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Abstract

After randomly reflecting on two hyperplanes, a new iteration method is established by
making use of the circumceter of the reflective points from the viewpoint of geometry. The
linear combination could be non-convex when the angle between the hyperplances is small.
Theoretical analysis show that the proposed method converges and the convergence rate in
expectation is also addressed in detail. The relation between our method and block Kaczmarz
method is well discussed. Numerical experiments further verify that the new algorithms
is efficient, and outperform the existing randomized Kaczmarz methods and randomized
reflection methods in terms of the number of iterations and CPU time, especially when the
coefficient matrix has highly coherent rows.

Keywords. Circumcenter, Reflection transformation, Randomized iteration method, Conver-
gence

1 Introduction

Consider the solution of linear equations
Ar=b, AeR™" beR™, (1.1)

where A has full column rank, which usually comes from the practical applications such as
image reconstruction [10], phase retrieval [25], option pricing [8], biological computation [9] and
machine learning [16].

Kaczmarz method [14] is a well-known and popular single projection method for solving
consistent linear systems. Denote a; be the ith row of A and b; be the ith entry of the right-
hand side vector b for i = 1,2,...,m. Given an initial guess g, the iterate scheme of classical
Kaczmarz method can be described as
by, — a;f';:rk

ai, (1.2)
HaZkH% "

Tpt1 = Tk +
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where i; can be chosen from index of rows cyclically. Due to its simplicity and efficiency, Kacz-
marz method was quickly applied into many engineering applications and contributed extremely
competent software, especially in CT image processing.

Strohmer and Vershynin [24] proved the exponential convergence of randomized Kaczmarz
method to the unique solution x, in expectation by

A (AT AN\
Errxk+1—x*\|%s<1—”jw2)) o — e 2. (1.3)
F

where i is chosen with probability proportional to ||a;||3 and Amin(A) denote the minimum
eigenvalue of A. Since then, various randomized Kaczmarz method are studied and improved
by greedy strategies [2], sampling techniques [5], extrapolating acceleration [17], block version
[12,20], averaging [18] and other improvements [6,13,23].

In recent years, Kaczmarz-type methods projecting onto some special subspaces has been
drawn attention to researchers. Needell and Ward [19] proposed a two-subspace frame for
randomized Kaczmarz methods to look forward the solution. The Kaczmarz method with oblique
projection were presented in [15], which could be regarded as a orthogonal projection based on
two rows. Furthermore, its performance were enhanced by applying greedy strategies in [26]. Wu
[27] extended the randomized two-subspace Kaczmarz method for inconsistent linear systems.

Cimmino method [4] is another famous and efficient solver for linear equations. It utilized
the gravity of deterministic reflective points obtained by Householder transformations as the
next approximation. Some improvements were followed up later in [1,7,11]. Recently, taking
ix, with probability proportional to ||a;||3, Steinerberger [22] proposed a surrounding method for
nonsingular A € R"*", which generated the sequence of reflective points {x}}7, by consistent
reflections on hyperplanes randomly as follow
b, —al

Tpar = ap + 2= %00 ipe{1,2,...,n}. (1.4)

i, 113

Then, all reflective points were taken the average for approximation. Analysis of the convergence
rate in expectation were provided as well.

E

N _
1 1+ ||Allp||A7T
T = N 221 ka < | HFNH H |z« — ol , (1.5)

where N is the number of reflective points including the initial guess. Yin, Li and Zheng [28§]
further accelerated the surrounding method by restart techniques. Shao [21] demonstrate an
interesting phenomenon of odd and even reflections when the rows are selected cyclically.

Inspired by the idea of circumcenter [3], we propose a randomized circumcentered-reflection
iteration method based on two different rows. It generates a sequence from the view of geometry
and it is possible to make nonconvex linear combinations of reflective points. Theoretical analysis
shows that the convergence rate in expectation of the proposed method under some probability
rules and it is pointed that our method is dominant when angles of selected hyperplanes are small.
The relation between our method and block Kaczmarz method is well discussed. Numerical
experiments further verify the efficiency of the new algorithm and it outperforms the existing
randomized Kaczmarz method and randomized reflection method in terms of the iteration steps
and CPU time, especially when the coefficient matrix with highly coherent rows.

The organization of the rest paper is as follows. In Section 2, we first give some preliminary
knowledge and then establish the randomized circumcentered-reflection iteration method. In
Section 3, the convergence rate in expectation of the randomized circumcentered-reflection iter-
ation method is analyzed and it is discovered the equivalence with randomized block Kaczmarz
method. Numerical experiments, in Section 4, are presented to show the efficient of the proposed
method especially when the rows of the matrix are nearly parallel. Finally, in Section 5, the
conclusion is drawn and some future work is discussed.
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2 The randomized circumcentered-reflection iteration method

In this section, we firstly give the fundamental and then establish the randomized circumcentered-
reflection iteration method.

It is seen that the surrounding method could be accelerated by restart techniques, while the
linear convex combination of reflective points leads that the next estimation always located in
the interior of the n-dimensional polytope. When the angle between any two hyperplanes is
small, the shrinking of the error ||z — .|| will be slight, which results in the slow convergence
rate.

Our motivation is to accelerate the convergence of the restarted surrounding method, espe-
cially when the coefficient matrix has highly coherent rows. Hence, we utilize the circumcenter
of a triangle constructed by reflective points and take it as the next initial guess to restart re-
flections to improve the convergence rate. In each iteration, the next estimation belongs to the
intersection of two randomly selected hyperplanes and the calculation for circumcenter is the
main cost.

Before introducing the new method, we first briefly review the basic geometry properties
which we will use later.

Lemma 2.1. Assume that there are three non-collinear points A, B, C' which forms an triangle
AABC, P is the circumcenter of AABC, O is the origin so that OA,O?,O? represent three
vectors. Then, the following identity exists

sin2A - PA +sin2B - PB +sin2C - PC = 0. (2.1)
And it also holds that
—
sin2A-OA—|—sin23~O?—|—sin2C-O? —
= = 2.2
O? sin2A4 + sin 2B + sin 2C OA+ B(ﬁ + ’YO?' (22)

If so, the coefficients o, B and v can be computed by the following formulas

B sin 24 ~ cosA |1@| cos A
~ sin2A +sin2B +sin2C  2sin BsinC 2’@‘(1 — cos? B)
B sin2B ~ cosB ‘B?|COSB (2.3)
sin2A + sin 2B +sin2C  2sin AsinC 2|1@’(1—C082A) '
B sin 2C _ cosC ]B?] cos C
7T Sin2A +sin2B +sin2C  2sinAsinB 2|B’(1 — cos? A)
and o+ B +v=1.
Proof. It is easy to deduce from the identity
sin 24 + sin 2B + sin 2C' = 4sin Asin Bsin C
and the law of sines. il
Assume that zp = ,(CO) is given, in every step of iteration, y,(cl) and y,gz) is computed by

reflecting y,(;)) on two hyperplanes randomly. Then, the circumcenter is taken as the approximate

solution zpy1 in the next iteration as follow.

1 = apy ) + Byl) + ’ka;(f)- (2.4)

where g, S and v are computed according to the formula (2.3). The sketch map of the
randomized circumcentered-reflection iteration method is illustrated in Figure 1.
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Fig. 1. The sketch map of the randomized circumcentered-reflection iteration method in k-th
step

More precisely, the randomized circumcentered-reflection iteration method can be described
in detail as follow.

Algorithm 1 Randomized circumcentered-reflection iteration method (RC)

Input: A, b, initial guess xg, y(()o) = xy.
1: for k=0,1,2,... do
2: Randomly choose two rows a;, and aj,,

3: Compute the reflective points {y,(cl) , y,(f)}, where

b —aTl (0) b —al oW
y](;) = yl(€0) + 271€ Zk;yk as, and y]?) = y](co) + 27jk ]kak aj,-
llai, I3 g, 12
4: Calculate the parameters
1 2 0 0 2 1
L () —y @, P — ) - () =y, 42—y Dy
o 1 0 2 0),’ B 1 0 2 1))’
e =Ll — v e =Ll — |
2 0 2
Y I Y -l .
ap = (1) (0) 9 9 6k‘ - (1) (0) 9 y Tk = - ﬂk — Q.
2lyy — oy 11— t3) 2y — oy 11— 1)
) : . _ (0) (1) (2)
5: Compute the approximate solution: x41 = agy,’ + Bryy " + Veyy -
6: Let y]i(_)gl = Tht1-

7. end for

3 Convergence analysis

In this section, the theorems on the convergence performance of the randomized circumcentered-
reflection iteration method are established and the relations between the new approach and the
block Kaczmarz method are well discussed.

Theorem 3.1. If a;, and aj, are linear independent, the sequence {xy — x4} generated by the
randomized circumcentered-reflection iteration method is monotonically decreasing for consistent
linear systems.
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Proof. Assume the iy and ji rows are chosen at k-th step where i, jir € {1,2,...,m}. The
scheme of circumcenters iteration is

0 1 2
Tyl — Ty = Ozky;(C )+ 5&%& )+ ka;(g U
b; —aTxk b; —arxk
= agpap + Bz + 25—, ) + (g + 25— a, ) —
[l [l |

bi, — al xy, bj, —a; xk
Tk Jk
ol T
a;, a;
— (I — 2Bt L) (g — )

Ve 12
laz 2" g, 12

= (I = 9)(zk — ),

where S = 2(S ”;’“ |Z|2 + Y ”;’“kﬁg) And next, we need to show S is an idempotent operator.

Since
by, —alx b, —alx ai,al  ajal
(1) (2) ik ink Jk g Uk ix Qi 3k Dy,
-y =2 ——5—0a;,, — ————5—a,;, | =2 - (T — 1),  (3.2)
¢ ( a7 g |12 ) (\az-kH? e
we calculate the inner products
1 2 (aiy,, ag,)
<a”€’yli ) _ yl(§ )> = 2(@%c — 7”2; ||]§ aﬁ)(x* — 1), (3.3)
Ik
1 2 (aiy, ag,)
(e = 07} = 25 el = af) = ). (3.4)
ik

By substituting the formula (3.2)-(3.4) into the calculation, it is obtained that

b, — al x, bj, — al
S e T e T
1 2 1 2
_ 1 (o’ —u?) e —u)
(1 _ %) 2fas 2 2||ay, |12 "
lai, 1% llag, |
1 [az‘k v (@i, a5) 7 aj, (@i, i) T T
= — (@i, — 5 05,) — 7 g, — ag,) | (e — Tp)
(1 Y P a2 5 o P a2
'k Tk
(3.5)
o Qi T . <a’ik7ajk> TN Ajg <alk?a]k> T T 3
Let S = 7”“%”2( in T T, P aj, ) 7”(1%“2(7“(1%”2 a;, — aj, ) then it holds that
(T_<aik7ajk> T) - _ (<aikvajk> T T) )
@), 2 /% =Y 12 % T GG )i = U
g | [l |
and )
(CLT N <aik7ajk>aT> Qg _ _(<aik7ajk> T —CLT)CL' —1_ <aik7ajk> )
T a7 a2 lag, [>T i 12 llag, 2
So, we can prove S?2 = S. In other word, it is verified that
Tl — Tk L Tpyp1 — T
ie.
ki1 — 2l = ok — 22 = 2ksr — o)l (3.6)
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From (3.6), we know the sequence {||lzr — x*H}ZO , is monotonically decreasing. il

b;
In fact, ||zpe1 — 24]|? = i, o

where 6 € (0, §) is the angle of two hyperplanes.

”azk”2 " sin 9’
Ibzk z;xklz

However, it holds that ||z 1 —21||% = — e in classical Kaczmarz mehtod. As we can see,
*k

the step is larger than that in original method at each iteration and the superiority is stand out
especially when the angle is small.

Next, we analyze the convergence rates in expectation under two specific probability rules
for our new method.

Theorem 3.2. The randomized circumcentered-reflection iteration method converges in expec-
tation to the exact solution of the consistent system Ax = b with the rate

(a) )
1 o-.
<(1-— min ||z — %, (3.7)

E — z,|?
|2k — 24| m max{sin 0; }|| Al|7

if rows are chosen uniformly at random.

(b)

1 [EE ey
Ellzy — a.? < (1 - in E) Pl — a? (3.8)
" max{0; }| Al p =70 || Az ||}, ||| "
if rows are chosen according to p; = E'T;ﬁp

Proof. When rows are chosen uniformly at random,

Ellzgts — zul|? = |2 — 2ul” = Ellzpgr — zi?
1 ‘b— Aka
_ 2
= |lzg — 2" — — ;n:l,i;éik,jkm
1 o2,
<z T = min TL — T 2
i = 2| mmax{sin@i}HAH%H kool
1 o2,
< (1= = min o 2
< O e foim B, AT 17—
where max{#;} is the maximum angle between hyperplanes.
Similarly to the analysis in [22], when rows are chosen according to p; = E|| ||p, it can be
obtained that
Ellzgir — 2l” = [Jog — 2]|* = Ellogn — 2
2 ym |rl? il
= ||Tk — X — i "
I = = A — )T, Tarsin P
1 1Ak — 2.)|155%
< oy, — @) = z |k — 242
T max{0} | Az — )1} [ AllR ek — 2] "
1 A
<(1- 2 e — .

m
max{0; }| Al p =20 | Az, ||
|

In addition, we find the relation between the randomized circumcentered-reflection iteration
method and block Kaczmarz method.

Theorem 3.3. Assume rows a;, and aj, are linear independent, the iteration scheme of the
randomized circumcentered-reflection iteration method is equivalent with that of block Kaczmarz
method as follow:

Tpp1 = (I — ATA )z, + Alb,, (3.9)
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where A; = € R? if the same rows are selected.

c R2><n,b7— — [b’ﬁk
bjk

Proof. To prove the equivalence, it is to prove

@y,

T T

bi —a; T bj —a; Tk *
S(xp — 4) = QﬁkWaik + mW% = AL A, (2 — ). (3.10)
By calculation, it is easy to know
det(A-AT) = [lar|?[laz||* - (a1, a2)*. (3.11)

Hence, we get

1 lazl*  —(a1,a2)| |af
AL = Setaany [ ) [—ml,@) ] ] H
1
~ det(A, A7)
=S

(3.12)
(lazl?arai — (a1, a2)azai — (a1,a1)ara3 + ||a1|*azas)

|

We should remarkd that the randomized circumcentered-reflection iteration method is op-
timal in two-subspace Kaczmarz method, so that it reaches the same point with two-subspace
Kaczmarz method in [19] and oblique Kaczmarz in [15] if the same rows selected in every itera-
tion.

4 Numerical experiments

In this section, numerical experiments are presented to show the efficiency and superiority
of the randomized circumcentered-reflection method (abbreviated as ‘RC’), compared with ran-
domized Kaczmarz-type methods (abbreviated as ‘RK’) and randomized restarted surrounding
type methods in [28] (abbreviated as ‘RS’), which restart every two reflections for fair.

In the experiments, all the methods start from the zero vector xg and terminate when the
norm of relative error vector (denoted by ‘ERR’) is less than the tolerance, i.e.

||CC]€ x*HQ S 1076?
l2[13

or achieve the maximal number of the iteration. The number of iteration steps (denoted by
‘IT’), the elapsed CPU time in seconds (denoted by ‘CPU’) are compared.

Example 1. We test some Gaussian random matrices generated by A = (1—c)randn(m,n)+
c1, where 1 is a matrix whose elements are all one, ¢ € [0, 1] is a parameter. The greater the
parameter c is, the higher coherent rows the matrix has. Here, set the maximal number be
30000 and repeated 20 trials.

In Figure 2 and 3, the curves of the relative error with a shaded error bars versus the number
of the iteration are plotted for the RK, RS, and RC methods for A € R599X100 " regpectively.
The solid line in the middle represents the averaging results.

It is seen from Figure 2 that the randomized circumcentered-reflection method required
the least steps of iterations. Furthermore, it is observed that from Figure 3, the advantage of
randomized circumcentered-reflection method will be more obvious when ¢ = 0.6, that is, when
the rows of the matrix is nearly parallel.

Then, the numerical results of CPU and iteration are listed in Table 1 when n = 500 and m
varies from 2000, 4000, 6000, 8000 to 10000 for ¢ = 0.6.

ERR =



2log, (ERR)

0
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—*—RK
—+—RS
RC

2log, ,(ERR)

200 400 600 800 1000 1200 1400 1600 1800 0 500 1000 1500 2000 2500 3000
Iteration Iteration

Fig. 2. ¢=0 Fig. 3. ¢=0.6

c=0.6 2000 x 500 4000 x 500 6000 x 500 8000 x 500 10000 x 500

IT 24531 17564 16011 15120 14732
RK CPU 0.3017 0.2401 0.2158 0.2261 0.2124
ERR  9.991e-07  9.989e-07  9.992e-07  9.986e-07 9.989¢-07
1T 17663 12351 10966 10407 9999
RS CPU 0.4069 0.3234 0.2837 0.2923 0.2807
ERR  9.995e-07  9.989e-07  9.992e-07  9.982e-07 9.990e-07
IT 6908 5353 5059 4868 4811
RC CPU 0.1964 0.1679 0.1536 0.1529 0.1500

ERR  9.984e-07  9.980e-07  9.977e-07  9.974e-07 9.976e-07

Table 1. Numerical results for overdetermined systems when ¢ = 0.6.

3500
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It is obvious from Table 1 that randomized circumcentered-reflection method perform the
best in terms of both steps of iteration and the elapsed CPU time in case of matrices with highly
coherent rows, which verifies our theoretical analysis.

Next, the number of iteration steps and the elapsed CPU time of three methods are listed
in Table 2 when the parameters m = 2000, n = 500 and c varies from 0.1 to 0.9 with stepsize
0.2 respectively. It is further seen from Table 2 that the randomized circumcentered-reflection

c 0.1 0.3 0.5 0.7 0.9
IT 9832 10802 16348 - -
RK CPU 0.1184 0.1386 0.1995 0.3635 0.3770
ERR 9.982e-07 9.987e-07 9.991e-07 1.793e-05 2.542e-03
IT 6466 7060 11493 - -
RS CPU  0.1523 0.1709 0.2630 0.7099 0.7050
ERR 9.978e-07 9.977e-07 9.992e-07 1.806e-06 1.612e-03
1T 4874 5298 6458 7192 5793
RC CPU  0.1354 0.1419 0.1782 0.2045 0.1649
ERR 9.980e-07 9.965e-07 9.983e-07 9.982e-07 9.983e-07

Table 2. Numerical results for overdetermined systems under different c

iteration method outperform the other two method in terms of the iteration steps and the elapsed
CPU time. Particularly, the proposed method can still converge within a satisfying number
of iteration when c¢ is 0.7 and 0.9, while other two can not. This phenomenon confirms our
explanation about the advantage of the randomized circumcentered-reflection iteration method.

Example 2. The test matrices is taken from the SuiteSparse Matrix Collection. The
fundamental information of the matrices are given in Table 3. The select rule of rows is uniformly
random and the averaged performance after are reported after running 20 times.

name | Trefethen_20 | WorldCities abtaha2 abtahal cari bibd_16_8
size 20 x 20 315 x 100 | 37932 x 331 | 14596 x 209 | 400 x 1200 | 120 x 12870
rank 20 100 331 209 400 120

density 39.5% 23.87% 1.09% 1.68% 31.83% 23.33%
cond 63.09 65.99 12.22 12.23 3.13 9.54

Table 3. Information of the matrices from the Matrix Market

The iteration steps, the elapsed CPU time and the relative error of randomized Kaczmarz
method, randomized restarted surrounding method and the proposed method are listed respec-
tively in Table 4. Further, it is found that the randomized circumcentered-reflection method can
converge and keep the advantage in terms of iterations so that we can get similar conclusion as
above. The CPU time of the randomized circumcenter method is comparable with randomized
Kaczmarz method, since the new approach needs to cost extra time to choose two rows and
calculate parameters of circumcenters.

Example 3. We studied the influence of different selected strategies for the new anroach
compared with randomized Kaczmarz method according to the probability rule E‘T;ZTP’ 1 €
{1,2,...,m}, where r; is the i-th element of the residual vector, p is a positive integer. Here,
set p = 2,4,8 and average the results after repeating 20 times.

In Figure 4, the curves of the relative error with shaded error bars versus the number of the
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Method Trefethen 20 | WorldCities | abtaha2 abtahal cart bibd_16_8

1T 1082 22850 86578 58379 4522 2956

RK | CPU 0.0150 0.4955 4.9174 2.1023 0.3735 4.2892
ERR 9.453e-07 9.993e-07 | 9.989e-07 | 9.982e-07 | 6.693e-07 | 9.723e-07

1T 667 18023 63964 43238 2698 1924

RS | CPU 0.0170 0.7467 7.1447 3.0169 0.4357 5.2870
ERR 9.841e-07 9.995e-07 | 9.987e-07 | 9.975e-07 | 8.024e-07 | 9.761e-07

1T 394 9432 42608 28718 2260 1476

RC | CPU 0.0176 0.4125 4.7722 2.0764 0.3785 4.0172
ERR 9.376e-07 9.988e-07 | 9.985e-07 | 9.975e-07 | 7.183e-07 | 9.927e-07

Table 4. Numerical results for the matrices from Matrix Market

iteration and CPU time are plotted for the randomized circumcentered-reflection method and
R500x 100

randomized Kaczmarz method with different p respectively when A €

RC p=2
—+—RKp=2
—@ —RCp=4
———-RKp=4

*-RC p=8

RK p=8

2log, ,(ERR)
2log, (ERR)

| |
0.04 0.05

CPU time

. . . . ) . . .
200 300 400 500 600 0 0.01 0.02 0.03
Iteration

Fig. 4. Residual errors versus I'T and CPU for different p

Compared with results in Example 1, it is seen from Figure 4 that the new rule could
significantly accelerate the convergence rate of the proposed method for the same size of the
matrix. It is indicated that different strategies of selecting rows indeed influence the performance
of algorithms. More precisely, it is obvious that the iteration steps of both methods decrease
as the value of p increases. Moreover, large p may cost more CPU time as shown in the right
one. If the same p is chosen, the proposed methods outperform the corresponding Kaczmarz
methods in terms of the number of iteration steps and the randomized circumcentered-reflection
iteration method with p = 8 behaves best among them.

5 Conclusions

A randomized circumcentered-reflection iteration method is designed for solving consistent
linear equations. Convergence rates of the proposed method in expectation are proved under
two probability rules and the relation with block Kaczmarz method is revealed. Numerical
experiments further verify that the randomized circumcentered-reflection iteration method can
outperform existing methods especially when the coefficient matrix with highly coherent rows.
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The random shuffle, sketch sampling and extrapolation strategies can be further considered to
enhance the effect of our algorithm in the future.
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