap between consecutive crystals in the other chain. 
This arrangement is energetically most favorable (63) (64) to the formation of chain bundles 
with a consistent magnetic polarity (16). Double-stranded chains can also form after cell 
death if a single chain is bent beyond the elastic limit: in this case the magnetostatic attrac-
tion of the two extremities causes the chain to fold around a kink point (21). If this type of 
collapse occurs in a weak field, complete folding produces two parallel chain fragments with 
opposed magnetic moments that form a closed magnetic loop. Strands with opposed mag-
netic moments tend to produce a side-by-side arrangement of the crystals that maximizes 
lateral attractive forces (65), as seen on attracted segments of extracted chains (66). Side-by-side 
arrangement and size tapering only at one extremity (e.g. Fig. 2b in ref. (57)) are distinctive 
features of fold-collapsed chains, which contrasts with those of native double-stranded 
chains. 
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The construction of a double-stranded chain of 1 2N N N   magnetosomes, with two 
parallel strands of 1N  and 2N  magnetosomes each, begins with the definition of the 
magnetosome properties of the two strands and the corresponding longitudinal gaps lg  as 
in section 3.2. In addition, transversal gaps tg  are used to set the distance between the two 
sub-chains. Transversal gaps are defined in the same manner as longitudinal gaps, using the 
parameters 0g , ming , and z . The overall shape of double-stranded chains is governed by 
two degrees of freedom: bending, as with single chains, and twisting. Twisting consist in 
the rotation of the two sub-chain axes around a common axis of the double chain. Details 
of the double chain construction depend on its origin (intact or collapsed), as specified in 
the following. 

3.1 Intact double-stranded chains 

Ideal intact double-stranded chains consist of two staggered and identically tapered sub-
chains of similar length, whose magnetosomes face a common axis at a constant distance 
nearly equal to that of the longitudinal gaps (Fig. S11a). The longitudinal position of the 
second strand relative to the first one is defined by the integer lag number l , which describes 
the lag between the end magnetosomes at one extremity of the double chain in units of 
magnetosome length. Accordingly, the difference between the z-coordinates of these end 
magnetosomes is given by Δ 0 0 01 2z l s g  ( / )( ), where the half-integer factor 1 2l /  
accounts for the staggered position of magnetosomes in strand 2 facing the gaps between 
magnetosomes in strand 1. Double-stranded chains can be twisted (Fig. S11b) and bended 
(Fig. S11c) by rotating and rearranging individual magnetosomes so to maintain, on 
average, similar distances between crystals. Deviations from the ideal double-stranded chain 
structure include random variations of magnetosome shape and position, length of the two 
strands, and longitudinal lag of one strand with respect to the other. 

Twisting converts the two straight and parallel strand axes (Fig. S11a) into a double helix 
whose pitch 0 0 0 t2 s g  ( )/  is controlled by the pitch angle t , defined as the angle by 
which the distance vector between the strand axes rotates over the length occupied by a 
single magnetosome. The helix pitch is much longer than the size of individual magneto-
somes, so that a half-turn is typically completed over 10 magnetosomes or more (Fig. 
S11b). Twisting requires to rotate the magnetosome centers about the common chain axis, 
and the magnetosomes about the distance vectors connecting their centers with the chain 
axis. As with single-stranded chains, magnetosome rotations are performed so to maintain 
the predefined gaps, compatibly with the given minimum gap ming . 

Bending of double-stranded chains is more complicated than the single-stranded chain 
case, because bending axis might be in-plane with the two sub-chains: in this case, the gap 
between consecutive magnetosomes lying further away from the bending axis needs to be 
increased to maintain the original staggered arrangement (Fig. S11c).  

 



29 
 

 
Figure S11: Construction of ideal double-stranded chains by twisting and bending of an 
initial straight configuration. In these examples, prismatic magnetosomes with elongation 0e  
are modeled by chamfered cylinders. (a) Straight double-stranded chain of staggered magne-
tosomes with size tapering at both ends. This example with 1 9N  , 2 8N  , and 0l   is 
similar to the double chain shown in Fig. 3 of ref. (16). (b) Same as (a), after twisting the 
double chain plane by a half-turn ( t 20   ). (c) Same as (b), after bending the twisted chain 
with a bending angle b 6   , which is close to the elasticity limit calculated in ref. (21). Note 
the larger gaps on the external bending side (right). (d-f) Same as (a-c) for a double-stranded 
chain obtained by folding a single-stranded, tapered chain of 16 magnetosomes. This example 
with 1 2 8N N  , 2 8N   is similar to the double-stranded chain shown in Fig. 2 of ref. 
(57). 

The construction of staggered double-stranded chains is based on the following steps: 

(1) Build 1N  magnetosomes for strand 1 and 2N  magnetosomes for strand 2 as described 
in Section S6.2, with predefined crystal orientations with respect to a straight chain axis 
parallel to z and sizes determined by a common tapering function. 

(2) Define 1N  and 2N  vectors of the form , ,0x y ( )  defining the transversal rando-
mization of the magnetosome positions in the two strands, with x  and y  being 
normally distributed random variates with standard deviation x . 
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(3) Define 1 1N   and 2 1N   longitudinal gaps using the parameters 0g , ming , z , and 
taking the magnetosome orientations into account. Define 1N  and 2N  transversal half-
gaps using the parameters 0g , ming , z , which will be used to set the minimum 
distance between the two strands. 

(4) Construct the first strand using the longitudinal gaps defined in (2). Unlike single-
stranded chains, the right crystal edges are aligned with the chain axis, instead of the 
magnetosome centers through t 2 0k k k kx s g x( )/    , where kx  is the x-coordinate 
of the center of the k-th magnetosome in strand 1, kx  the corresponding transversal 
randomization, ks  the crystal width, and t 2kg /  the k-th transversal half-gap. Magneto-
some center coordinates along y are defined by k ky y  as for single-stranded chains. 

(5) Construct the second strand using the longitudinal gaps defined in (2). The left crystal 
edges are aligned with the chain axis through t 2 0k k k kx s g x( )/    , where kx  is 
the x-coordinate of the center of the k-th magnetosome in strand 2, kx  the corres-
ponding transversal randomization, ks  the crystal width, and t 2kg /  the k-th transversal 
half-gap. Magnetosome center coordinates along y are defined by k ky y  as for single-
stranded chains. The z-coordinate of the first magnetosome of strand 2 is identified 
with that of the midpoint of the gap between the (l 1)-th and the (l 2)-th magneto-
some of strand 1, where the integer 0l   is the lag between the two strands. 

(6) Because of random variations in magnetosome dimension and gap sizes, magnetosomes 
are not perfectly staggered. The best possible staggering is obtained by moving strand 2 
along z until the sum of the squared differences 2

2, 1, 1, 1 2k k l k lz z z[ ( )/ ]     between 
the longitudinal position of the magnetosomes in strand 2 and the corresponding gap 
midpoint in strand 1 is minimized. Finally, the overall separation between the two 
strands is adjusted by adding or subtracting the same offset along x, until transversal 
gaps between corresponding magnetosomes are as small as possible, but larger than the 
minimum gaps prescribed by the transversal half-gaps t 2kg /  defined in (5). 

(7) Chain twisting is applied. The starting point is a double-stranded chain with a straight 
axis along z and magnetosome centers lying in the xz-plane, up to small random displa-
cements along y. Twisting consists in rotating the center coordinates of all magneto-
somes about the z-axis by an angle t , 0 0 0i kz s g /( ) , where t  is the twisting angle, 

i
kz  the z-coordinate of the k-th magnetosome in strand i, and 0 0 0s g   the mean 

longitudinal distance between magnetosome centers. 

(8) Chain bending is applied. For this purpose, the twisted double-stranded chain is first 
rotated randomly about the z-axis. Then, all 2n   magnetosomes in strand 1 and all 

1n l   magnetosomes in strand 2 are rotated by b  about the y-axis. The rotation 
axis is fixed with respect to the second magnetosome of strand 1 or the (l 1)-th 
magnetosome of strand 2, depending on which of the two is closer to the bending axis. 
Next, all 3n   magnetosomes in strand 1 and all 2n l   magnetosomes in strand 2 
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are rotated using the same procedure, and so on, until the last magnetosome has been 
rotated. Finally, the bended chain is rotated back about the z-axis by the same angle 
used to prepare chain bending, so that the bending axis orientation is random within 
the xy-plane. 

3.2 Fold-collapsed double-stranded chains 

The ideal fold-collapsed chain consists of two parallel strands obtained by complete 
folding of a tapered single-stranded chain (Fig. S11d). Magnetosomes in the two strands 
are facing each other, whereby this condition is exactly met at the folded side. Tapering 
occurs only at the other side of the chain, which correspond to the two extremities of the 
original single-stranded chain. In the ideal case, folding occurs in the middle, so that the 
number of magnetosomes in the two strands differs at most by 1. The remaining properties 
of fold-collapsed chains, including twisting, bending, and random deviations from the ideal 
shape, are defined in the same manner as for native double-stranded chains (section 3.1). 

The construction of fold-collapsed chains is based on the following steps: 

(1-4) Same as the corresponding steps for staggered double-stranded chains. 

(5) Construct the second strand using the longitudinal gaps defined in (2). The left crystal 
edges are aligned with the chain axis through t 2 0k k k kx s g x( )/    , where kx  is 
the x-coordinate of the center of the k-th magnetosome in strand 2, kx  the corres-
ponding transversal randomization, ks  the crystal width, and t 2kg /  the k-th transversal 
half-gap. Magnetosome center coordinates along y are defined by k ky y  as for single-
stranded chains. The z-coordinate of the first magnetosome in strand 2 is the same as 
that of the first magnetosome in strand 1. 

(6-7) Chain twisting and bending is applied in the same manner as for staggered double-
stranded chains. 

4 Micromagnetic calculations 

Micromagnetic calculations are needed to obtain the component of the total chain mag-
netic moment along the direction of the applied field while the applied field changes accor-
ding to a predefined FORC measurement protocol. These calculations simulate VSM mea-
surements, where only the specimen magnetic moment parallel to the applied field direction 
is measured. Full micromagnetic simulations require each magnetosome to be divided into 
volume elements whose size does not exceed the exchange length  2 0.5

ex ex 0 s2l A( / )  (67), 
where exA  and s  are the exchange constant and the spontaneous magnetization of the 
magnetic mineral ( ex 10 nml   for magnetite). The minimum size for the nucleation of 
vortex states is ex6 l , which corresponds to 60 nm in equant magnetite particles (68) (69). 
The critical size of magnetosomes is 20-50% larger (Fig. S3), due to the stabilizing effect of 
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magnetostatic interactions (3). Accordingly, vortex states are not nucleated by FORC 
measurements if the magnetosome width does not exceed 70 nm. In this case, the magneti-
zation of individual crystals is nearly homogeneous, with some deviations resembling a 
flower bundle appearing between 50 and 70 nm (70). 

Regular magnetofossil sizes fall within the stable single-domain limits (Fig. S1), so that 
their magnetization can be effectively considered homogeneous. In this case, the magneti-
zation of a whole magnetosome is fully described by the bulk magnetic moment vector 

sVm u , where V  is the crystal volume and u  a unit vector representing the direction 
of m . This simplification greatly accelerates micromagnetic simulations, enabling the 
calculation of high-resolution FORC diagrams for thousands of magnetosome chains. 

4.1 Energy minimization 

The magnetic state of a single or double chain containing N  magnetosomes is comple-
tely specified by the vectors 1 2, , , N  ( )  and 1 2, , , N  ( )  of polar and azimu-
thal angles of the magnetic moment orientations 1 2, , , Nu u u , with cos sin ,i i i (u   
sin sin , cosi i i   )  for 1i N . Starting from a well-defined initial state, such as positive 
saturation at the beginning of each FORC, simulated measurements in the external field H  
dictated by the FORC protocol are obtained by successive minimizations of the total free 
magnetic energy of the chain. Here a distinction is made between the magnetic field H  (SI 
unit: A/m) and the magnetic induction B  (SI unit: T) improperly identified with the field 
applied during magnetic measurements through the fixed proportionality B H0=  
between the two quantities in air. The free magnetic energy is conveniently normalized by 

2
0 0 sV  , where 0V  is the mean volume of mature magnetosomes. The total normalized free 

energy 

c s z int

1 1,

N N

i i i ij
i i j i

F F F F F
  

      (5) 

contains the contributions from magnetocrystalline anisotropy ( c
iF ), shape anisotropy 

( s
iF ), and Zeeman energy ( z

iF ) of individual magnetosomes, as well as magnetostatic 
interaction energies ( int

iF ) between pairs of crystals. The normalized Zeeman energy in the 
external field HH h , where h  is the unit vector representing the field direction, is given 
by 

z

s

HF u h  
μ

. (6) 

The field direction is specified by cos sin ,sin sin ,cos    ( )h  , where   is the polar 
angle between the tangent of the chain axis at its midpoint and the field direction, and   
the azimuthal angle of the field direction with respect to the chain plane. 

The normalized free energy of cubic magnetocrystalline anisotropy is given by 
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c 2 2 2 2 2 2 2 2 21 2
1 2 2 3 3 1 1 2 32 2

0 s 0 s

K KF         
   

( + + )  , (7) 

where k k c u   is the angle between the magnetization direction u  and the k-th (100) 
axis kc , of the crystal, and 1 2,K K  are the cubic anisotropy constants ( 3

1 13.5 kJ mK /   
and 3

2 2.8 kJ mK /   for magnetite at room temperature) (71) (72). Magnetostriction is 
negligible for the size range of magnetosomes (73) and is therefore ignored. 

The normalized free energy of shape anisotropy, or demagnetizing energy, is given by 

sF u D u   , (8) 

where D  is the magnetometric (i.e. volume-averaged) demagnetizing tensor (74) of a 
homogeneously magnetized body with given shape. The demagnetizing tensor is defined so, 
that D M  is the volume-averaged internal field caused by the homogeneous magnetization 
M . Analytical solutions exist for ellipsoids and cylinders. In case of a triaxial ellipsoid with 
principal axes 3 2 1a a a  , the internal field is homogeneous, and the demagnetizing tensor 
has the principal components (75) 
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with 1 2 3 1D D D    in SI units, where 
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0
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0
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ó
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are the incomplete elliptic functions of the first and second kind, respectively, and 

2 2
3 21
2 2

3 3 1
arccos ,

a aa k
a a a


 


γ  (14) 

In the particular case of prolate rotation ellipsoids, which are used to model equidimen-
sional magnetosomes, the limit of eq. (9) for 2 1 0a a   yields 
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λ λ λ
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and 1 31 2D D( )/   with 3 1a a/λ . 

The demagnetizing tensor of a circular cylinder has two identical principal components 
perpendicular to the cylinder axis, and a third principal component (76) (77) 

2 2 2 2
3

1 2 2 1 1 1 1 1 1
3 3

D K E
é ùé ù( ) ( / ) ( ) ( / ) /ê úê úë ûê úë û

        λ λ λ λ λ
π

 (16) 

parallel to the cylinder axis, with 2,K F( / ) π  and 2,E E( / ) π  being the complete 
elliptic integrals of the first and second kind, respectively, and λ  the length-to-diameter 
ratio †. The demagnetizing tensor of chamfered cylinders cannot be resolved analytically; 
however, the effect of chamfering on 3D  does not exceed 10% for the usual geometries 
required to approximate prismatic magnetosomes. Therefore, excellent numerical approxi-
mations can be obtained using the following empirical correction factor: 
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, (17) 

where 3 ,D w( )λ  is the longitudinal demagnetizing factor of a cylinder with length-to-dia-
meter ratio λ  and normalized chamfering width w , and 3 ,0D ( )λ  longitudinal demagneti-
zing factor of the same cylinder without chamfering, as given by eq. (16) (Fig. S12). The 
maximum error of this approximation is <1% for the typical ranges of λ  and w  that 
characterize prismatic magnetosomes. 

The interaction energy between two magnetized particles 1 and 2 is equivalent to the 
sum of the potential energies 

1 1 2 20
12

2 14
q q

E 


( ) ( )
| - |
r r
r r

  (18) 

of all pairs of magnetic charges 1 2,q q( )  carried by surface elements of the two particles, 
localized by the position vectors 1r  and 2r , respectively. For particle i with magnetization 

iM , the surface charge carried by a surface element d iS  with normal vector in  is given by 
di i i iq S= ⋅M n . 

 
† The original result reported in eq. (11) of ref. (76) is incorrect. It has been recalculated using the 

integral definition in eq. (9) of the same reference, and the corrected result has been verified by 
comparison with numerical results from Table 1 in (77). 
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Figure S12: Ratio between the demagnetizing factors of chamfered and regular cylinders of 
given length-to-diameter ratio along the cylinder axis (dots). Numbers indicate the normali-
zed chamfer width w . Lines represent the empirical correction factor given by eq. (17). 

The normalized energy of two homogeneously magnetized particles with same spontaneous 
magnetization s  and magnetic moments parallel to 1u  and 2u , respectively, is then given 
by 


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Using 1 1 2 2 3 3i i i iu u uu e e e    with respect to a common coordinate system with basis 
vectors 1 2 3, ,( )e e e , eq. (19) can be expressed as 

3
int

12 1 2 1 2
, 1

, ij i j
i j

F F( ) ( )( )u u u e u e
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with coefficients 
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of the interaction matrix 1,2F . 

In case of equidimensional magnetosomes, each particle is represented by a rotation 
ellipsoid with diameter is  and elongation i , whose stray field coincides with that of a 
centered point dipole with same dipole moment vector. In this case, eq. (19) yields the well-
known expression for point dipole interactions, that is 

3 2
1 2 1 12 2 12 12int 1 2 1 2
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with distance vector 12r . The case of prismatic magnetosomes is more complicated, requi-
ring the explicit evaluation of eq. (21) on the chamfered cylinder surfaces. Each magneto-
some pair is represented by two circular cylinders with radii iR , lengths iL , and chamfers 
of widths 2i i iW R w  in a coordinate system ˆˆ ˆ, ,( )x y z  centered on cylinder 1, such that the 
center of cylinder 2 is given by C2 2 2,0,x z( ) . Furthermore, let , ,( )a b c  be the unit vectors 
representing the principal axes of the second cylinder in the ˆˆ ˆ, ,( )x y z  coordinate system. The 
flat faces of the two cylinders, together with their chamfers, are defined by 
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where positive and negative signs apply to the top and bottom faces, respectively, and the 
lateral surfaces by 

1 1
1 1 1 1 1 1 1 1 1 1 1

2 2
2 2 2 2 2 2 2 2 2 2 2 2

ˆˆ ˆ, cos sin ,
2 2

, cos sin ,
2 2

L LR R W W

L LR R W W

     

     

( )

( )

x y z

C a b c

C

C

      

       
. (24) 

Using this description of the cylinder surfaces, the interaction matrix is given by 
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where positive and negative signs apply to the top and bottom faces of 1,2F , respectively, 
and with matrix coefficients 
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where 1,2S  are the surfaces specified in eq. (23-24). The matrix coefficients in eq. (26) need 
to be calculated only once for a complete FORC simulation of a given chain configuration, 
since they depend only on geometric factors. Interaction coefficients are very sensitive to 
the geometry, relative position and orientation of nearest neighbor magnetosomes, while 
converging to the dipolar approximation of eq. (22) over longer ranges. 
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4.2 FORC simulations 

FORC simulations of individual magnetosome chains are made of few curves (Fig. S13) 
from which the whole set of measurements corresponding to a complete FORC protocol is 
reconstructed. This simplification is possible because isolated chains possess only few mag-
netic states. Each simulated FORC starts in a positive saturating field satH  that is suffi-
ciently large for all chains to possess only one stable magnetic state. Next, the field is decrea-
sed in small regular steps H  corresponding to the resolution of the FORC simulation. At 
each step, a new state is calculated using the 1 2, , , N  ( )  and 1 2, , , N  ( )  
values of the previous state as starting parameters for the energy minimization. This 
operation is repeated until the minimum reversal field min

rH  specified by the FORC pro-
tocol is reached. For a complete FORC simulation, the amplitude of min

rH  needs to exceed 
the field r,maxH  above which the major hysteresis loop closes (Fig. S13). The magnetic state 
calculated for each applied field step defines the component 

s
1

sin cos ,sin sin ,cos
N

i i i i i i
i

m H V     
=

( ) ⋅ ( )åh   (27) 

of the magnetic moment parallel to the positive applied field direction, which simulates the 
contribution of a single chain to the bulk measurement. 

 
Figure S13: Micromagnetic FORC simulation of a double-stranded magnetosome chain. 
The solid and dashed lines connecting the open circles labeled r,1H  through r,3H  build the 
reversible and irreversible segments of the descending branch of the major hysteresis loop. 
Irreversible transition between magnetic states occur at the three reversal fields r,1H , r,2H , 
and r,3H . FORCs labeled 0M  through 3M  start at reversal fields immediately preceding a 
magnetic state transition on the descending hysteresis branch. All FORCs starting at reversal 
fields r r,1H H  overlap exactly with 0M ; all FORCs starting at r,1 r r,2H H H   overlap 
exactly with 1M , and so on. Finally, all FORCs starting at r r,maxH H   overlap exactly 
with 3M , which is the ascending branch of the major hysteresis. r,maxH  is the maximum 
field amplitude of irreversible magnetic state transitions along the major hysteresis loop. 
Accordingly, the major loop closes at r,maxH . 
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Because calculations start at a positive saturating field, the pairs ,i iH m H( ( ))  build, by 
definition, a numerical simulation of the descending branch of the major hysteresis loop. 
Magnetic state changes between consecutive field steps are mostly reversible, except for few 
cases where the currently occupied local energy minimum disappears, and a new state is 
nucleated at a different energy minimum. These are the only places along the descending 
hysteresis branch that give raise to consecutive, non-overlapping FORCs (Fig. S13). 
Accordingly, FORCs need to be calculated only for the few reversal fields immediately 
preceding a magnetic state transition. 

In most cases, magnetic state transitions produce a discontinuity in the measured magne-
tization; however, this is not always the case, as seen for instance with Stoner-Wohlfarth 
particles at specific orientations with respect to the applied field (78). Furthermore, small 
discontinuities might not be detected by the finite field steps used for the simulations. 
Therefore, irreversibilities along the descending branch are detected by reversing each field 
step. For instance, irreversibility between the k-th and the (k +1)-th point of the descending 
branch is detected by increasing the applied field 1kH +  by a single step H , starting with 
the magnetic state of the (k +1)-th point: if the resulting magnetic state at 1k kH H H    
does not coincide with that of the descending branch at the same field, a new FORC curve 
is calculated, starting from r 1kH H   and increasing the applied field in steps of H  until 
the maximum field specified by the FORC protocol is reached. 

FORC simulations of individual chains based on the abovementioned principles are 
calculated as follows. First, a maximum field maxH  is defined: this field should be at least 
as large as the saturation field sH , defined as the minimum field in which any chain 
configuration possess a single energy minimum in sH . For defect-free magnetic materials 
with weak magnetocrystalline anisotropy, s s 2H  /  (e.g. 0.3 T for magnetite), regardless 
of particle geometry and domain state. Simulations for this article have been performed 
using max 0.35 TH  . Next, the descending branch of the major hysteresis loop is calcu-
lated between maxH  and maxH  in steps of H , the resolution of FORC simulations, 
storing the magnetic states corresponding to each applied field. The reversibility of each 
field step is checked by taking each of the stored states and verifying that increasing the field 
by H  produces a magnetization change along the descending branch. There will be a 
limited number 1p   of field values r,1 r,, , pH H , for which this condition is violated. The 
magnetic states at  r,1 r, max, , , pH H H H H    represent the starting points for the 
calculation of 1p   selected FORCs in steps of H , until the maximum field maxH  is 
reached. This set of selected FORCs builds the so-called FORC core, which is then used to 
calculate complete FORC sets. A complete set of FORCs starting at rH  values ranging 
from maxH  to maxH  in steps of H  is constructed by taking the r max,H H[ ]  range of 
the first selected FORC that begins at a reversal field rH . The classic FORC protocol (79) 
is a subset of simulated FORCs with max max

u max cH H H  , min
uH   max

max cH H   and 
max
c maxH H . 
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4.3 Implementation and parameter choice 

The FORC simulation algorithms described in previous sections have been implemented 
in a Wolfram Mathematica package called MagnetosomeChainSimulator. The package func-
tions SingleChainForcSimulation and DoubleChainForcSimulation calculate the FORC 
cores of individual single-stranded and double-stranded chains, respectively, with control 
parameters listed in Table S3. Stored lists of single or double chain results are merged into 
a single set of simulated FORC measurements using the FORCMerger function and exported 
to a special data format for further processing with VARIFORC (80) using the FORCExporter 
function. 

SingleChainForcSimulation and DoubleChainForcSimulation enable a detailed control 
of the mean magnetosome and chain geometry, as well as the randomization of the mean 
parameters. The chosen set of parameters (Table S3) aims at reproducing the typical appea-
rance of magnetofossils and single- or double-stranded chain geometries of wild-type 
magnetotactic bacteria (Fig. S4-S7). The in-situ geometry of intact and collapsed magneto-
fossil chains is largely unknown, because the magnetic extraction procedure employed to 
prepare samples for TEM observations destroys the original arrangement of magnetosomes. 
Magnetic extracts contain large, disordered magnetosome clusters, which might or might 
not retain, at least partially, fragments of the original chains (8) (31) (81) (82). The dissolution of 
stabilizing biological structures, such as magnetosome membranes, favor the formation of 
denser clusters (83) (81), while the application of large magnetic fields to aqueous suspensions, 
such as during magnetic extraction, promotes the formation of particle strings resembling 
magnetosome chains (84) (85) (86). On the other hand, the complete collapse of magnetosome 
chains in natural environments might be prevented by spontaneous adhesion of magnetite 
to larger sediment particles (87) (56). 

Simulations in this article are limited to six types of hypothetical magnetofossil confi-
gurations that might be encountered in natural sediment. The first four types include intact 
single and double chains of equant and prismatic magnetosomes with size and shape distri-
butions taken from 3441 magnetite crystals identified as magnetofossils (Fig. S3). The last 
two types include double chains of equant and prismatic magnetosomes resulting from the 
collapse of single chains when kinked beyond their elastic limit. This form of collapse is 
expected to occur in nature, since it is triggered by minor lateral forces that can be expected 
to occur in bioturbated sediment once the cell material has been dissolved. Other forms of 
collapse induced by specific treatments used for TEM observation, such as clumping (31) and 
shrinkage (Fig. 9 in ref. (21)) are not considered, since they result from the application of 
strong mechanical and magnetic forces to aqueous suspensions, which are not present in 
nature. 

Chain folding, however, is not necessarily the only type of chain alteration that might 
occur during early sediment diagenesis. The complete collapse of isolated chains might 
produce isolated small magnetosome clusters similar to those produced by the ΔmamJ mu-
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tant of M. gryphiswaldense; however the small remanence ratio of these clusters ( rs sM M/ 
0.23) (88), which is typical for dense clusters of single-domain magnetite (89), is incompatible 
with typical magnetofossil values (90). Therefore, significant contributions from this form of 
total collapse can be excluded. Other forms of alterations of the original chain structure 
include fragmentation, that is, the subdivision into shorter chain fragments. Certain 
magnetotactic bacteria strains, such as MV-1 (91) produce chains containing large gaps, at 
least under fast growing conditions typical of cultures. Subsection of those chains might be 
easily ripped apart after cell dissolution, through adhesion to different sediment particles. 
Fragmentation is thus expected to decrease the mean length of magnetofossil chains. The 
abundance of short chain fragments in magnetofossil extracts might reflect this fragmen-
tation process, but it might also be an artifact of the sample preparation procedure for TEM 
observations. For modeling purposes, fragmented chains differ from intact chains only by 
the number of magnetosomes. The effect of chain length on bulk magnetic properties is 
large for chains fragments containing 2 or 3 magnetosomes and becomes negligible with 6 
or more crystals (92). A minimum of 4 magnetosomes has been assumed for single chains or 
chain fragments, based on the typical minimum length of natural sections of chains contai-
ning large gaps (11) (93) (91) (66) (94) (95). The maximum length of simulated single chains is limited 
to 9 magnetosomes since longer chains are magnetically undistinguishable. A uniform chain 
length distribution between these two limits is assumed (Table S3). 

The other parameters are chosen according to the criteria discussed in Sections 1-3, so 
that the generated chains resemble TEM observation reported in the literature, with respect 
to the average shape and random deviations from this shape (Table S3). Random examples 
of double-stranded chains generated with these parameters are shown in Fig. S3-6. For each 
of the abovementioned six chain configuration, 30,000 examples like those in Fig. S3-6 
have been generated, and for each of these examples, a single set of FORC measurements 
has been simulated assuming a pure magnetite composition, random orientation with 
respect to the applied fields, a maximum applied field of 0.35 T, and 1 mT field steps. 

The full FORC simulation of a single-stranded chain takes 4 min on average in case of 
equant magnetosomes, and 11 min in case of prismatic magnetosomes, on a single pro-
cessor core running at 2.7 GHz. The longer time required for prismatic magnetosomes is 
due to the more complex handling of magnetostatic interactions when the point dipole 
approximation cannot be used. Double-stranded chains take a significant longer time: 4.5 
and 7.6 hours on average for equant and prismatic magnetosomes respectively, under the 
same conditions, due to the larger number of particles and nearest neighbor magnetostatic 
interactions to account for. The total CPU time of 106 hours·core·GHz required to com-
plete all simulations has been shared among 6 desktop and 20 Raspberry Pi 4 computers. 

Results obtained for individual chains have been merged into a single set of simulated 
FORC measurements with unit saturation magnetization ( s 1M  ) for each of the six confi-
gurations (Fig. S7). Simulated measurements are apparently continuous; however, they con-
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tain small magnetization jumps from a finite number of individual chain contributions of 
the type shown in Fig. S13. Statistical fluctuations in the contribution of these jumps to the 
bulk magnetization become visible in the finite difference estimate ( )M B   2/  of the 
FORC function (Fig. S14). Therefore, FORC diagrams have been calculated with the same 
variable smoothing procedure VARIFORC (80) used to process noisy measurements. The 
smoothing factor 5 0.07S B B  / , where B  is the FORC diagram coordinate and  1B   
mT measurement resolution, with a limitation to 2S   along the central ridge, and to 

9S   at places with maximum curve slope suppress the statistical noise of simulated 
measurements while preserving high-resolution features such as the central ridge. 

The full FORC simulation of a single chain takes 4 min on average in case of equant 
magnetosomes, and 11 min in case of prismatic magnetosomes, on a single processor core 
running at 2.7 GHz. The longer time required for prismatic magnetosomes is due to the 
more complex handling of magnetostatic interactions when the point dipole approximation 
cannot be used.  

 
Figure S14: (a) Hysteresis (dashed lines) and two consecutive pairs of simulated FORCs 
starting at the coercive field cB  and at the coercivity of remanence crB  (solid lines), for the 
ensemble of 30,000 collapsed chains made of equant magnetosomes. (b) Derivative with 
respect to the applied field of one FORC of each pair in (a). Notice the discontinuities at 

rB B  , which correspond to the central ridge (CR) in the FORC diagram. (c) FORC 
function   defined by finite differences of the FORC pair starting at r cB B   in (a). The 
central ridge appears as a sharp peak at rB B  . (d) Same as (c) for the FORC pair starting 
at r crB B  . Irregular oscillations in (c-d) are produced by statistical noise associated with 
the limited number of simulated chains. 
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Table S1: Chain model parameters and their meaning. 

Parameter Explanation 

0 min,g g  

H , h  

cH , max
cH  

rH , min
rH , max

rH  

satH  

uH , min
uH , max

uH  

H  

1K , 2K  

l  

tn  

1 2, ,N N N  
 

0s , ts  
 

t n( )  
 

0w  

b  

 ,  

  

c  
 

s  
 

0  

s  

x  
 

z  
 

s  
 

 ,   

  

Mean and minimum gap between magnetosomes. 

Applied magnetic field vector, and parallel unit vector. 

Coercive field or horizontal FORC coordinate, and its maximum value 

Reversal field, and corresponding minimum and maximum values. 

Saturation field. 

Vertical FORC coordinate, and its minimum and maximum values 

Field step used in the FORC simulation 

First and second cubic magnetocrystalline anisotropy constant. 

Lag of sub-chain 2 with respect to sub-chain 1 

Number of tapered magnetosomes at each chain end. 

Number of magnetosomes in a single chain, or in the two chains 
composing a double chain. 

Full magnetosome width (size of mature magnetosomes), and width of end 
magnetosomes in tapered chains. 

Chain tapering function, defining the size reduction of magnetosomes as a 
function of their position n  inside the chain. 

Mean chamfer width. 

Chain bending angle. 

Polar angle of magnetic moment, and vector of polar angles. 

Angle between midpoint chain axis and applied field. 

Concentration parameter for the Fisher-Von Mises distribution governing 
crystal axes misalignment with respect to shape axes. 

Concentration parameter for the Fisher-Von Mises distribution governing 
shape axes misalignment with respect to the chain axis. 

Mean magnetosome elongation. 

Spontaneous magnetization of magnetosomes. 

Standard deviation of the normal distribution governing the transversal 
randomization of magnetosome position. 

Standard deviation of the normal distribution governing the longitudinal 
(gap) randomization of magnetosome position. 

Standard deviation of the normal distribution governing the shape axes 
length randomization. 

Azimuthal angle of magnetic moment, and vector of azimuthal angles 

Azimuthal angle between field direction and chain plane. 
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Table S2: Other parameters and their meaning. 

Parameter Explanation 

1 2 3, ,a a a  

exA  

1c , 2c , 3c  
lg , tg  

m  

s  

t n( )  
 

u  

w  

V , 0V  
 

exl  

λ  

Lengths of shape axes, with 3a  sub-parallel to the chain axis. 

Exchange constant 

(100) magnetocrystalline axes of cubic anisotropy 

Longitudinal and transversal gap between magnetosomes 

Magnetic moment vector. 

Magnetosome width. 

Chain tapering function, defining the size reduction of magnetosomes as a 
function of their position n  inside the chain. 

Unit vector specifying the magnetic moment direction. 

Chamfer width. 

Individual magnetosome volume, and mean volume of mature magneto-
somes 

Exchange length 

Magnetosome elongation 
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Table S3: Parameter values used for chain simulation Statistical distributions (Fischer-Von 
Mises, Beta, Normal, Uniform) indicate that the actual parameter value is a random 
realization of the given distribution, e.g. 10 4,4( )  means 10 times a random variate with Beta 
distribution 4,4( ) . 

Parameter Single chains Double chains 
(staggered) 

Double chains 
(collapsed) 

Axes orientation 
3 ˆ,( )a z  
3 ˆ,( )c z  

1
s
 , deg 

Size 
0s  (equant, nm) 
0s  (prisms, nm) 

0s s /  
s  

Elongation 
0  (equant) 

1
0
  (prisms) 

Chamfering 
0w  

0w w /  

Chain length/lag 
1N  
2N  

l  

Gaps 
0g  (equant, nm) 
0g  (prisms, nm) 

0g g /  
g  
ming  (equant) 

Transverse position 
0x s / , 0y s /  

x  

Chain tapering 
ts  
tn  

Chain deformation 
b  (deg) 
t  (deg) 

 
s( )  
s( )  

10 4,4( )  

 
150 4,6( )  
130 5,7.3( )  

s0, 0.8, 0.8( )Î[ ]    
0.1 4,4( )  

 
1 
0.694 10,4+ ( )  

 
0.02,0.15( )  

s0, 0.8, 0.8( )Î[ ]    

 
4,9( )  

— 
— 

 
1,5( )  
2,10( )  
0, z( )  
min 0,2g gÎ[ ]  

0.5 nm 

 
0, x( )  

0.05 4,4( )  

 
0.5,1( )  
1, 2N( / )  

 
12 4,4( )  
— 

 
s( )  
s( )  

10 4,4( )  

 
150 4,6( )  
130 5,7.3( )  

s0, 0.8, 0.8( )Î[ ]    
0.1 4,4( )  

 
1 
0.694 10,4+ ( )  

 
0.02,0.15( )  

s0, 0.8, 0.8( )Î[ ]    

 
5,7( )  

1 2,7N( )   
0,2( )  

 
1,5( )  
2,10( )  
0, z( )  
min 0,2g gÎ[ ]  

0.5 nm 

 
0, x( )  

0.05 4,4( )  

 
0.5,1( )  
1, 2N( / )  

 
12 4,4( )  
30 4,4( )  

 
s( )  
s( )  

10 4,4( )  

 
150 4,6( )  
130 5,7.3( )  

s0, 0.8, 0.8( )Î[ ]    
0.1 4,4( )  

 
1 
0.694 10,4+ ( )  

 
0.02,0.15( )  

s0, 0.8, 0.8( )Î[ ]    

 
5,7( )  

1 2,7N( )   
0  

 
1,5( )  
2,10( )  
0, z( )  
min 0,2g gÎ[ ]  

0.5 nm 

 
0, x( )  

0.05 4,4( )  

 
0.5,1( )  
1, 2N( / )  

 
12 4,4( )  
30 4,4( )  
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