

1 **Supplementary Information for “Nodeless electron pairing in CsV₃Sb₅-derived**
2 **kagome superconductors”**

3
4 **1. Summary of Fermi surface and identification of k_F**

5 The Fermi Surface (FS) is obtained by integrating the angle-resolved photoemission
6 spectroscopy (ARPES) intensity over ± 5 meV around the Fermi level (E_F). Due to the limited
7 detectable momentum area of the 5.8-eV laser source, we measured multiple samples to cover all
8 the FS contours. We summarize the FS maps of the measured samples and the corresponding k_F
9 points in Figs. S1 and S2 for Cs(V_{0.86}Ta_{0.14})₃Sb₅ (denoted hereafter as Ta0.14) and
10 Cs(V_{0.93}Nb_{0.07})₃Sb₅ (denoted hereafter as Nb0.07), respectively.

11 The k_F is determined directly from the peak position of the integrated momentum distributed
12 curve (MDC) at $T > T_c$ over $E_F \pm 2$ meV. The peak position is obtained from a Lorentzian fit. It is
13 worthy of note that although the β and δ FSs are close in momentum, the corresponding bands can
14 be well distinguished. As shown in Figs. S1 and S2, the intensity of the β and δ bands are enhanced
15 under different polarizations due to different V 3d orbital characters — *s*-polarization for the β FS
16 and *p*-polarization for the δ FS.

17 **2. Fitting procedure to obtain the amplitude of the SC gap**

18 The SC gap amplitude was quantitatively determined by the fits based on the BCS spectral
19 function^{1,2}, which has a form

20

$$A_{BCS}(k, \omega) = \frac{1}{\pi} \left[\frac{|u_k|^2 \Gamma}{\left(\omega - \sqrt{\varepsilon_k^2 + |\Delta(k)|^2} \right)^2 + \Gamma^2} + \frac{|v_k|^2 \Gamma}{\left(\omega + \sqrt{\varepsilon_k^2 + |\Delta(k)|^2} \right)^2 + \Gamma^2} \right]$$

21 where $|u_k|^2$ and $|v_k|^2$ are coherence factors for the occupied and unoccupied quasiparticles,
22 respectively. Γ is the line width broadening factor due to the finite quasiparticle lifetime.
23 $E_k = \sqrt{\varepsilon_k^2 + |\Delta(k)|^2}$ is the Bogoliubov quasiparticle band dispersion, ε_k is the band dispersion near
24 E_F in the normal state, $|\Delta(k)|$ is the SC gap amplitude. In order to fit the ARPES data, the BCS
25 spectral function is multiplied by the Fermi-Dirac function and convoluted with a Gaussian
26 function corresponding to the experimental energy resolution. Then the EDCs at k_F , obtained by
27 integrating the ARPES intensity over $k_F \pm 0.02$ Å⁻¹, are fitted to extract the SC gap $|\Delta(k)|$.

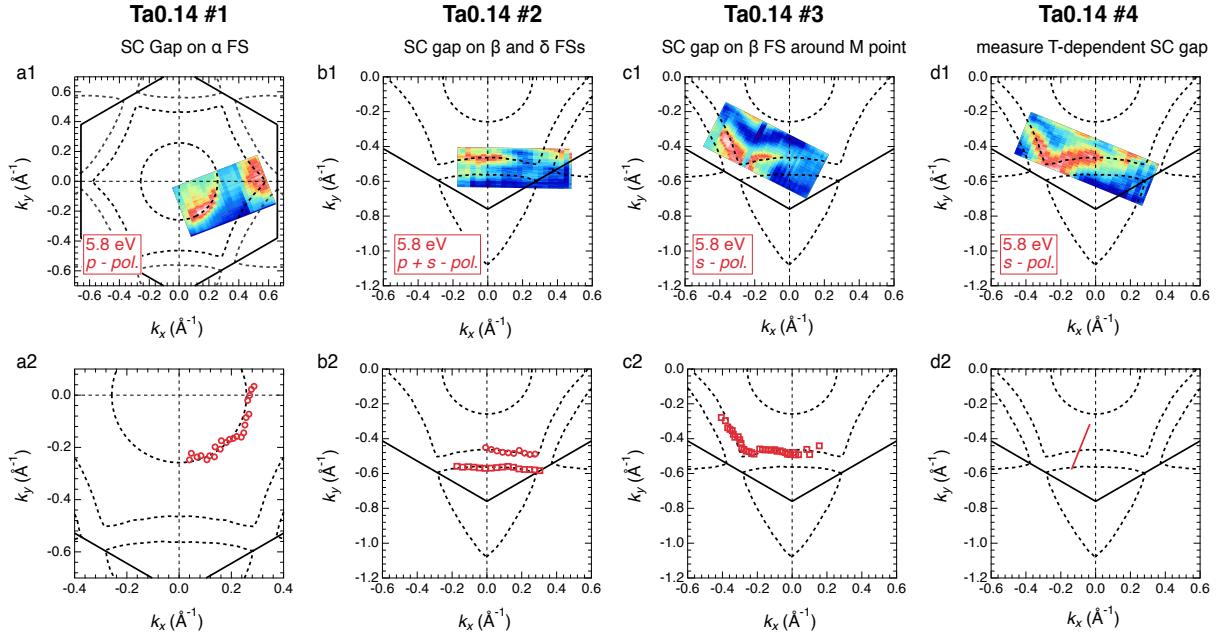
29 **3. Statistics of the fitted SC gap amplitude measured on different samples**

30 By applying the fitting procedure to the EDCs at k_F on the different FSs, we obtain the
31 momentum dependence of the SC gap amplitude, which directly reflects the pairing symmetry. As
32 presented in Figs. 2g and 3g in the main text, we observed the SC gap amplitudes of the Ta0.14
33 and Nb0.07 samples are both nearly isotropic in the momentum space. To demonstrate the small
34 fluctuation of the SC gap amplitudes, we present the statistics of the fitted SC gap amplitudes for
35 the Ta0.14 samples in Table S1, and for the Nb0.07 samples in Table S2. The average deviations
36 are less than 0.04 meV, which means a very small fluctuation around the average value of SC
37 gap amplitude ($\bar{\Delta}$). Moreover, the difference between the maximum and minimum values of the
38 SC gap amplitudes, $\Delta_{\max} - \Delta_{\min}$, is comparable to the two times of the standard deviation of E_F
39 (~0.06 meV), which determines the error bars for the SC gap. These demonstrate that the SC gap
40 amplitude is almost constant in different momenta, supporting a nearly isotropic pairing gap
41 symmetry. The consistent SC gap observed in different samples demonstrates the high quality of
42 the single crystals and excludes the sample-dependent influences on the SC gap.

43 **4. Superconducting gap at different k_z**

44 The FS maps of the Nb0.07 sample at $k_z = 4.5\pi/c$ and $4.8\pi/c$ are plotted in Figs. S4a and S4d,
45 which are measured with 5.8-eV and 7-eV laser, respectively. Here we apply an inner potential of
46 7.3 eV³ to convert photon energies to k_z , as shown in the inset of Fig. S4g. The EDCs at k_F on the
47 β FS are shown in Fig. S4b for 5.8-eV laser and Fig. S4e for 7-eV laser. The corresponding
48 symmetrized EDCs are shown in Figs. S4c and S4f, respectively.

49 Because the energy resolution for the measurements with 7-eV laser is about twice larger than
50 that with 5.8-eV, the coherence peak of the EDCs measured at $k_z = 4.8\pi/c$ is broader than that
51 measured at $k_z = 4.5\pi/c$. To effectively compare the SC gap at these two different k_z , the EDCs
52 are fitted with the function described in Note 2, with the energy resolution taken into account. The
53 extracted SC gap amplitudes at these two k_z planes are summarized in Fig. S4g, which clearly
54 shows that they are nearly the same within experimental uncertainties.


55 **5. Spectral evidence of the electron-phonon coupling**

56 The electron-phonon coupling (EPC) is ubiquitous in quantum materials, which could induce
57 the kinks in the band dispersion at the frequencies of the coupled phonons. As shown in Figs. S6a-

58 c, the kinks are observed on the α and β bands for all the pristine, Nb0.07 and Ta0.14 samples.
59 These kinks are more prominent in the extracted band dispersions from the fits of the MDCs, as
60 shown in Figs. S6d-f. For the α band, the kink is at the binding energy E_B of \sim 30 meV, while for
61 the β band two kinks are distinguished at E_B of \sim 10 meV and 30 meV.

62 Generally, the superconductivity could be promoted if there is a stronger EPC. Indeed, the
63 EPC is enhanced for the Nb0.07 and Ta0.14 samples which have a higher T_c compared to the
64 pristine sample. The EPC strength can be estimated by the ratio between the Fermi velocity and
65 the velocity of the bare band. Here the bare band is the band dispersion without the effect of EPC,
66 which is assumed as a line between a high E_B and E_F . As shown in Fig. S6g, with the V partially
67 substituted by the Nb/Ta, the EPC strength on the β band (derived from V 3d orbitals) is
68 prominently enhanced, while the EPC strength on the α band (derived from Sb 5p orbital) remains
69 nearly a constant. Such enhancements of EPC in the samples with higher T_c further support an
70 EPC driven superconductivity.

71

78 **Fig. S2. Fermi surface of all measured Nb0.07 samples and the k_F points at which superconducting**

79 **gap is measured.**

80

81

82

83

84

85

Nb0.07 #1
SC gap on α FS

Nb0.07 #2
SC gap on α and β FSs

Nb0.07 #3
SC gap on β FS around M point

Nb0.07 #4
SC gap on α and β FSs

Samples	k_F along with	k_F numbers	$\bar{\Delta}$ (meV)	Average deviation	$\Delta_{\max} - \Delta_{\min}$	$2\bar{\Delta}/k_B T_c$
Ta0.14 #1	α FS	23	0.78	0.03	0.16	3.48
Ta0.14 #2	β FS	10	0.76	0.02	0.08	3.40
	δ FS	16	0.77	0.04	0.16	3.44
Ta0.14 #3	β FS (around M)	34	0.78	0.03	0.21	3.48
Average			0.77	-	-	3.44

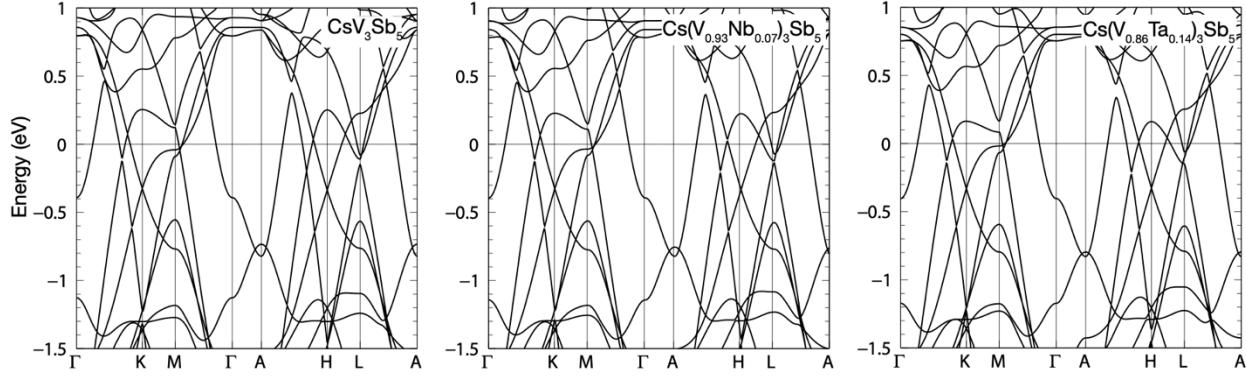
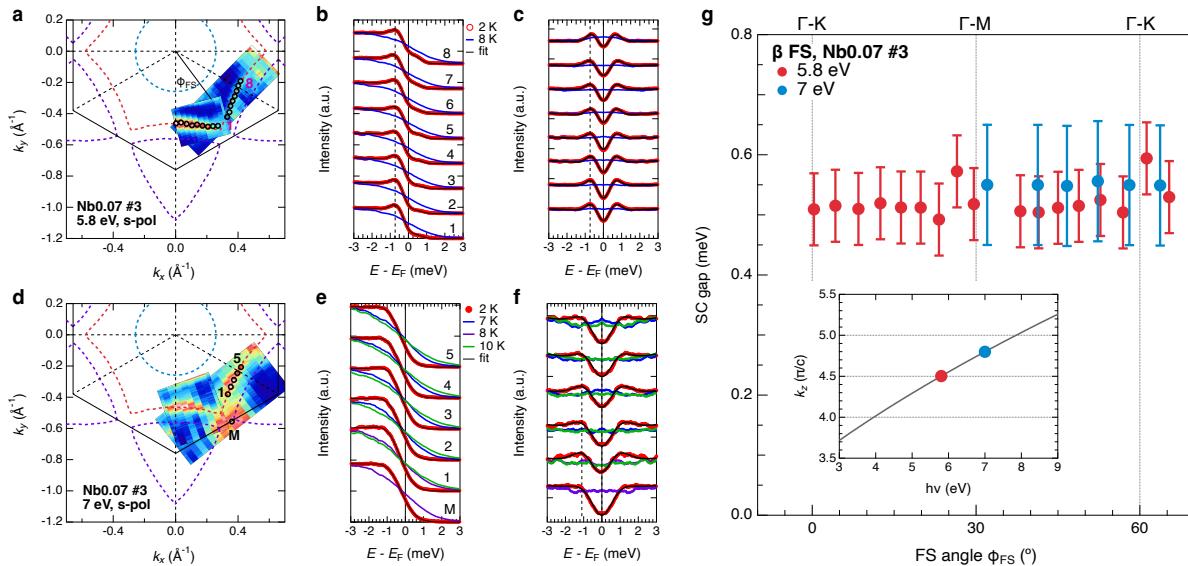
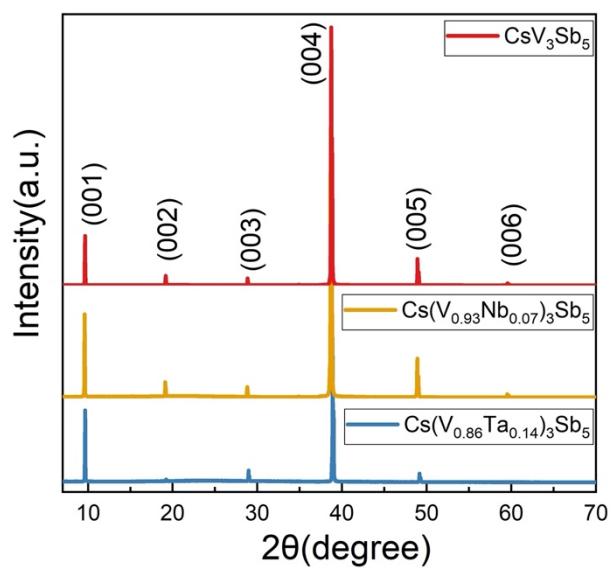

86
87
88
89
90

Table S1. Statistics of the SC gap for the Ta0.14 samples with $T_c \sim 5.2$ K. The SC gap amplitudes on different FSs of different samples are highly consistent and averaged at 0.77 meV, giving $2\Delta/k_B T_c$ of 3.44.


Samples	k_F along with	k_F numbers	$\bar{\Delta}$ (meV)	Average deviation	$\Delta_{\max} - \Delta_{\min}$	$2\bar{\Delta}/k_B T_c$
Nb0.07 #1	α FS	25	0.55	0.03	0.17	2.87
Nb0.07 #2	β FS	18	0.48	0.03	0.16	2.52
	δ FS	15	0.51	0.02	0.08	2.67
Nb0.07 #3	β FS (around M)	17	0.52	0.02	0.10	2.75
Nb0.07 #4	β FS	7	0.59	0.02	0.10	3.12
	δ FS	7	0.58	0.03	0.11	3.04
Average			0.54	-	-	2.83

91
92
93

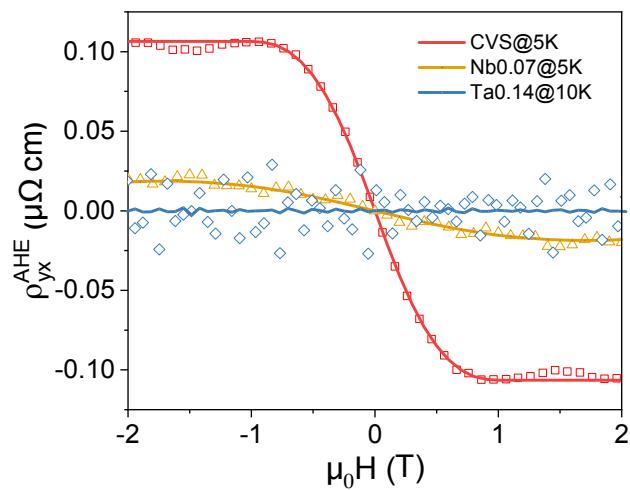
Table S2. Statistics of the SC gap for the Nb0.07 samples with $T_c \sim 4.4$ K. The SC gap amplitudes on different FSs of different samples are comparable and averaged at 0.54 meV, giving a ratio $2\Delta/k_B T_c$ of 2.83.



94
95 **Fig. S3. Calculated band structures for the CsV_3Sb_5 , $\text{Cs}(\text{V}_{0.93}\text{Nb}_{0.07})_3\text{Sb}_5$ and $\text{Cs}(\text{V}_{0.86}\text{Ta}_{0.14})_3\text{Sb}_5$ samples based on density functional theory.** The experimentally determined lattice constants are used in
96 the calculation. The overall band structure is not dramatically changed upon Nb/Ta substitutions of V.
97

100
101
102 **Fig. S4. Superconducting gap at different k_z for the Nb0.07 sample.** **a**, FS map taken with 5.8-eV laser.
103 **b**, EDCs at k_F marked in **a**. The black lines are the fits of these EDCs. **c**, Symmetrized EDCs for **b**. **d-f**,
104 Same as **a-c** but for the data taken with 7-eV laser. The curves are vertically offset for clarity. **g**, Comparison
105 of the SC gap amplitude measured with 5.8-eV and 7-eV laser. The inset shows the k_z positions
106 corresponding to these two photon energies.
107
108
109

110

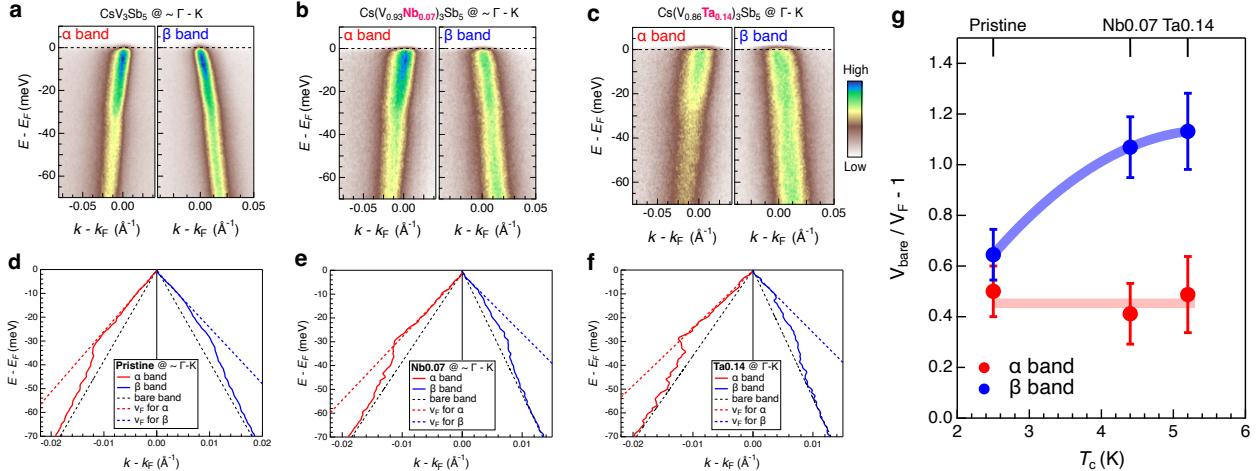

111

112 **Fig. S5. X-ray diffraction pattern of the pristine CsV_3Sb_5 , Nb0.07 and Ta0.14 single crystals.**

113

114

115


116

117 **Fig. S6. Comparison of the anomalous Hall resistance ρ_{yx}^{AHE} in pristine CsV_3Sb_5 , Nb0.07 and Ta0.14**
118 **samples, which is weakened in the Nb0.07 sample and absent in the Ta0.14 sample. ρ_{yx}^{AHE} is extracted**
119 **by subtracting the local linear ordinary Hall background.**

120

121

122

123

124 **Fig. S7. Spectral evidence of the electron-phonon coupling.** **a-c**, ARPES intensity plots of the
 125 α and β bands nearly along Γ -K direction for the pristine CsV_3Sb_5 , Nb0.07 and Ta0.14 samples,
 126 respectively. These ARPES data are taken with 7-eV laser at $T = 6$ K. **d-f**, Extracted band dispersions. **a**
 127 and **d** are adopted from the Reference⁴, in which the T_c of the measured CsV_3Sb_5 is ~ 2.5 K. **g**, Ratio
 128 between the velocity of the bare band and the Fermi velocity for the pristine, Nb0.07 and Ta0.14 samples,
 129 plotted as a function of their T_c .

130

131

132 **References:**

- 1 Matsui, H. *et al.* BCS-like Bogoliubov quasiparticles in high- T_c superconductors observed by angle-resolved photoemission spectroscopy. *Physical Review Letters* **90**, 217002 (2003).
- 2 Shimojima, T. *et al.* Orbital-independent superconducting gaps in iron pnictides. *Science* **332**, 564-567 (2011).
- 3 Li, C. *et al.* Spectroscopic Evidence for a Three-Dimensional Charge Density Wave in Kagome Superconductor CsV_3Sb_5 . *arXiv:2112.06565* (2021).
- 4 Zhong, Y. *et al.* Testing electron-phonon coupling for the superconductivity in Kagome metal CsV_3Sb_5 . *arXiv:2207.02407* (2022).

141