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S1 Hotspot classification

Hotspots are identified by setting a threshold on the population densities of cells within a city.
The threshold for hotspots is assigned by applying a non-parametric method, the LouBar method
[45,46], based on the derivative of the Lorenz curve. The Lorenz curve is the sorted cumulative
distribution of population densities and is obtained by plotting, in ascending order, the normalized
cumulative number of nodes vs. the normalized cumulative population density. The threshold is
then obtained by taking the derivative of the Lorenz curve at (1, 1) and extrapolating it to the
point at which it intersects the x-axis. We classify hotspots in cities according to this LouBar
method applied to population densities, in agreement with the reliance of the model on effective
densities. A cell i is considered a hotspot of city k, Hk if it satisfies:

di,k > dLouk (S1)

where di is the population density of cell i in city k and dLouk is the threshold determined by
performing the LouBar method on the population densities of all cells in city k. This allows us
to place emphasis on zones within cities that encourage the most relative interaction, as opposed
to sharp biasing due to population magnitude. We then examine the hotspots flow concentration
in each city k, κk, defined as fraction of total flows in the city system that exist between these
population density hotspots of city. Therefore, κk is given by:

κk =

∑
i,jεHk

Tij∑
i,j
Tij

, (S2)

where Tij denotes the flow of individuals going from patch i to patch j according to the mobility
data.

S2 Data

Table S1: Hotspot flow concentration κ for the different cities analyzed in the manuscript. The
resolution column contain the two geographical divisions used inside each country to construct the
metapopulations. For example, “Zip codes within CBSA” in the case of the USA implies that
each city (metapopulation) corresponds to a CBSA and the entities composing each city (patches)
correspond to zip codes.

City Country Resolution κ

Bunbury AUS SA2 within SA4 0.059
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City Country Resolution κ

Capital Region AUS SA2 within SA4 0.125
Sydney AUS SA2 within SA4 0.162
Darwin AUS SA2 within SA4 0.185
Cairns AUS SA2 within SA4 0.186
Richmond AUS SA2 within SA4 0.202
Gold Coast AUS SA2 within SA4 0.212
South Australia AUS SA2 within SA4 0.221
Hume AUS SA2 within SA4 0.228
Moreton Bay AUS SA2 within SA4 0.233
Central Queensland AUS SA2 within SA4 0.236
Wide Bay AUS SA2 within SA4 0.237
Melbourne AUS SA2 within SA4 0.250
Townsville AUS SA2 within SA4 0.250
Australian Capital Territory AUS SA2 within SA4 0.253
Launceston and North East AUS SA2 within SA4 0.303
Sunshine Coast AUS SA2 within SA4 0.308
Central Coast AUS SA2 within SA4 0.310
Illawarra AUS SA2 within SA4 0.325
Perth AUS SA2 within SA4 0.330
Logan AUS SA2 within SA4 0.349
Brisbane AUS SA2 within SA4 0.350
Hunter Valley exc Newcastle AUS SA2 within SA4 0.369
Newcastle and Lake Macquarie AUS SA2 within SA4 0.381
Western Australia AUS SA2 within SA4 0.386
Ipswich AUS SA2 within SA4 0.396
West and North West AUS SA2 within SA4 0.415
Mackay AUS SA2 within SA4 0.415
Latrobe AUS SA2 within SA4 0.419
North West AUS SA2 within SA4 0.423
Hobart AUS SA2 within SA4 0.438
Central West AUS SA2 within SA4 0.496
Adelaide AUS SA2 within SA4 0.520
Bolzano ITA S2 cells within communes 0.210
Sassari ITA S2 cells within communes 0.278
Catania ITA S2 cells within communes 0.300
Livorno ITA S2 cells within communes 0.306
Taranto ITA S2 cells within communes 0.307
Foggia ITA S2 cells within communes 0.318
Perugia ITA S2 cells within communes 0.319
Bari ITA S2 cells within communes 0.337
Giugliano In Campania ITA S2 cells within communes 0.337
Terni ITA S2 cells within communes 0.341
Piacenza ITA S2 cells within communes 0.344
Genova ITA S2 cells within communes 0.376
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City Country Resolution κ

Ravenna ITA S2 cells within communes 0.381
Ferrara ITA S2 cells within communes 0.392
Ancona ITA S2 cells within communes 0.392
Lecce ITA S2 cells within communes 0.393
Cesena ITA S2 cells within communes 0.394
Pesaro ITA S2 cells within communes 0.405
Parma ITA S2 cells within communes 0.406
Pescara ITA S2 cells within communes 0.434
Roma ITA S2 cells within communes 0.435
Venezia ITA S2 cells within communes 0.436
Modena ITA S2 cells within communes 0.458
Trieste ITA S2 cells within communes 0.466
Brescia ITA S2 cells within communes 0.467
Trento ITA S2 cells within communes 0.469
Siracusa ITA S2 cells within communes 0.470
Napoli ITA S2 cells within communes 0.471
Palermo ITA S2 cells within communes 0.472
Milano ITA S2 cells within communes 0.478
Rimini ITA S2 cells within communes 0.479
Prato ITA S2 cells within communes 0.489
Verona ITA S2 cells within communes 0.494
Salerno ITA S2 cells within communes 0.501
Torino ITA S2 cells within communes 0.507
Arezzo ITA S2 cells within communes 0.527
Reggio Di Calabria ITA S2 cells within communes 0.534
Latina ITA S2 cells within communes 0.543
Udine ITA S2 cells within communes 0.545
Bologna ITA S2 cells within communes 0.567
Vicenza ITA S2 cells within communes 0.568
Andria ITA S2 cells within communes 0.575
Novara ITA S2 cells within communes 0.582
Padova ITA S2 cells within communes 0.586
Bergamo ITA S2 cells within communes 0.598
Firenze ITA S2 cells within communes 0.629
Messina ITA S2 cells within communes 0.657
Cagliari ITA S2 cells within communes 0.751
Monza ITA S2 cells within communes 0.773
Virginia Beach USA Zip codes within CBSA 0.033
Washington USA Zip codes within CBSA 0.104
Miami USA Zip codes within CBSA 0.109
Columbus USA Zip codes within CBSA 0.140
Seattle USA Zip codes within CBSA 0.140
Atlanta USA Zip codes within CBSA 0.157
Houston USA Zip codes within CBSA 0.170

S-3



City Country Resolution κ

Pittsburgh USA Zip codes within CBSA 0.178
Richmond USA Zip codes within CBSA 0.180
Raleigh USA Zip codes within CBSA 0.182
San Francisco USA Zip codes within CBSA 0.184
Nashville USA Zip codes within CBSA 0.188
Los Angeles USA Zip codes within CBSA 0.189
Salt Lake City USA Zip codes within CBSA 0.204
Cincinnati USA Zip codes within CBSA 0.205
New York USA Zip codes within CBSA 0.213
Austin USA Zip codes within CBSA 0.213
Minneapolis USA Zip codes within CBSA 0.215
Birmingham USA Zip codes within CBSA 0.220
Boston USA Zip codes within CBSA 0.229
Providence USA Zip codes within CBSA 0.231
Charlotte USA Zip codes within CBSA 0.235
Louisville/Jefferson County USA Zip codes within CBSA 0.246
Dallas USA Zip codes within CBSA 0.247
Orlando USA Zip codes within CBSA 0.252
St. Louis USA Zip codes within CBSA 0.256
Riverside USA Zip codes within CBSA 0.269
Buffalo USA Zip codes within CBSA 0.270
Chicago USA Zip codes within CBSA 0.276
Kansas City USA Zip codes within CBSA 0.286
Baltimore USA Zip codes within CBSA 0.292
San Jose USA Zip codes within CBSA 0.295
Denver USA Zip codes within CBSA 0.297
Philadelphia USA Zip codes within CBSA 0.298
Cleveland USA Zip codes within CBSA 0.304
Hartford USA Zip codes within CBSA 0.316
San Antonio USA Zip codes within CBSA 0.327
Portland USA Zip codes within CBSA 0.349
San Diego USA Zip codes within CBSA 0.352
Phoenix USA Zip codes within CBSA 0.383
Milwaukee USA Zip codes within CBSA 0.385
Memphis USA Zip codes within CBSA 0.393
Indianapolis USA Zip codes within CBSA 0.411
Las Vegas USA Zip codes within CBSA 0.415
Oklahoma City USA Zip codes within CBSA 0.418
Sacramento USA Zip codes within CBSA 0.419
New Orleans USA Zip codes within CBSA 0.424
Jacksonville USA Zip codes within CBSA 0.436
Tampa USA Zip codes within CBSA 0.436
Detroit USA Zip codes within CBSA 0.462
Govan Mbeki ZAF Wards within municipalities 0.013
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City Country Resolution κ

Hibiscus Coast ZAF Wards within municipalities 0.023
City of Matlosana ZAF Wards within municipalities 0.025
Nelson Mandela Bay ZAF Wards within municipalities 0.028
City of Cape Town ZAF Wards within municipalities 0.029
Emalahleni ZAF Wards within municipalities 0.031
City of Tshwane ZAF Wards within municipalities 0.033
Local Municipality of Madibeng ZAF Wards within municipalities 0.041
Ekurhuleni ZAF Wards within municipalities 0.044
City of Johannesburg ZAF Wards within municipalities 0.054
Matjhabeng ZAF Wards within municipalities 0.060
Nkomazi ZAF Wards within municipalities 0.060
Greater Letaba ZAF Wards within municipalities 0.064
Mangaung ZAF Wards within municipalities 0.069
Makhado ZAF Wards within municipalities 0.075
Emfuleni ZAF Wards within municipalities 0.107
Greater Tzaneen ZAF Wards within municipalities 0.137
eThekwini ZAF Wards within municipalities 0.147
Mogalakwena ZAF Wards within municipalities 0.149
Lepele ZAF Wards within municipalities 0.151
Buffalo City ZAF Wards within municipalities 0.216
Polokwane ZAF Wards within municipalities 0.244
The Msunduzi ZAF Wards within municipalities 0.247
Rustenburg ZAF Wards within municipalities 0.253
Makhuduthamaga ZAF Wards within municipalities 0.265
Thembisile ZAF Wards within municipalities 0.285
Chief Albert Luthuli ZAF Wards within municipalities 0.465
Dr JS Moroka ZAF Wards within municipalities 0.497
Maluti a Phofung ZAF Wards within municipalities 0.502
Bushbuckridge ZAF Wards within municipalities 0.580
Thulamela ZAF Wards within municipalities 0.645

S2.1 Mobility Data

The Google COVID-19 Aggregated Mobility Research Dataset contains anonymized mobility flows
aggregated over users who have turned on the Location History setting, which is off by default.
This is similar to the data used to show how busy certain types of places are in Google Maps —
helping identify when a local business tends to be the most crowded. The dataset aggregates flows
of people from region to region.

To produce this dataset, machine learning is applied to logs data to automatically segment
it into semantic trips 1. To provide strong privacy guarantees, all trips were anonymized and
aggregated using a differentially private mechanism 2 to aggregate flows over time (see https:

//policies.google.com/technologies/anonymization). This research is done on the resulting

1https://www.nature.com/articles/s41467-019-12809-y
2https://research.google/pubs/pub48778/
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heavily aggregated and differentially private data. No individual user data was ever manually
inspected, only heavily aggregated flows of large populations were handled.

All anonymized trips are processed in aggregate to extract their origin and destination location
and time. For example, if users traveled from location a to location b within time interval t,
the corresponding cell (a, b, t) in the tensor would be n ± err, where err is Laplacian noise. The
automated Laplace mechanism adds random noise drawn from a zero mean Laplace distribution and
yields (ε, δ)–differential privacy guarantee of ε = 0.66 and δ = 2.1× 10−29 per metric. Specifically,
for each week W and each location pair (a, b), we compute the number of unique users who took
a trip from location a to location b during week W . To each of these metrics, we add Laplace
noise from a zero-mean distribution of scale 1/0.66. We then remove all metrics for which the noisy
number of users is lower than 100, following the process described in 3, and publish the rest. This
yields that each metric we publish satisfies (ε, δ)–differential privacy with values defined above. The
parameter ε controls the noise intensity in terms of its variance, while δ represents the deviation
from pure ε–privacy. The closer they are to zero, the stronger the privacy guarantees.

We use data collected weekly from November 3rd 2019 to February 29th 2020, ensuring that
we capture standard movement behavior, uninfluenced by pandemic conditions. Depending on the
availability of population data per country, the mobility flows between S2 cells are aggregated to
patch size of comparable resolution between countries:

• United States: 50 Urban areas with zip code patches [47].

• Italy: 49 Communes with S2 cell patches [50].

• South Africa: 31 Municipalities with ward patches [49].

• Australia: 33 Statistical Areas Level 4, with Level 2 patches [48].

To aggregate the S2 cells to the corresponding alternate patch types, the centroid points of the
S2 cells were spatially joined with GIS boundaries of the alternate resolution. For example, in the
US, flows from a zip code X to a zip code Y are determined by summing all of the flows that start
in S2 cells whose centroids lie within X and end in S2 cells whose centroids lie within Y.

S2.2 Population density data

Population density data is aggregated to patch-size in a similar manner when necessary. In the case
of US zip codes, Australian statistical areas, and South African wards, population information is
collected and available at those respective resolutions. For patches in Italy, population is determined
by aggregating the populations of the 30 meter tiles collected by Facebook [50] to S2 cells. This
is done by spatially merging the centroids of the tiles to the patches, similar to the S2-to-patch
mobility flow aggregation.

S3 Epidemic model

S3.1 Dynamical equations

The model used for estimating the vulnerability of a given city is a generalized version of the
formalism included in [27]. From an epidemiological point of view, the model incorporates a SIR

3https://research.google/pubs/pub48778/
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dynamics where individuals can be susceptible of contracting the disease (S), infectious (I) or
recovered (R). An infectious individual transmits the pathogen to healthy counterparts via direct
interaction at a rate λ. In turn, infectious individuals enter the compartment R at a rate µ, which
typically encodes the inverse of the expected contagious period. The mixing among healthy and
infectious individuals is governed by the spatial distribution of the population and their mobility
patterns, which are accommodated in the formalism by using metapopulations. A metapopulation
is a complex network composed by a set of N patches which represent places gathering agents.
Those individuals can move across the metapopulation, being these movements determined by the
mobility patterns usually encoded in origin-destination matrices.

In our model, each individual has an associated node which is identified as her residence.
Therefore, each patch i is initially populated by ni agents. We split each day into three stages:
Movement, Interaction and Return. First, agents decide whether or not moving with a probability
p. If moving, they choose their destination according to the origin destination matrix R, being the
elements Rij the probability of moving from patch i to patch j. We construct this matrix from
mobility data, encoded in T, as

Rij =
Tij∑
l

Til
. (S3)

After all the movements have been completed, interaction among agents sharing the same current
location occurs. At this point, we make a mean-field assumption within each patch, so every agent
inside a given location makes the same number of contacts. We also assume that the number of
contacts is proportional to the density of each patch via a function f which allows for including
different ways of weighting the relevance of population density for the number of interactions inside
a given patch. Finally, as we want to reflect the mostly commuting nature of human mobility, we
force all the individuals to return to their residence and repeat the same process for a new time
step (day).

Under these assumptions, the dynamics is totally characterized by a set of 2×N coupled discrete
equations governing the temporal evolution of the fraction of infected and recovered individuals with
residence in each patch. In particular, the fraction of infected, ρIi (t+ 1), and recovered individuals,
ρRi (t+ 1), associated to patch i at time t+ 1, read:

ρIi (t+ 1) = (1− µ)ρIi (t) + (1− ρIi (t)− ρRi (t))Πi(t) , (S4)

ρRi (t+ 1) = ρRi (t) + µρIi (t) . (S5)

Eq. (S5) determines the evolution of recovered patients. As the SIR model assumes that the
compartment R constitutes the final epidemiological state, this evolution is just given by the number
of infected individuals overcoming the disease. Regarding the evolution of infectious individuals, the
r.h.s. of Eq. (S4) corresponds to those infected overcoming the disease and the second one involves
contagions of susceptible individuals. In this sense, the probability that a susceptible individual
living inside i contracts the disease at time t, Πi(t), can be expressed as:

Πi(t) = (1− p)Pi(t) + p

N∑
j=1

RijPj(t) . (S6)

The first term identifies those contagions occurring inside the residence patch whereas the second
term contains those taking place inside neighboring areas. Likewise, the probability of contracting
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the disease inside a given node i at time t, Pi(t), is given by:

Pi(t) = 1−

(
1− λ

Ieffi (t)

neffi

)fi
, (S7)

where fi determines the number of contacts per day of individuals inside i. Finally, the terms
neffi and Ieffi (t), which denote the effective population and effective number of infected individuals
inside patch i at time t after population movements, read:

neffi =
N∑
j=1

nj (δij(1− p) +Rji) , (S8)

Ieffi =

N∑
j=1

njρ
I
j (t) (δij(1− p) +Rji) . (S9)

S3.1.1 Estimating cities’ vulnerability

The former equations offer the possibility of estimating the vulnerability for each city. For this
purpose, we study the epidemic threshold defined as the minimum infectivity per contact needed
to observe an epidemic outbreak. Therefore, the lower the epidemic threshold is, the easier an
epidemic wave propagates, thus reflecting a higher city vulnerability to epidemic outbreaks. To
estimate the epidemic threshold, we assume that the disease has reached a stationary equilibrium
and that the epidemic size is negligible compared with the population size. Mathematically, this
imply that ~ρI(t + 1) = ~ρ(t) = ~ε � ~1. In addition, we neglect the individuals belonging to the
compartment R by setting ~ρR(t+ 1) = ~ρR(t) = ~0. Both assumptions allow us to linearize Eq. (S7)
which now reads:

Pi ' λfi
Ieffi

neffi

. (S10)

After introducing Eqs.(S6-S10) into Eq.(S4) and taking into account the stationary regime, we
obtain:

µ

λ
εi =

N∑
j=1

[
(1− p)2δij

fi

neffi

+ p(1− p)

(
Rij

fj

neffj

+Rji
fi

neffi

)
+ p2

∑
l

RilRjl
fl

neffl

]
nj︸ ︷︷ ︸

Mij

εj . (S11)

The former expression holds if µλ corresponds to an eigenvalue of matrix M. As our goal is obtaining
the minimum λ value triggering epidemic outbreaks, the epidemic threshold λc is given by:

λc =
µ

Λmax(M)
, (S12)

with Λmax(M) denoting the spectral radius of matrix M.

S3.2 Function governing contacts

At this point, it is necessary to specify the form of the function f , determining how the number
of contacts that each individual makes inside each patch depends on its density. To shed light on
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the role of mobility inside each city, we follow a non-parametric approach by assuming that these
contacts are linearly proportional to the density inside each patch. This way, the results shown in
Figs. 2 & 4 are obtained by assuming:

fi =
neffi

ai
, (S13)

being ai the area of patch i.
If one is interested in isolating the role played by mobility in shaping cities’ vulnerability, we

must remove the dependence of the overall population density for each case. To do so, we decide
to compute the normalized epidemic threshold λ̃c which is defined as the ratio between the actual
epidemic threshold, computed by accounting for human mobility, and the threshold corresponding
to a static scenario. Therefore, this quantity reads:

λ̃c =
Λmax(M)(p = 0)

Λmax(M)(p = 1)
(S14)

Although useful for illustrating the role of mobility in each city, the non-parametric linear
relation does not correspond with a realistic scenario due to the large difference in terms of contacts
existing among zones with disparate densities. To make a more fair comparison on the expansion
of COVID-19 over different cities, we choose a more complex function governing the number of
contacts. Following [?], we assume that

fi = 2− e−ξ
n
eff
i
ai , (S15)

which is bounded such that fi ∈ [1, 2). Here the parameter ξ is estimated by maximizing the
correlation among the theoretical and the observed vulnerabilities, yielding ξ = 2 · 10−5 square
miles. By including this function, we estimate the epidemic threshold for each city, λc, as:

λc =
µ

Λmax(M)(p = 1)
, (S16)

where we set µ = 1 for the sake of simplicity. Note that this parameter does not have any influence
on the cities’ ranking since it is inherent to the disease features and does not depend on human
interactions.

S4 Examining the impact of hotspot concentration at the country
level

In the main text, we reveal that all the cities analyzed here, regardless of their associated country,
fall in an universal curve governing the dependence of the normalized epidemic threshold λ̃c on
the flow concentration within hotspots κ. Moreover, we check that this universal curve is well-
represented by a sub-linear power law decay function. Nonetheless, despite the robustness of the
results, the spatial resolution of the basic units composing the metapopulations is limited by data
availability for each country. Therefore, different spatial resolutions are mixed in Fig. 2 of the main
text, which partially hinders the close relation between λ̃ and κc.

To characterize the relevance of the flows connecting hotspots for epidemic spreading, we split
the universal curve presented in the main text and represent in Fig. S1 the individual curves for each
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Figure S1: Normalized epidemic threshold versus population density hotspot concentration for the
(A) United States (Spearman: -.62, Pearson = -.59), (B) Italy (Spearman = -.81, Pearson = -.77 ),
(C) South Africa (Spearman = -.79, Pearson = -.57), and (D) Australia (Spearman = -.45, Pearson
= -.47) , with each city colored according to the outcome of removing flows connecting hotspots
and distribute them evenly among non-hotspots neighboring areas (Fig. 2B). Solid line shows the
power-law fitting λ̃c = Aκβ and shadowed regions cover 68% confidence interval.

of the four countries analyzed here. The high Pearson and Spearman correlation coefficients among
λ̃ and κ along with the goodness of the power law fitting for each individual country strengthen our
message about the close connection between the normalized epidemic threshold and the hotspot
concentration. The analysis at the country level indicates that, while the function governing the
relationship is universal, the parameters are dependent on both the spatial resolution at which the
data is available and other differences between cities, not considered in this analysis.

S5 Connecting Indicators and Population Measures

We examine the relationship between normalized epidemic threshold λ̄, population density hotspot
concentration κ and two other common population measures: average population density and Lloyd’
mean crowding for cities in the US in Fig. S2.
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Country Decay rate β

USA −0.43± 0.09

ITA −0.57± 0.07

AUS −0.32± 0.1

ZAF −0.48± 0.06

Table S2: Exponent of the power law function λ̃c = Aκβ governing the dependence of the normalized
epidemic threshold on the hotspot concentration.

λ̄c κ Average
Population

Density

Lloyd’s Mean
Crowding

λ̄c

κ

Average
Population

Density

Lloyd’s Mean
Crowding

1.00 -0.62 -0.25 0.22

-0.62 1.00 -0.05 -0.15

-0.25 -0.05 1.00 0.36

0.22 -0.15 0.36 1.00
−0.8

−0.4

0.0

0.4

0.8

Figure S2: Spearman Correlations between κ, the average population density in the city, and the
Lloyd mean crowding [51] with the normalized epidemic threshold λ̃c

S5.1 Average Population Density

The average was calculated by averaging the population densities di,k of all itot zip codes i within
each city k: ∑

di,k
itot

(S17)
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and describes the relative concentration of people within a city.

S5.2 Lloyd Mean Crowding

Lloyd mean crowding [?] was calculated according to∑
(qi − 1)qi∑

qi
(S18)

for patch populations qi. Lloyd mean crowding measures the number of unique contacts possible for
members of patches in a city. We note that unlike κ and average population density, this measure
is independent of patch size and therefore doesn’t specifically address proximity.

We find that our chosen pair of λ̄ and κ contains the strongest correlations. Of the three
population-related metrics κ, average density, and Lloyd’s Mean crowding, κ is the only one that
contains mobility information, and like average population density, differentiates between patches
of different spatial size, supporting that mobility and density are vital inclusions to properly un-
derstanding the epidemic situation of a city.

S6 Empirical Epidemic-Indicator Correlations

We quantify the extent to which COVID-19 is able to spread in a US city by examining the timeseries
of confirmed cases per county [55,56], from January 23 2020 to April 16 2020 (before truncating.)
We aggregate this data to the level of CBSAs by summing across each CBSAs component counties.
Given the noise in the data (due to collection and reporting artifacts, etc) we perform preprocessing
on the curves. We use a Savitzky-Golay Filter [?] to smooth the data by fitting intermediate
windows [?] with low-order polynomials. We then truncate our data to a window of two weeks
after 100 cases were confirmed in each county. This allows our window of observation to capture
the regime where COVID-19 awareness encouraged active testing, but before intervention methods
influence how the disease propagates within cities. This way, we capture the disease behavior
specific to the city structure, and not external suppression. To estimate the vulnerability of each
city, we fit the filtered cumulative number of infections to an exponential function

I(t) = aebt (S19)

and extract the growth rate b. Although more sophisticated approaches have been proposed in
the literature based on the estimation of the effective reproductive number Re, our procedure is
simple but effective to capture the vulnerability of each city at the early stage of the outbreak. The
smoothed curves along with the exponential fits are presented in Fig. S3.
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Figure S3: Cumulative number of COVID-19 reported 14 days after the first 100 reported cases
for the 50 cities in the United States. Dots show real data, smoothed to remove the inherent noisy
nature of case reports by using a Savitzky-Golay filter. The line shows the exponential fit of the
data via least-squares method to I(t) = aebt.
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