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S1 The higher-order genetic association approach531

One technical challenge to modelling kin selection in nonlinear group games is that we must not only account for532

relatedness between pairs of individuals (Hamilton’s r), but also between triplets, quadruplets, etc. [119–127]533

(reviewed in [19]). To achieve this, Ohtsuki [20] developed a mathematical framework. The following results in this534

section are from Ohtsuki [20].535

We consider an infinitely large clonally reproducing population of haploid individuals, each with a genetically536

determined pure Cooperate or Defect strategy. Individuals form genetically homophilic groups to play an n-player537

game. Let ak and bk be the payoff functions for Cooperators and Defectors, respectively, when k of the other n− 1538

group members are Cooperators. In our threshold game, payoffs to Cooperators are and Defectors are539

ak =

{
W if k ≥ τ − 1,

X otherwise,
(S1a)540

541

bk =

{
Y if k ≥ τ,
Z otherwise.

(S1b)542

Payoffs determine the number of offspring contributed to the next generation. Let ρl be the probability that all the l543

players randomly sampled from the group without replacement are Cooperators and set ρ0 = 1. Then, the change544

in the proportion of Cooperators p in the population over one generation is [20]545

∆p ∝
n−1∑
k=0

n−1∑
l=k

(−1)l−k
(
l

k

)(
n− 1

l

)
[(1− ρ1)ρl+1ak − ρ1(ρl − ρl+1)bk] . (S2)546

Probabilities ρl depend on p and on the proportion of group members whose strategies are identical by descent547

(IBD). We define a “family” to be a group of individuals that are IBD. Let θl→m be the probability that, if we draw l548

individuals without replacement from the group, they share exactly m common ancestors. Then [20]549

ρl =

l∑
m=1

θl→mp
m. (S3)550

The higher-order genetic association, θl→m, depends on Fn→n, which are the probabilities that a group of size n551

has family partition structure n, where n is a multiset of positive integers that sum to n. Fn→n depends on the552

group-formation process.553

In summary, to describe the evolutionary dynamics, we create a homophilic group-formation model (S2) to calculate554

all Fn→n, which we use to calculate θl→m (S3), and ρl (Eq. S3), and combine with the threshold game payoff555

functions ak and bk (Eqs. S1) to describe the evolutionary dynamics (Eq. S2).556
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S2 Three homophilic group-formation models to calculate the557

probabilities of family partition structures, Fn→n558

To calculate the probabilities of different family partition structures, Fn→n, we created three homophilic559

group-formation models: leader driven, members recruit, and members attract. Conceptually, we can imagine that560

leaders and members prefer to recruit or attract their own family members, and the homophily level determines the561

probability with which a ‘mistake’ is made and a nonkin member is recruited or attracted instead.562

S2.1 Leader driven563

Group formation is driven by the leader, who attracts or recruits kin with probability 1− q and nonkin with probability564

q (e.g., foraging-band formation, Nambikwara people, Brazil [31]).565

Let s = 0, . . . , n− 1 be the number of nonkin recruited. Because the population is infinite, every nonkin individual566

recruited will be from a new family to the group. The only possible family partition structures ns have one family567

containing n− s individuals and s families containing a solitary individual, i.e., n0 = {n}, n1 = {n− 1, 1},568

n2 = {n− 2, 1, 1}, . . ., nn−1 = {1, 1, . . . , 1}. Therefore, the nonzero family partition probabilities are569

Fn→ns =

(
n− 1

s

)
qs(1− q)n−1−s. (S4)570

For example, in Fig. 2a in the main text, s = 2 and ns = {3, 1, 1}.571

S2.2 Members attract572

At each step in the group-formation process, each current member attracts its own kin to join the group with573

weighting 1, and strangers are attracted to the group itself with weighting α. Because the population is infinite, the574

stranger will be from a new family to the group.575

The jth recruit (or (j + 1)-th group member) will be from a new family with probability576

P (j from a new family) =
α

α+ j
, (S5a)577

or from a family a that has already been recruited to the group with probability578

P (j from family a) =
na
α+ j

, (S5b)579

where na is the number of current members from family a.580

This model is equivalent to the sequential sampling scheme used in genetic coalescence models [128], and the581

partition probabilities are described by Ewens’ formula [32]582

Fn→n =
n! αΦ∏n

j=1 j
φjφj !(α+ j − 1)

, (S6)583

where φj is the number of families with j members. For example, in Fig. 2c, n = {1, 2, 2} and φ = (1, 2).584

In the main text, we have interpreted the α parameter in the members-attract group-formation model as attraction to585

the group itself. The connection to the neutral genetic coalescence model [128] is suggestive of another586

interpretation: the same distribution of family partition structures would also result from random sampling from a587

finite population with mutation rate α or subpopulation with immigration rate α under weak selection. However, this588

is not the interpretation we have in mind.589

S2.3 Members recruit590

S2.3.1 Overview591

At each step in the group-formation process, a current member is chosen at random to be the recruitor. The592

recruitor recruits its own family member to the group with probability 1− q, or recruits a stranger with probability q.593

Because the population is infinite, the stranger will be from a new family to the group.594
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The jth recruit (or (j + 1)-th group member) will be from a new family with probability595

P (j from a new family) = q, (S7a)596

or from a family a that has already been recruited to the group with probability597

P (j from family a) =
na(1− q)

j
, (S7b)598

where na is the number of current members from family a.599

Consider a particular arrival sequence of individuals s (e.g., Fig. 2c: s = (yellow, yellow, blue, blue, pink)). The600

arrival sequence implies a partition structure n (e.g., Fig. 2c: n = {1, 2, 2}). If there are Φ families, then there were601

Φ− 1 nonkin recruitments. Let m = (m1, . . . ,mΦ−1) be the ordinals of each nonkin recruitment (e.g., Fig. 2c:602

m = (2, 4)). Then the probability of s is (see example in S2.3.2)603

P (s) =

(∏Φ
i=1(ni − 1)!

(n− 1)!
qΦ−1(1− q)n−Φ

)
Φ−1∏
k=1

mk. (S8)604

The left-hand bracketed factor is the same for any sequence that has partition structure n. Therefore, to get the605

total probability P (n) = Fn→n that is our goal, we need to identify every m consistent with n, and count the number606

of s consistent with m. The mistake ordinals m, however, depend on the family arrival order ~n, so the sum is easier607

to obtain in the two steps described below.608

Define ~n as a multiset permutation of n corresponding to family arrival orders (e.g., Fig. 2c: ~n = (2, 2, 1)). Define N609

as the set of all ~n consistent with n. For example, if n = {1, 2, 2}, then N = {(1, 2, 2), (2, 1, 2), (2, 2, 1)}. DefineM610

as the set of all m consistent with ~n, which is the set of all m satsifying the constraints mi−1 + 1 ≤ mi ≤ m̂i where611

m0 = 0 and m̂i =
∑i
k=1 ~nk. For example, if ~n = (1, 2, 2), thenM = {(1, 2), (1, 3)} (another, larger, example is612

provided in S2.3.3). Call the count of possible individual arrival sequences s consistent with ~n and m as C(~n,m).613

Then614

Fn→n = P (n) =

(∏Φ
i=1(ni − 1)!

(n− 1)!
qΦ−1(1− q)n−Φ

) ∑
~n∈N

∑
m∈M

C(m, ~n)

Φ−1∏
k=1

mk. (S9)615

To count C(~n,m), we fix the family identity of the first individual and every recruitment mistake, and work through616

the families in the reverse order of arrival, counting how many ways there are to arrange individuals from that family617

given the positions taken up by families that arrive later (see worked example in S2.3.4). Using this approach, we618

obtain619

C(m, ~n) =

Φ∏
j=2

(
m̂j −mj−1 − 1

~nj − 1

)
. (S10)620

Substituting Eq. S10 into Eq. S9 gives the final expression621

Fn→n =

(∏Φ
i=1(ni − 1)!

(n− 1)!
qΦ−1(1− q)n−Φ

) ∑
~n∈N

∑
m∈M

Φ∏
j=2

(
m̂j −mj−1 − 1

~nj − 1

)Φ−1∏
k=1

mk. (S11)622

S2.3.2 Example: Find P (s)623

What is the probability P (s) of the sequence624

s = a a | b a | c b c c a b b (S12)625

where a, b, c, identify the family memberships of individuals, the order of the letters signifies the order in which the626

individuals joined the group, and recruitment mistakes are highlighted with a ‘|’?627
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From the description of the group-formation model in Eq. S7628

P (s) = (1− q)
(

2q

2

)(
2(1− q)

3

)(
4q

4

)(
1− q

5

)(
1− q

6

)(
2(1− q)

7

)(
3(1− q)

8

)
629 (

2(1− q)
9

)(
3(1− q)

10

)
630

=


a︷ ︸︸ ︷

(3!)(1− q)3

b︷ ︸︸ ︷
(3!)(1− q)3

c︷ ︸︸ ︷
(2!)(1− q)2

(n− 1)!

((2)(4)q2
)︸ ︷︷ ︸

mistakes

631

=

(
(3!)(3!)(2!)

(n− 1)!

)(
q2(1− q)8

)
((2)(4)) . (S13)632

633

Eq. S13 is written in a way to illustrate the connection to Eq. S8. The denominator in the first bracketed term634

corresponds the number of recruitments, which is the group size minus 1, i.e., n− 1. The factorials in the numerator635

correspond to the family partition structure, i.e., n = {4, 4, 3}. The second bracketed term depends the number of636

recruitments of nonkin and kin: there are Φ = 3 families in the group, which implies 2 nonkin, which gives q2; and637

n− 1− (Φ− 1) = 8 kin gives (1− q)8. The final bracketed term is the product of the mistake ordinals, m = (2, 4).638

S2.3.3 Example: Find the constraints on m corresponding to ~n639

If a group has family arrival order ~n = (4, 5, 2, 2), what are the constraints on the values that the mistake ordinals640

can take, m = (m1,m2,m3)?641

Denote the family memberships in ~n by (a, b, c, d). The first individual is not recruited; therefore, the first recruitment642

mistake m1 corresponds to the arrival of the first individual from the second family, family b.643

The earliest that the first mistake can be is on the first recruitment, i.e., 1 ≤ m1. Once the first mistake has644

occurred, the earliest that the second mistake can be is immediately after the first mistake, i.e., m1 + 1 ≤ m2.645

Therefore, in general, mi−1 + 1 ≤ mi where we define m0 = 0.646

The latest that each mistake can occur happens in the sequence where every family arrives as a group. For the647

example above, that is the sequence s = a a a a | b b b b b | c c | d d. Therefore, in general, mi ≤ m̂i where648

m̂i =
∑i
k=1 ~nk.649

For the example above, the constraints are:650

1 ≤ m1 ≤ 4651

m1 + 1 ≤ m2 ≤ 9652

m2 + 1 ≤ m3 ≤ 11653
654

S2.3.4 Expression for C(~n,m)655

How many individual arrival sequences are consistent with a family arrival order ~n = (4, 5, 2, 2) and656

recruitment-mistake ordinals m = (1, 5, 8)?657

One possible arrival order of individuals that satisfies ~n and m above is658

a | b a b b | c a b | d a c b d (S14)659

Arrival sequences consistent with ~n and m rearrange the letters above with the constraints that: (1) the first a is660

fixed; (2) every letter after a ‘|’ is fixed; and (3) letters can only be placed after their corresponding ‘| x’.661

Start at the end with family d, the fourth (j = 4) family to join the group. There are four free positions into which one662

individual must be positioned:663

a | b a b b | c a b | d a c b d︸ ︷︷ ︸
◦ ◦ ◦ d

. (S15)664

The number of ways to make this choice is
(

4
1

)
= 4.665
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Consider family c, the third (j = 3) family to join. Two positions are already occupied by family d members, so there666

are five free positions into which one individual must be positioned:667

a | b a b b | c a b | d a c b d︸ ︷︷ ︸
◦ ◦ | × ◦ c ◦ ×

. (S16)668

The number of ways to make this choice is
(

5
1

)
= 5.669

Consider family b, the second (j = 2) family to join. Four positions are already occupied by family c and d members,670

so there are seven free positions into which four individuals must be positioned:671

a | b a b b | c a b | d a c b d︸ ︷︷ ︸
◦ b b | × ◦ b | × ◦ × b×

. (S17)672

The number of ways to make this choice is
(

7
4

)
= 35.673

Taking the product of the combinations, the total number of possible arrival sequences is674

C(m, ~n) = 4× 5× 35 = 700. (S18)675

The example above helps us generalise. In general, for each family j considered above, the number of free676

positions was677

n−mj−1 − 1−
Φ∑

k=j+1

~nk = m̂j −mj−1 − 1 (S19)678

and the number of individuals to be positioned was679

~nj − 1. (S20)680

Therefore, we can write the general equation681

C(m, ~n) =

Φ∏
j=2

(
m̂j −mj−1 − 1

~nj − 1

)
(S21)682
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S3 How to find the elements of matrix M , which is used to calculate683

higher-order genetic associations θ from family partition-structure684

probabilities F685

S3.1 Overview686

Ohtsuki [20] (Appendix C) provided an example for group size n = 4 of how to calculate the higher-order genetic687

associations θl→m from the probabilities of different family partition structures Fn→n. Here, we provide the general688

method.689

Define column vectors θ = [θ1→1, θ2→1, θ2→2, . . . , θn→n]T and F = [Fn→{1,...,1,1}, Fn→{1,...,1,2}, . . . , Fn→{n}]
T .690

Then there is a matrix M such that691

θ = MF. (S22)692

Call M(l,m,n) the entry of M in the row corresponding to θl→m and the column corresponding to Fn→n, which is693

the probability that a random sample of l individuals from a group with the family partition structure n will contain m694

families. For a given n, index the entries in an arbitrary order, ~n = (n1, n2, . . . , nΦ), where ni is the number of695

individuals in the group who are IBD with common ancestor i, and Φ is the total number of ancestors. Let I be the696

set of all i = (i1, . . . , im), which are m-length combinations of integers 1, . . . ,Φ. For example, if Φ = 4 and m = 3,697

then I = {(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)}. Let Q be the set of all q = (qi1 , . . . , qim), which are multiset698

permutations of m-length partitions of l. For example, if l = 5 and m = 3, then699

Q = {(1, 1, 3), (1, 3, 1), (3, 1, 1), (1, 2, 2), (2, 1, 2), (2, 2, 1)}. Then, the entries of M are700

M(l,m,n) =

∑
i∈I

∑
q∈Q

m∏
j=1

(
nij
qij

)/(
n

l

)
(S23)701

S3.2 Explanation702

Consider the outcome of randomly sampling l ≤ n individuals from a group with structure n. The distribution of703

outcomes follows the multivariate hypergeometric distribution704

P (Q1 = q1, Q2 = q2, . . . , Qw = qw | n1, n2, . . . , nΦ) =

∏Φ
i=1

(
ni

qi

)(
n
l

) , (S24)705

where qi is the number of individuals in the sample from family i, and
∑
i qi = l.706

If qi = 0, then
(
ni

qi

)
= 1, so we can simplify Eq. S24 by considering only those families that contribute to the product.707

Define708

q = (qi1 , qi2 , . . . , qim), (S25)709

where i = (i1, . . . , im) are the indices of the families that were sampled. Then710

P (Q = q | n) =

∏m
j=1

(
nij
qij

)(
n
l

) . (S26)711

Eq. S26 gives the probability of drawing just one set of families i with distribution q. To find the probability712

M(l,m,n), we must take the sum over all possible families i and distributions q that satisfy (l,m) given n. That713
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sum is714

715

M(l,m,n) =

(
n

l

)−1
Φ−m+1∑

i1=1

Φ−m+2∑
i2=i1+1

. . .

Φ−m+g∑
ig=ig−1+1

. . .

m∑
im=im+1

716

l−(m−1)∑
qi1=1

l−(m−2)−qi1∑
qi2=1

. . .

l−(m−h)−
∑ih−1

j=1 qij∑
qih=1

. . .

l−1−
∑im−2

j=1 qij∑
qim−1

=1

m∏
j=1

(
nij
qij

) , (S27)717

718

where qim = l −
∑im−1

j=1 qij .719

Eq. S27 can be written more compactly as Eq. S23 above by replacing the nested sums with counts over the sets720

of ij and qij .721

The ij indices in Eq. S23 are all m-length combinations of integers 1, . . . ,Φ. For example, if there are Φ = 4722

families in the group, and the sample has m = 3 families, then the indices i are:723

i1 i2 i3
1 2 3
1 2 4
1 3 4
2 3 4

724

This can be found quickly in Python with: itertools.combinations(range(Phi), m)725

The qij values in Eq. S23 are all multiset permutations of m-length partitions of l. For example, if we draw l = 5726

individuals, and we are interested in possible numbers of individuals in m = 3 groups, then the m-length partitions727

of l are (1, 1, 3) and (1, 2, 2), and their multiset permutations q are:728

p1 p2 p3 qi1 qi2 qi3
1 1 3 1 1 3

1 3 1
3 1 1

1 2 2 1 2 2
2 1 2
2 2 1

729

The unique permutations of a partition can be found with:730

sympy.utilities.iterables.multiset_permutations(partition).731

To save computational time in our code (see S9 for an overview of the code repository), the partitions of all integers732

l = 1, . . . , n− 1 were found at the beginning of the process [129] and subsetted to match length m as needed.733

Most of the computational time is spent iterating through the nested loops, so identifying cases that can be skipped734

saves time:735

1. The first row of M corresponding to θ1→1 is all ones.736

2. In the last n rows of M , corresponding to θn→m, all elements are zeros except when m = Φ, which are ones.737

3. Entries of M corresponding to m > Φ are zeros.738

4. Sort the group’s partition n and sample’s partition p ` l in reverse order. If any ni < pi (for i = 1, . . . ,m),739

then for all q that are permutations of p, P (Q = q | n) = 0.740

Matrices for games with group size up to n = 24 have been calculated and saved in the online code repository (S9).741

Please find a quickstart tutorial in /tutorials/matrix_M.pdf showing how to access and use these stored742

matrices.743
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S4 Dynamics under random group-formation model744

S4.1 Evolutionary dynamics745

Under random group formation (i.e., in the absence of homophily), Eq. S3 simply becomes ρl = pl, and putting this746

into Eq. S2 yields the following replicator dynamics [130]747

dp

dt
= p(1− p)g(p) (S28)748

where g(p) is known as the gain function [16]749

g(p) =

n−1∑
k=0

(
n− 1

k

)
pk(1− p)n−1−kdk (S29)750

where k is the number of the n− 1 other members of the group that are Cooperators, and dk = ak − bk is the751

payoff gain if an individual switches from the Defector to Cooperator strategy. We define the gain sequence752

d = (d0, d1, . . . , dn−1) for later use.753

S4.2 Analysis of the dynamics754

An inspection of Eq. S28 immediately reveals that there are two trivial equilibria, p∗0 = 0, a population of all755

Defectors; and p∗1 = 1, a population of all Cooperators. In our case, the Defector equilibrium p∗0 = 0 is always stable756

because g(0) = d0 = X − Z < 0. On the other hand, g(1) = dn−1 = W − Y suggests that the Cooperator757

equilibrium is stable if W > Y and unstable if W < Y .758

As for the internal equilibria of Eq. S28, the number of roots (counted with multiplicity) and sign changes in gain759

function, g(p), is either equal to the number of sign changes in gain sequence, d, or less by an even amount760

[Property 2 in 14]. This allows us to infer information about the existence of any interior equilibria, as detailed below.761

Table S1: The payoff gain if an individual switches strategy from Defector to Cooperator, dk = ak − bk, for the general case 1 < τ < n assumed
in the main text.

k ak bk dk sgn(dk)
0 X Z X − Z −
...

...
...

...
...

τ − 2 X Z X − Z −
τ − 1 W Z W − Z +
τ W Y W − Y + or −
...

...
...

...
...

n− 1 W Y W − Y + or −

S4.2.1 The case of W > Y762

If W > Y , the sign pattern of the gain sequence is d = (−, . . . ,−,+, . . . ,+), which includes a single sign change,763

which in turn suggests a single internal equilibrium. By Result 3.2.a in [14], this interior equilibrium 0 < p∗u < 1 is764

unstable. Therefore, bistability occurs; the proportion of Cooperators must be above p > p∗u to establish and for the765

population to evolve to all-Cooperators; otherwise, it evolves to all-Defectors.766

S4.2.2 The case of W < Y767

If W < Y , the sign pattern of the gain sequence is d = (−, . . . ,−,+,−, . . . ,−), which includes two sign changes,768

which in turn suggests that g(p) has zero or two roots (counted with multiplicity). In fact, Result 4.1 in [14] says that769

there may be zero, one, or two interior equilibria, depending on the maximum value of the gain function g(p̂), as770

follows:771

• If g(p̂) < 0, there are zero interior equilibria. Therefore, the population always evolves to all-Defectors.772

• If g(p̂) = 0, there is one unstable interior equilibrium. This is a degenerate case.773

S8



• If g(p̂) > 0, there are two interior equilibria 0 < p∗u < p∗s < 1, where p∗u is unstable and p∗s is stable. Therefore,774

the proportion of Cooperators must be above p > p∗u to establish and for the population to evolve to a775

coexistence of Cooperators and Defectors (p∗s); otherwise, it evolves to all-Defectors.776

S4.2.3 Numerical examples777

Fig. S1 illustrates the different regimes of the evolutionary dynamics in the baseline model with random group778

formation (no homophily). The key take-away is that the all-Defector p∗ = 0 is always stable, and therefore779

Cooperators cannot invade a population of all Defectors.780
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Figure S1: An example of the evolutionary dynamics of the baseline model, where groups are formed without homophily. Direction of selection is
indicated by arrows; stable and unstable equilibria by thick lines and dashed lines, respectively; and the filled circle marks the point of transition
from zero to two interior equilibria. Dynamics vary with game payoff parameters: (a) Cooperator payoff if threshold met W , (b) Cooperator payoff
if threshold not metX, (c) Defector payoff if threshold met Y , (d) Defector payoff if threshold not met Z. The critical values that mark the transition
from zero to two interior equilibria (p̂, Ŵ , X̂, Ŷ , Ẑ) must be found numerically. Default parameter values: n = 8, τ = 5, W = 2, X = −1,
Y = 3, Z = 0.
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S4.2.4 Critical point of transition from zero to two interior equilibria781

The critical value that marks the transition from zero to two interior equilibria (filled circles in Fig. S1) occurs when782

the peak of the g(p) function is touching 0 at a single point. Therefore, p̂ simultaneously solves g(p̂) = 0 and783

g′(p̂) = 0. The derivative condition can be simplified to784

p̂ =
(τ − 1)(Ŵ − X̂)

(τ − 1)(Ŵ − X̂) + (Ŷ − Ẑ)(n− τ)
. (S30)785

In the typical one-parameter threshold game models analysed in the literature, which assume W −X = Y − Z,786

Eq. S30 reduces to p̂ = (τ − 1)/(n− 1) [25, 26]. The critical point is solved numerically (see787

/scripts/random_grp/find_crit.py for script).788
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S5 Similar results obtained from different models789

The purpose of this section is to show that qualitatively similar evolutionary dynamics to those presented in the790

main text (Fig. 3) can also be obtained under different group-formation models and when the assumption of a791

binary threshold is relaxed to a sigmoid payoff function.792

S5.1 Other group-formation models793

Qualitatively similar dynamics are obtained under the leader-driven and members-attract group-formation models.794

Fig. S2 shows the results for the same group-size, threshold, and payoff parameter values as used in Fig. 3. The795

key result holds: increasing homophily promotes the invasion and persistence of Cooperators. We find again that a796

transition from zero to two interior equilibria occurs at h > ĥ (Fig. S2a,c), that p∗s ↑ and p∗u ↓ as homophily797

increases, and that Cooperators can invade when h > h0.798
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Figure S2: Examples of how homophily affects the evolutionary dynamics under the (a,b) leader-driven and (c,d) members-attract group-formation
models. Parameter values are the same as in the members-recruit example in the main text (Fig. 3): n = 8, W = 2, Y = 3, Z = 0; (a,c) τ = 5,
X = −1; (b,d) τ = 4, X = −0.5. Coloured regions separate regions of qualitatively different evolutionary dynamics: h < ĥ, Cooperators cannot
persist (dark shading); h < h1, Defectors can both invade and persist (red shading); h > h0, Cooperators can invade (blue shading).
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S5.2 Sigmoid payoffs799

Previous authors have noted that the dynamical qualities of the threshold game are preserved under a wide range800

of games with sigmoid payoff functions [14, 16, 17, 23, 24], and we similarly found that the qualitative effects of801

homophily are preserved in sigmoid games.802

Taking inspiration from Archetti [24], we replaced the payoff matrix (Table 1) with a more general nonlinear payoff803

function. Let k be the number of the other n− 1 group members who are Cooperators. We define the payoff to804

Cooperators805

ak = X + (W −X)
la(k)− la(0)

la(n− 1)− la(0)
, where la(k) =

1

1 + exp
(
s(τ−1.5−k)

n−1

) , (S31)806

and Defectors807

bk = Z + (Y − Z)
lb(k)− lb(0)

lb(n− 1)− lb(0)
where lb(k) =

1

1 + exp
(
s(τ−0.5−k)

n−1

) (S32)808

where s is a new parameter controlling the steepness of the sigmoid function. Varying s allows us to explore a809

spectrum of scenarios from the threshold game (s→∞) to the linear PGG (s = 0).810

Fig. S3a-b show examples of the payoff functions when s = 25. Using the same parameter values as Fig. 3, the811

gain functions (S4 for details) indicate that the number of interior equilibria is preserved under random group812

formation (Fig. S3c-d). Increasing homophily also has the same effects as described in the main text, promoting the813

evolution of cooperation by promoting the invasion and persistence of Cooperators (Fig. S3e-f).814

Decreasing the steepness parameter s moves the scenario closer to a linear PGG, where cooperation cannot815

persist. As expected, below a certain s, the gain sequence precludes the existence of interior equilibria, and816

Cooperators can no longer coexist with Defectors under random group formation (e.g., s = 5, Fig. S4).817

Nevertheless, the finding that homophily promotes the evolution of cooperation still holds: the dynamics transition818

from zero to two interior equilibria when h > ĥ, both interior equilibria move towards their respective axes as h819

increases, and Cooperators can invade a population of Defectors when h > h0.820
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Figure S3: For comparison with Fig. 3 in the main text, two examples of how homophily affects the evolutionary dynamics in the sigmoid game
with s = 25. (a-b) Cooperator and Defector payoff functions, with the threshold-game functions for comparison with opaque colours; (c-d) Gain
sequence and gain function; and (e-f) summary of evolutionary dynamics. Results used the members-recruit group-formation model, where
h ≡ 1 − q, with the same parameter values as Fig. 3: n = 8, W = 2, Y = 3, Z = 0; (a) τ = 5, X = −1; (b) τ = 4, X = −0.5. Coloured
regions separate regions of qualitatively different evolutionary dynamics: h < ĥ, Cooperators cannot persist (dark shading); h < h1, Defectors
can both invade and persist (red shading); h > h0, Cooperators can invade (blue shading).
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Figure S4: For comparison with Fig. 3 in the main text, two examples of how homophily affects the evolutionary dynamics in the sigmoid game
with s = 5. (a-b) Cooperator and Defector payoff functions, with the threshold-game functions for comparison with opaque colours; (c-d) Gain
sequence and gain function; and (e-f) summary of evolutionary dynamics. Results used the members-recruit group-formation model, where
h ≡ 1 − q, with the same parameter values as Fig. 3: n = 8, W = 2, Y = 3, Z = 0; (a) τ = 5, X = −1; (b) τ = 4, X = −0.5. Coloured
regions separate regions of qualitatively different evolutionary dynamics: h < ĥ, Cooperators cannot persist (dark shading); h < h1, Defectors
can both invade and persist (red shading); h > h0, Cooperators can invade (blue shading).
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S6 Critical homophily levels defining different regimes of the821

evolutionary dynamics822

The critical homophily level h0 separates the region where Cooperators can invade a population of Defectors from823

where they cannot (e.g., Fig. 3). Therefore, h0 solves the point where the Cooperator invasion fitness is zero824

lim
p→0

∆p

p
= 0. (S33)825

The higher-order genetic association indices are a function of the homophily level, θl→m(h), and826

ρl = ρl(p, h) =

{
1 if l = 0,∑l
m=1 θl→m(h)pm otherwise.

(S34)827

Therefore,828

lim
p→0

(1− ρ1)ρl+1

p
= lim
p→0

(1− p)
∑l+1
m=1 θl+1→m(h)pm

p
= θl+1→1(h), for l ≥ 0. (S35)829

and830

lim
p→0

ρ1(ρl − ρl+1)

p
= lim
p→0

p(ρl − ρl+1)

p
=

{
1 if l = 0,

0 otherwise.
(S36)831

Applying the invasion fitness criterion Eq. S33 along with Eqs. S35 and S36 to Eq. S2, h0 solves832

0 = lim
p→0

∆p

p
,833

=

n−1∑
k=0

n−1∑
l=k

(−1)l−k
( l
k

)(n− 1

l

)[
lim
p→0

(1 − ρ1)ρl+1

p
ak

]
︸ ︷︷ ︸

LHS

−
n−1∑
k=0

n−1∑
l=k

(−1)l−k
( l
k

)(n− 1

l

)[
lim
p→0

ρ1(ρl − ρl+1)

p
bk

]
︸ ︷︷ ︸

RHS

834

(S37)835836

837

Substituting Eq. S34 into the right-hand term, the sum term only has one term, when k = 0 and l = 0838

RHS =

n−1∑
k=0

n−1∑
l=k

(−1)l−k
(
l

k

)(
n− 1

l

)[
lim
p→0

ρ1(ρl − ρl+1)

p
bk

]
,839

= (−1)0

(
0

0

)(
n− 1

0

)
b0,840

= b0. (S38)841
842

Substitute in the payoffs to Defectors in the threshold game843

bk =

{
Y if k ≥ τ,
Z otherwise,

(S39)844

and recall that we assume τ > 1, then845

RHS = Z. (S40)846
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Substitute Eq. S35 into the left-hand term847

LHS =

n−1∑
k=0

n−1∑
l=k

(−1)l−k
(
l

k

)(
n− 1

l

)[
lim
p→0

(1− ρ1)ρl+1

p
ak

]
,848

=

n−1∑
k=0

n−1∑
l=k

(−1)l−k
(
l

k

)(
n− 1

l

)
θl+1→1(h0) ak.849

850

The indices can be rearranged according to the pattern851

n−1∑
k=0

n−1∑
l=k

f(k, l) =

n−1∑
l=0

l∑
k=0

f(k, l).852

Therefore853

LHS =

n−1∑
l=0

l∑
k=0

(−1)l−k
(
l

k

)(
n− 1

l

)
θl+1→1(h0) ak,854

=

n−1∑
l=0

(−1)l
(
n− 1

l

)
θl+1→1(h0)

[
l∑

k=0

(−1)k
(
l

k

)
ak

]
. (S41)855

856

Substitute in the payoffs to Cooperators in the threshold game857

ak =

{
W if k ≥ τ − 1,

X otherwise,
858

and separate out the cases859

LHS =

τ−2∑
l=0

(−1)l
(
n− 1

l

)
θl+1→1(h0)

[
X

l∑
k=0

(−1)k
(
l

k

)]
860

+

n−1∑
l=τ−1

(−1)l
(
n− 1

l

)
θl+1→1(h0)

([
X

τ−2∑
k=0

(−1)k
(
l

k

)]
+

[
W

l∑
k=τ−1

(−1)k
(
l

k

)])
,861

=

τ−2∑
l=0

(−1)l
(
n− 1

l

)
θl+1→1(h0)

[
X

l∑
k=0

(−1)k
(
l

k

)]
862

+

n−1∑
l=τ−1

(−1)l
(
n− 1

l

)
θl+1→1(h0)

([
X

l∑
k=0

(−1)k
(
l

k

)]
+

[
(W −X)

l∑
k=τ−1

(−1)k
(
l

k

)])
. (S42)863

864

Into Eq. S42, substitute two identities, a definition, and an assumption about the model. The two identities are865

l∑
k=0

(−1)k
(
l

k

)
=

{
1 if l = 0,

0 if l > 0,
866

and867

l∑
k=D

(−1)k
(
l

k

)
= (−1)D

(
l − 1

D − 1

)
.868

The definition is869

θ1→1 = 1.870

The model assumption is that the number of cooperators needed to achieve the public good is greater than 1,871

τ > 1, which implies872

τ − 1 > 0.873
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Substituting these four items into Eq. S42, the left-hand term simplifies to874

LHS = X + (W −X)

n−1∑
l=τ−1

(−1)l−τ+1

(
n− 1

l

)(
l − 1

τ − 2

)
θl+1→1(h0). (S43)875

Bringing Eqs. S40 and S43 together, h0 solves876

0 = LHS− RHS,877

0 = X − Z + (W −X)

n−1∑
l=τ−1

(−1)l−τ+1

(
n− 1

l

)(
l − 1

τ − 2

)
θl+1→1(h0). (S44)878

879

By similar reasoning, the critical homophily level h1, which separates the region where Defectors can invade a880

population of Cooperators from where they cannot, solves881

0 = Y −W + (Z − Y )

n−1∑
l=n−τ

(−1)l−n+τ

(
n− 1

l

)(
l − 1

n− τ − 1

)
θl+1→1(h1). (S45)882

Eqs. S44 and S45 provide analytical descriptions; however, given the complexity of the relationships between the883

genetic association indices and homophily, the quantities h0 and h1 were solved numerically. To solve for ĥ, we also884

used a numerical approach; see scripts calc_isocline.py.885
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S7 The effects of group size and threshold886

Increasing the group size n has a negative effect on cooperation (Fig. S5a,c,e) by increasing the degree of887

homophily needed for Cooperators to invade and persist. Beyond a certain group size (e.g., n = 8, 10 in Fig. S5a),888

Cooperators cannot persist without homophilic group formation.889

Threshold τ has a mixed effect on cooperation (Fig. S5b,d,f). High thresholds prevent Cooperators from invading890

unless homophily is strong. However, high thresholds also prevent invasion by Defectors unless homophily is weak891

and increase the proportion of Cooperators in the polymorphic population. Choosing an intermediate threshold892

level can cause the loss of the polymorphic coexistence between Cooperators and Defectors. However, the893

polymorphic equilibrium can be regained by increasing homophily. Increasing homophily also moves the894

polymorphic equilibrium away from all-Defectors equilibrium, reducing the risk of extinction of Cooperators under895

stochastic dynamics in finite populations [cf., 131].896
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Figure S5: Examples of how the evolutionary dynamics are affected by (a,c,e) group size n (threshold proportion constant, τ/n = 1/2), and
(b,d,e) threshold τ (group size constant, n = 8), in the (a,b) leader-driven, (c,d) member-recruits, and (e,f) member-attracts group-formation
models. Parameters: W = 2, X = −1, Y = 3, and Z = 0.
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S8 Family abundance distribution when the group size is large897

Fig. S6 compares how evolutionary dynamics under the three group-formation models change with group size n898

(where threshold is kept at fixed proportion τ = n/2) for the default parameter values used in the main text. The899

leader-driven group-formation model is the most favourable to cooperation, particularly at larger group sizes. In the900

member-driven models, each new nonkin member has a chance to itself become a recruitor or to become the one901

who attracts a new member, the new member being one of its own family members, potentially another Defector;902

whereas recruitments of nonkin do not propagate in the leader-driven model.903
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Figure S6: A comparison of the dynamics between different group-formation models: (a) leader driven, (b) members recruit, and (c) members
attract. Threshold τ = n/2 held constant, W = 2, X = −1, Y = 3, Z = 0. Coloured regions correspond to those in Fig. 3: h < ĥ, Cooperators
cannot persist (dark shading); h < h1, Defectors can both invade and persist (red shading); h > h0, Cooperators can invade (blue shading).
The two text boxes on each panel are not specific to a panel, but rather the six text boxes apply to all three panels.

The comparison in Fig. S6 is limited to the group-size range shown because of the combinatorial nature of the904

calculations that must be made to calculate the probabilities of different family partition structures (details in S2 and905

S3). However, we can still compare the effects of the three group-formation models by exploring how the expected906

proportion of individuals in the largest family groups changes with group size (e.g., Fig. S7).907

In the leader-driven group-formation model, as n increases, the proportion of individuals in the largest family group908

(i.e., the leader’s) approaches 1− q, and all others (singleton families) approach 0 (Fig. S7a). This follows directly909

from the definition of the leader-driven model, that the probability of recruiting an individual who is not a member of910

the leader’s family is q.911

In the members-recruit group-formation model, the probability of recruiting a nonkin member is a constant q.912

Therefore, as n increases, the proportion of individuals in the largest family groups asymptotes to zero (Fig. S7b).913

In the members-attract group-formation model, as n increases, the family abundance distribution is known to914

converge to a stable relative abundance distribution [e.g., Chap. 5, Fig. 5.3, 132] (Fig. S7c). The intuitive reason is915

because, as the number of individuals j in the group increases, the probability of recruiting a nonkin member at the916

next recruitment approaches zero917

lim
j→∞

P (j from a new family) = lim
j→∞

α

α+ j
= 0. (S46)918
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Figure S7: An example of how the proportion of individuals from the three largest families in the group (rank 1, 2, and 3)
changes with group size n for different group-formation models: (a) leader driven, q = 0.2; (b) members recruit, q = 0.2;
and (c) members attract, α = 3. The example was generated by running one sequential sampling scheme for each model
(/scripts/family_abundance_distn/calc_relative_abundances.py).
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S9 Overview of the code repository919

Functions and scripts used to generate the results are archived in the Github repository:920

https://github.com/nadiahpk/homophilic-threshold-PGG,921

Zenodo archive and DOI will be generated after review922

A quickstart tutorial to calculate ∆p can be found in:923

/tutorials/calculate_deltap.pdf.924

Matrix M used to calculate θ from F is calculated using the the script:925

/scripts/matrix_M/save_matrix_Ms.py.926

Precalculated M matrices up to size n = 24 are stored in /results/matrix_M/ and can be read using927

read_matrix_M() in /functions/my_functions.py.928

A quickstart tutorial for how to use read_matrix_M() is provided in:929

/tutorials/matrix_M.pdf.930

The combinatorial term needed to calculate family partition structure probabilities for the members-recruit931

group-formation model (i.e.,
∑
~n

∑
m C(m, ~n)

∏
kmk) can be calculated using the script:932

scripts/members_recruit/sum_product_mistakes/save_sum_prod_mistakes.py.933

Precalculated terms up to size n = 18 and are stored in:934

/results/members_recruit/sum_product_mistakes/.935
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