

Agro-food greenhouse gas emissions are increasingly driven by foreign demand

Supplementary information

Pablo Piñero^{1,2}, Eduardo Aguilera¹, Emilio Travieso³, Juan Infante-Amate⁴, Martin Bruckner⁵, James Gerber⁶, Luis Lassaletta¹, Nathan Mueller⁷, Alberto Sanz-Cobeña¹

¹CEIGRAM, Universidad Politécnica de Madrid, Madrid, Spain.

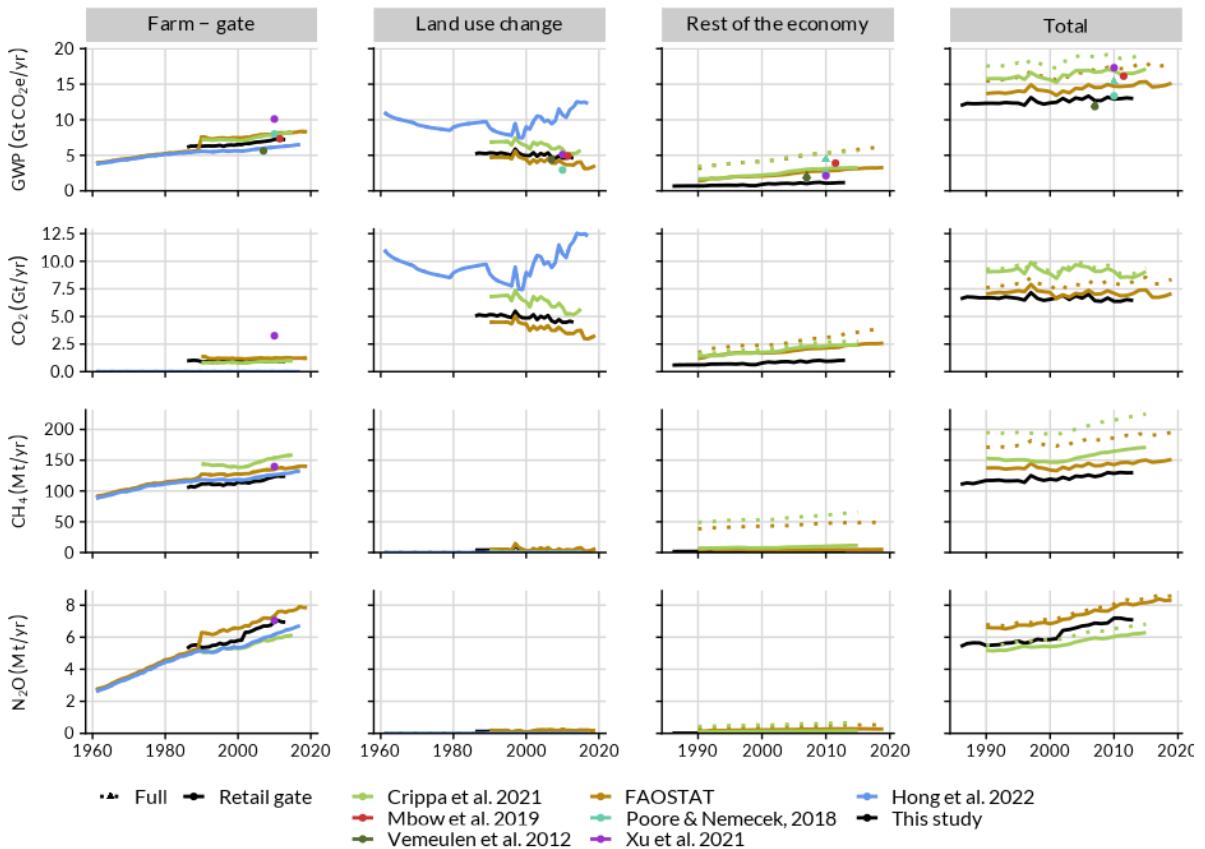
²European Commission, Joint Research Centre, Seville, Spain.

³University Carlos III, Madrid, Spain.

⁴University of Granada, Granada, Spain.

⁵Global Resource Use, Institute for Ecological Economics, Vienna University of Economic and Business, Vienna, Austria.

⁶Institute on the Environment, University of Minnesota, Minneapolis, MN, USA.


⁷Department of Ecosystem Science and Sustainability, Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA.

CONTENTS

1. Quality assurance.....	2
1.1. Comparison with other studies.....	2
1.2. Analysis of GHG intensities of food products	5
1.3. Sensitivity analysis of amortization periods of land use change emissions.....	6
2. Supplementary results	6
2.1. Carbon footprint of food consumption vs. domestic GHG emissions of food production.....	6
2.2. Income and fraction of food emissions embodied in the import trade	11
2.3. Drivers of agro-food emissions embodied in trade	12
2.4. Leakage of emissions and aggregate per capita agro-food emissions.....	13
References	14

1. QUALITY ASSURANCE

1.1. Comparison with other studies

Figure SI-1. Comparison of food system emissions estimated in our study with those estimated by other studies. Emissions are aggregated by food system stage (columns) and by gas (rows). GWP refers to Global Warming Potential. The distinction between 'Full' and 'Retail gate' refers to the inclusion or not (respectively) of post-retail emissions (food preparation in households, restaurants and caterings, and food waste management). This distinction is not made for farm-gate and LUC emissions.

Table SI-1. Summary of methodological differences across studies.

	This study	Hong et al., 2022 ¹	Tubiello et al., 2022 ²	Tubiello et al., 2021 ³	Xu et al., 2021 ⁴	Hong et al 2021 ⁵	Crippa et al., 2021 ⁶	Mbow et al., 2019 ⁷	Poore and Nemecek, 2018 ⁸	Bennetzen et al., 2016 ⁹	Vermeulen et al., 2012 ¹⁰
Period	1986-2013	2004,2007, 2011,2014, 2017	1990-2019	1990 and 2018	2007-2013 (mean)	1961-2017	1990-2015	2007-2016 (mean)	2000-2016 studies, 2009-2011 sample	1970-2007-2050	ca. 2005-2008
Scope	Food consumption	AFOLU, Food consumption	Agro-food system, AFOLU	Agro-food system, AFOLU	Food consumption	AFOLU	Agro-food system	Agro-food system, AFOLU	Agro-food system	Agricultural production	Agro-food system
Resolution	Country	Country	Continent (by country in SI)	AI-NA ^{a)}	Gridded-region	Country	Country	Global	Global	Region	Global
Allocation	Economic/mass	Not allocated	Not allocated	Not allocated	Energy/main product	Not allocated ^{b)}	Not allocated	Not allocated	Economic	Dry matter	Not allocated
GWP^{c)}	AR5 wCCF ^{d)}	AR5 wCCF ^{d)}	SAR ^{e)}	SAR ^{e)}	AR5 wCCF ^{d)}	AR5 wCCF ^{d)}	AR5 woCCF ^{f)}	AR5 woCCF ^{f)}	AR5 wCCF ^{d)}	SAR ^{e)}	NA
On-farm	Source	FAOSTAT	FAOSTAT. Energy not included	FAOSTAT	FAOSTAT	ISAM model (Soil) - FAOSTAT (Animals)	FAOSTAT. Energy not included	EDGAR, IEA ¹¹	FAOSTAT and US EPA	Meta-analysis of literature ^{g)}	Estimated
	Method	IPCC 2006 Tier 1	IPCC 2006 Tier 1	IPCC 2006 Tier 1	IPCC 2006 Tier 1	IPCC 2006 Tier 1	IPCC 2006 Tier 1 ^{h)}	IPCC 2006 Tier 1	Literature ⁱ⁾	IPCC 1997 Tier 1	IPCC 1997 Tier 1
Pre-farm	Source	EXIOBASE ¹³		Tubiello et al., 2021b ¹⁴	FAO, 2011 ¹⁵	Kool et al., 2012 ¹⁶		EDGAR ¹⁷	Poore and Nemecek, 2018 ⁸ , Fischedick et al., 2014 ¹⁸	Meta-analysis of literature	Bellarby et al., 2008 ¹⁹ , Steinfeld et al., 2006 ²⁰
	Method	MRIO		LCA-based	Attribution to agriculture	LCA-based		Attribution to agriculture	LCA-based, attribution to agriculture	LCA-based	Energy-based
LUC, forests	Source	LUH2 ²¹	Blue ²² -LUH2 ²¹	FAOSTAT ^{j)}	FAOSTAT ^{j)}	ISAM (Soil) ²³ - LUH2 (Biomass) ²¹	Blue ²² -LUH2 ²¹	FAOSTAT ^{k)}	FAOSTAT ^{k)}	Meta-analysis of literature ^{l)}	CDIAC ²⁴
	Components	Biomass	Soil and Biomass	Biomass and fire emissions	Biomass and fire emissions	Soil and Biomass	Soil and Biomass	Biomass, burning, Annual emissions	Biomass and fire emissions	Soil, Biomass fire emissions	van der Werf et al., 2000 ²⁵ , Blaser and Robledo, 2007 ²⁶
	Method	Amortization 100 years	Legacy	Annual emissions	Annual emissions	Annual emissions	Legacy	Annual emissions	Annual emissions	Amortization 20 years	Biomass
LUC, peat	Source	FAOSTAT	FAOSTAT	FAOSTAT	FAOSTAT		FAOSTAT ^{m)}	FAOSTAT	FAOSTAT	FAOSTAT	
	Method	IPCC 2006 tier 1	IPCC 2006 tier 1	IPCC 2006 tier 1	IPCC 2006 tier 1		IPCC 2006 tier 1	IPCC 2006 tier 1	IPCC 2006 tier 1	IPCC 2006 tier 1	
Transport	Source	EXIOBASE ¹³		Various sources	Various sources	Ecoinvent ²⁷ and Kinnon, 2011 ²⁸		EDGAR ¹⁷ , Eurostat, FAO	Poore and Nemecek, 2018 ⁸ , Fischedick et al., 2014 ¹⁸	Ecoinvent and James, 2010 ²⁹	Chen and Zhang, 2010 ³⁰

	Method	MRIO	Energy-based and attribution to food	Attribution to food	LCA-based	Energy-based and attribution to food	LCA-based and attribution to food	LCA-based	NA
Processing	Source	IEA ¹¹ , EXIOBASE ¹³	Tubiello et al., 2021b ¹⁴	FAO, 2011 ¹⁵	NA	IEA ¹¹	Poore and Nemecek, 2018 ⁸ , Fischedick et al., 2014 ¹⁸	Meta-analysis of literature	Chen and Zhang, 2010 ³⁰
	Method	Combustion-based	Energy-based and attribution to food	Attribution to agriculture	LCA-based	Energy-based and attribution to food	LCA-based, attribution to agriculture	LCA-based	NA
Packaging	Source	EXIOBASE ¹³	Tubiello et al., 2021b ¹⁴	FAO, 2011 ¹⁵		Various sources	Poore and Nemecek, 2018 ⁸ , Fischedick et al., 2014 ¹⁸	Meta-analysis of literature	Chen and Zhang, 2010 ³⁰
	Method	MRIO	Energy-based and attribution to food	NA		Energy-based and attribution to food	LCA-based, attribution to agriculture	LCA-based	NA
Retail	Source	EXIOBASE ¹³	Tubiello et al., 2021b ¹⁴	FAO, 2011 ¹⁵					
	Method	MRIO	Energy-based and attribution to food	NA					
Trade	Source	FABIO ³¹	GTAP ³²			FAOSTAT detailed trade matrix Bilateral trade ⁿ⁾			
	Method	MRIO	MRIO						

NA Not Available

^{a)} Annex I and Non-Annex I countries.

^{b)} They also provide an alternative scenario in which feed emissions are allocated to animals based on energy requirements.

^{c)} Global warming potential. All studies use a 100-year time horizon.

^{d)} Fifth Assessment Report, with climate change feedbacks.

^{e)} Second Assessment Report.

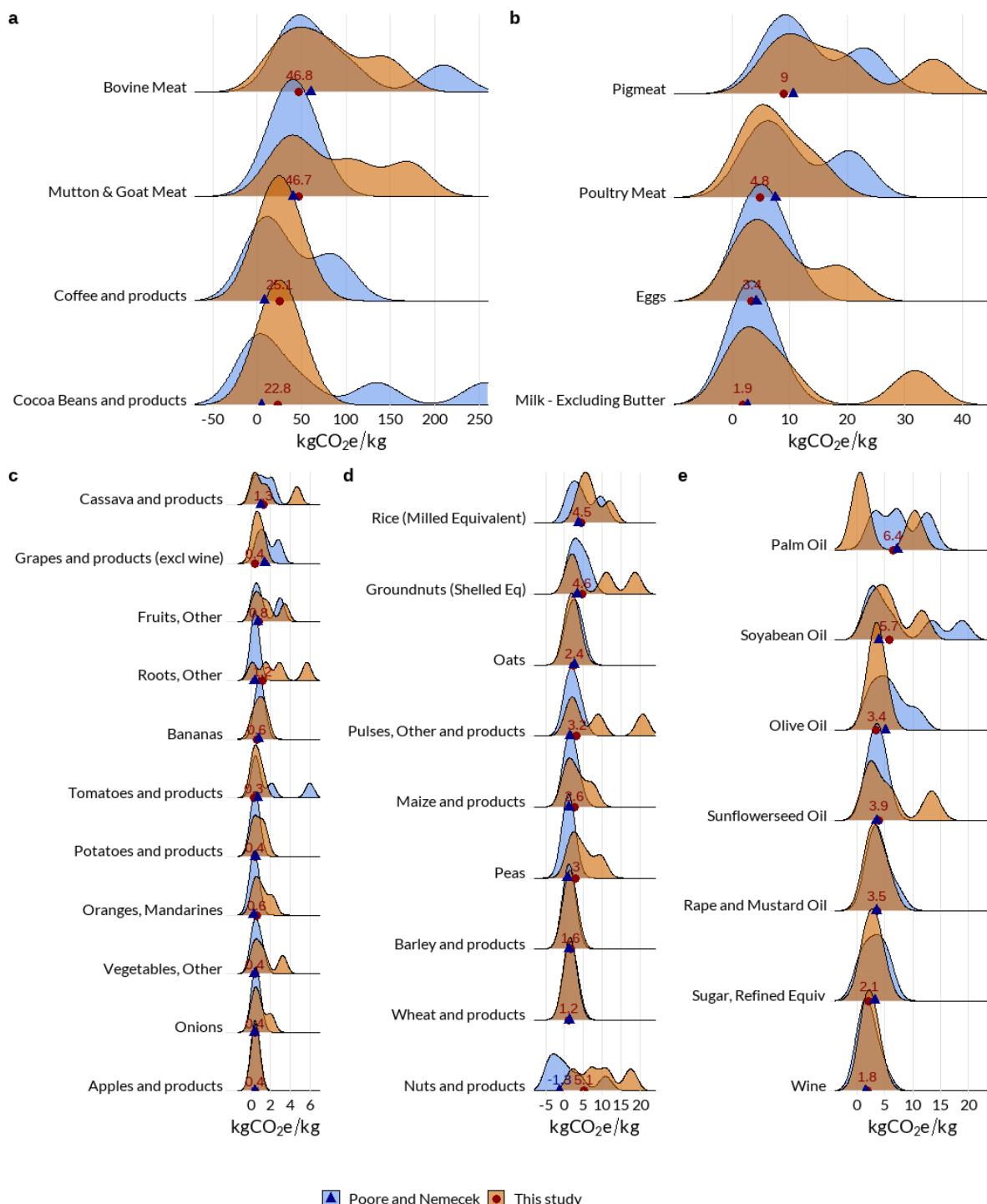
^{f)} Fifth Assessment Report, without climate change feedbacks.

^{g)} Except savannah burning, from FAOSTAT, and fisheries, from Parker et al. (2018)³³.

^{h)} Except cattle enteric fermentation and rice (Tier 2).

ⁱ⁾ Filling gaps with IPCC (2006)³⁴ Tiers 1 and 2, EcoInvent²⁷, Stehfest and Bouwman, 2006³⁵, Tubiello et al., 2016³⁶, EEA, 2016³⁷.

^{j)} New dataset which separates agriculture-related emissions.


^{k)} Former dataset in which all emissions are attributed to agriculture.

^{l)} Except cattle enteric fermentation and rice (Tier 2).

^{m)} With assumptions to estimate the pre-1990 period.

ⁿ⁾ Emission intensities of the exporter country are assumed for exports.

1.2. Analysis of GHG intensities of food products

Figure SI-2. Comparison of global variation in the carbon footprint of a selection of products in our study with the variation in a compilation of published life-cycle assessment studies reported by Poore and Nemecek⁸, 2018. The dots represent the weighted mean in our study and the median in Poore and Nemecek, 2018⁸. When the dots are very close, only the value of our study is shown to facilitate visualization.

a. High-emissions animal and vegetal products; **b.** Vegetables, fruits, tubers and roots; **c.** Other animal products; **d.** Cereals, pulses and nuts; **e.** Processed vegetal products.

1.3. Sensitivity analysis of amortization periods of land use change emissions

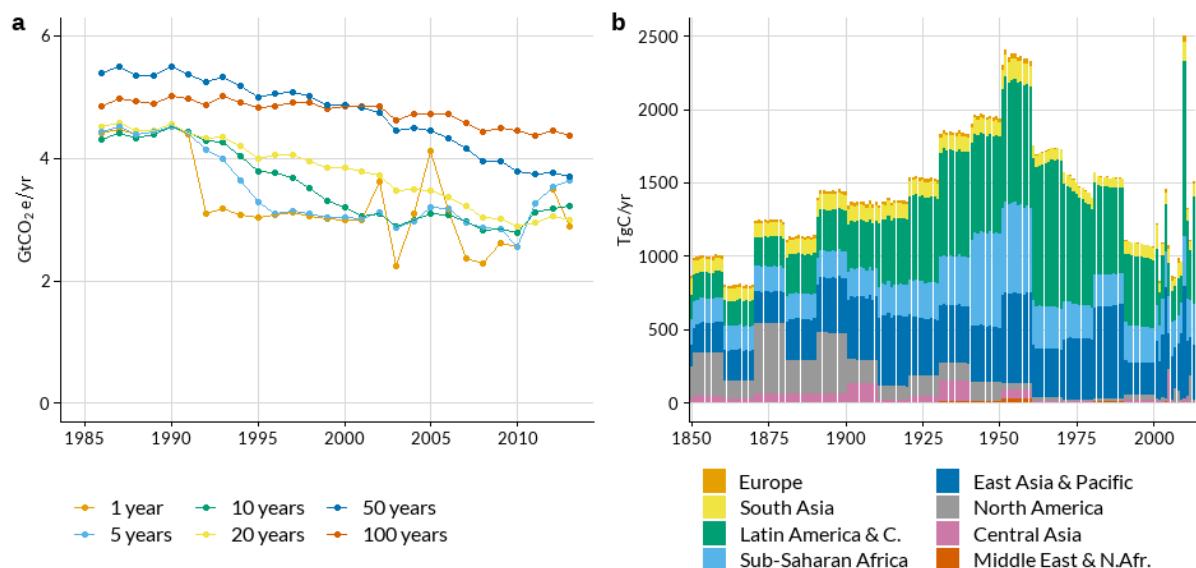
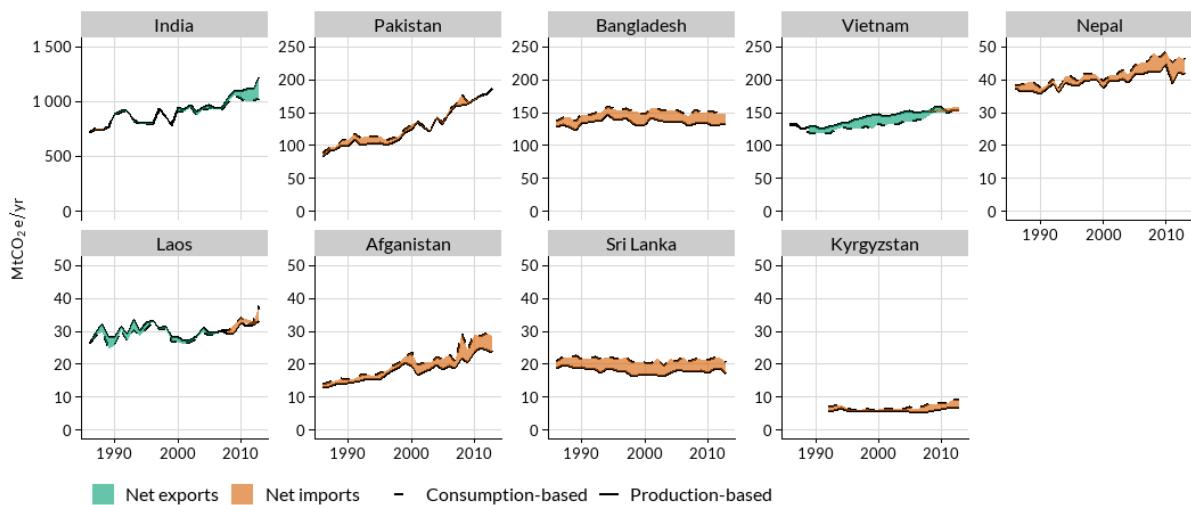
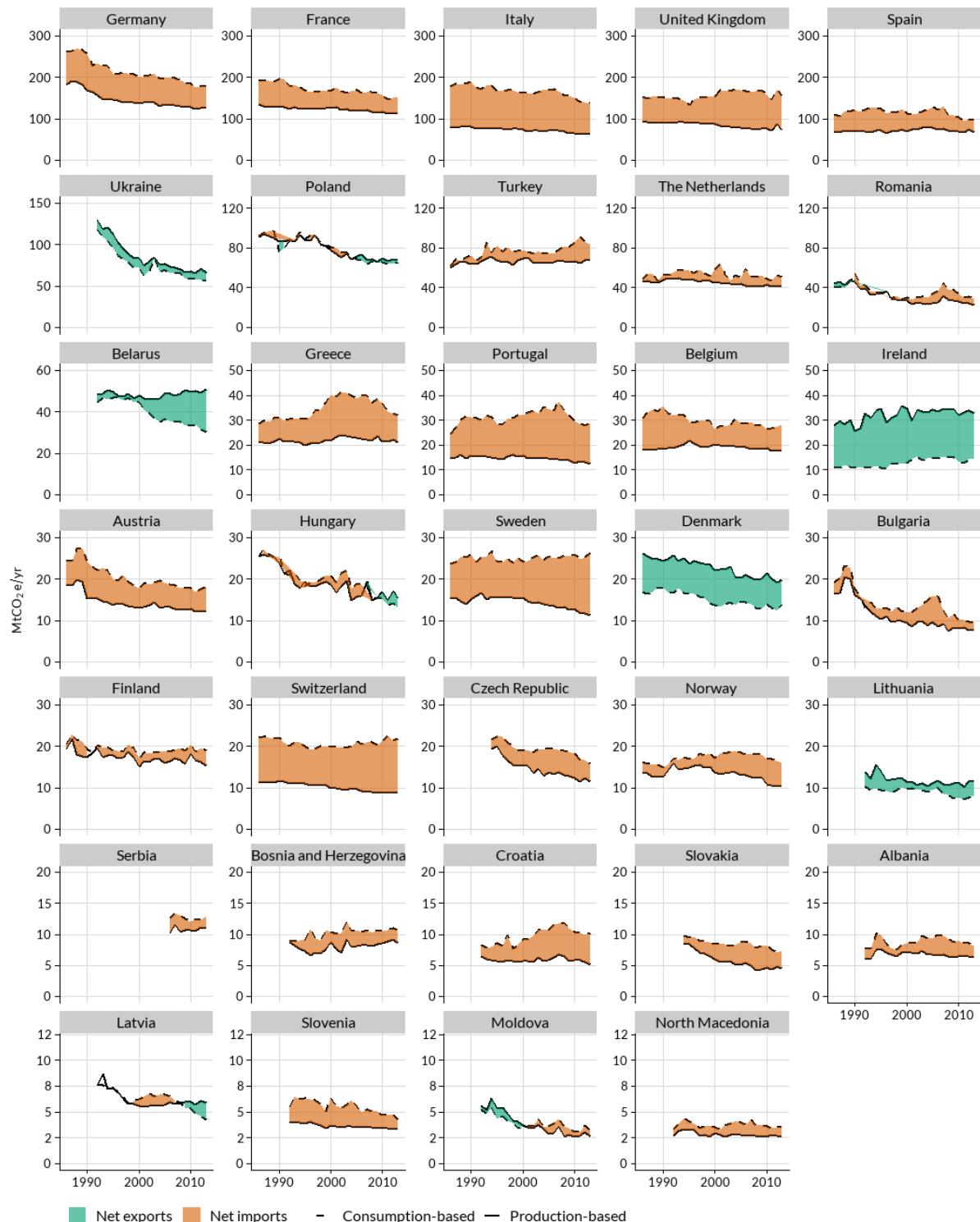


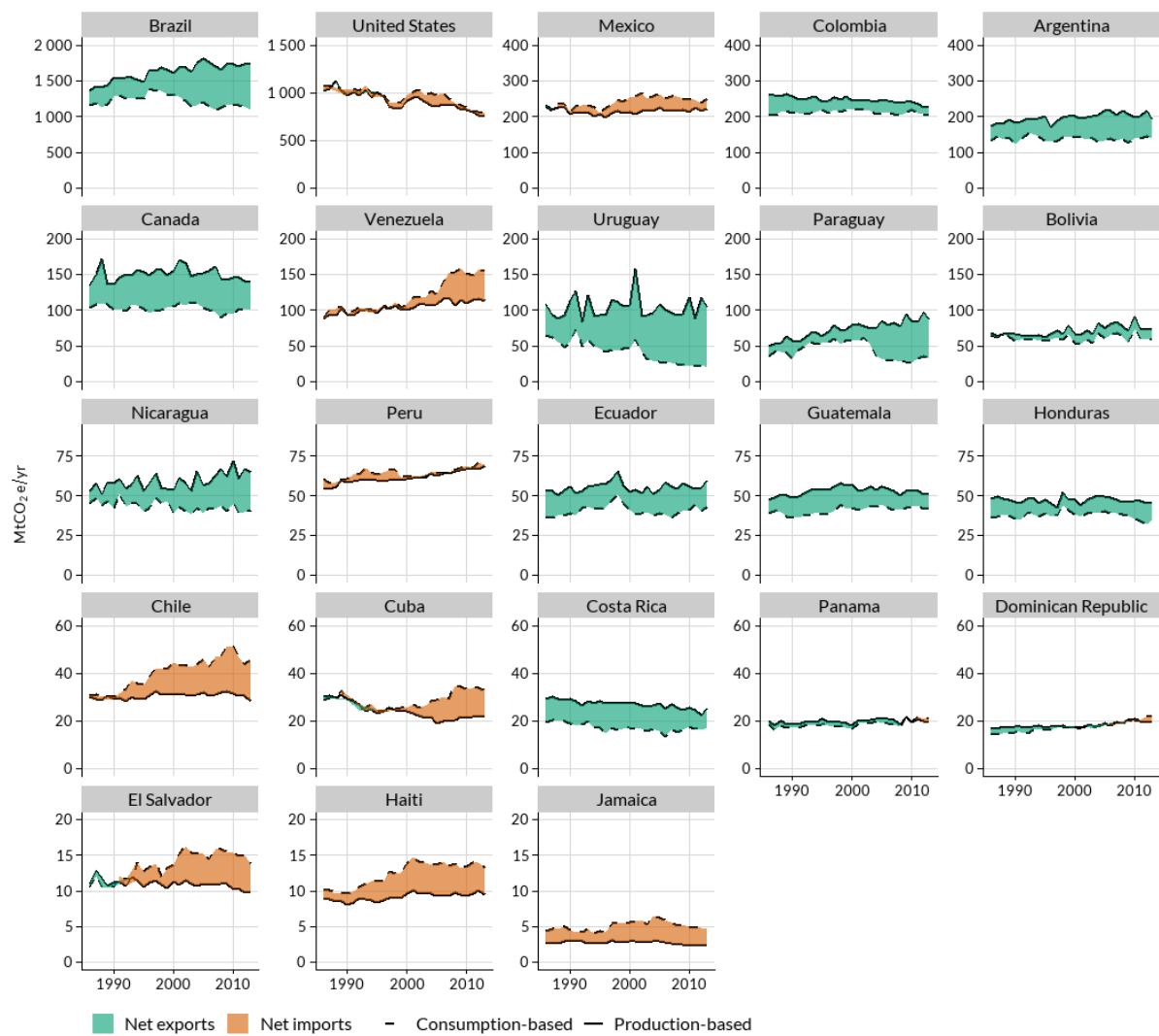
Figure SI-3. a. Land use change emissions by amortization period in the study years (1986-2013). b. Land use change-related carbon release by world region from 1850 to 2015 (LUH2 database).

2. SUPPLEMENTARY RESULTS

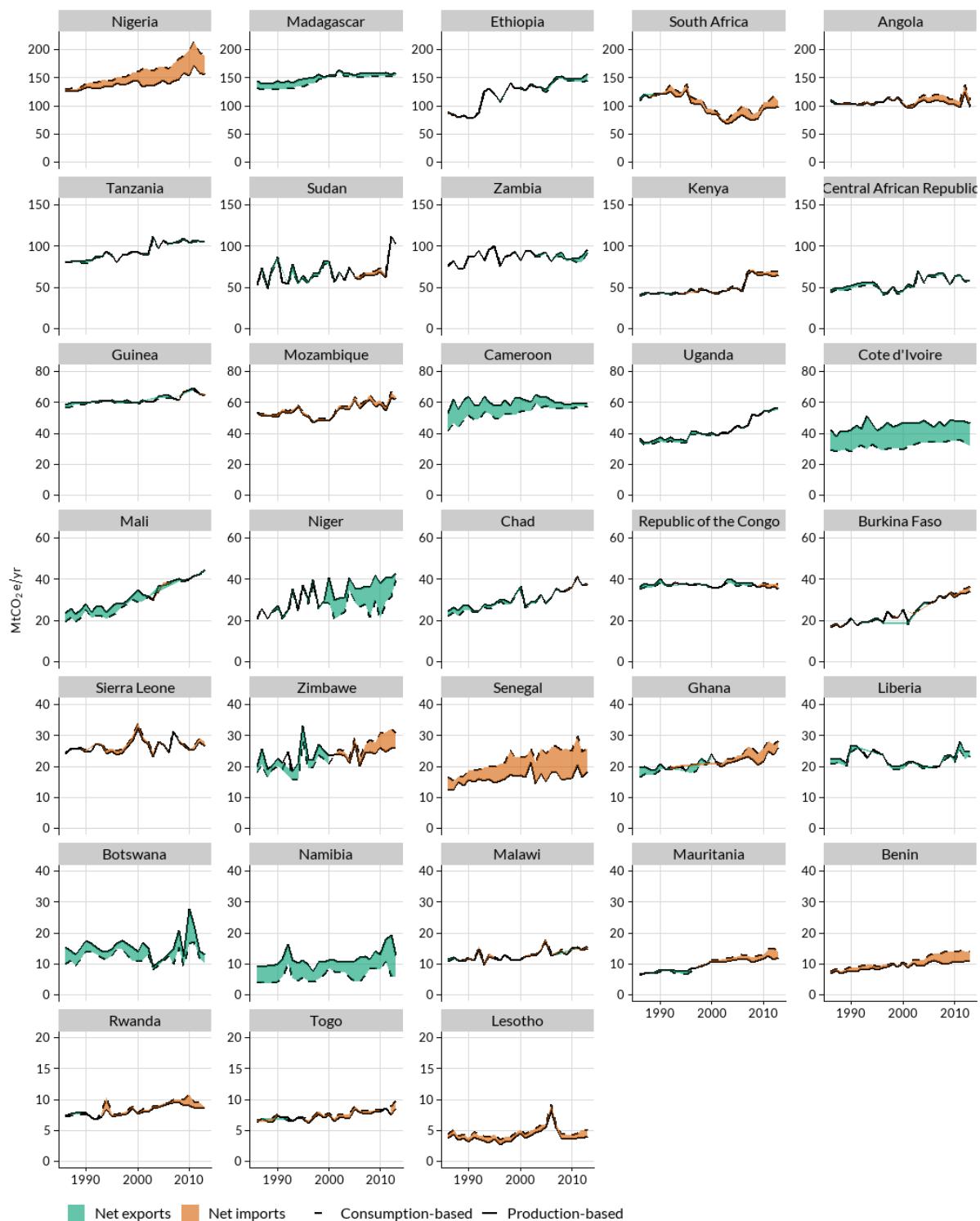
2.1. Carbon footprint of food consumption vs. domestic GHG emissions of food production

A. South Asia

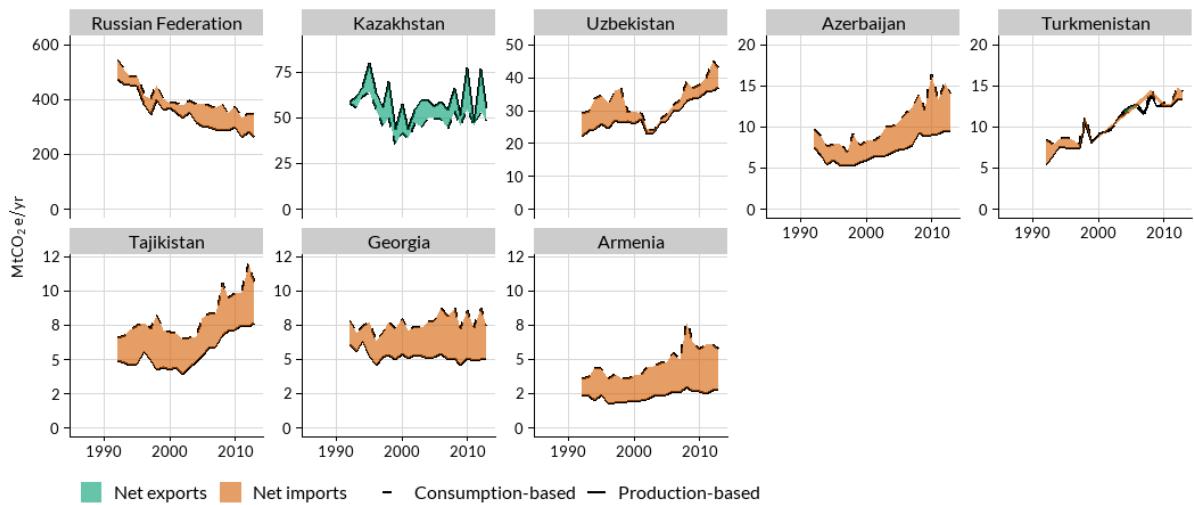




Figure SI-4. Carbon footprint of food consumption vs. domestic GHG emissions of food production in GtCO₂e for South Asian countries.

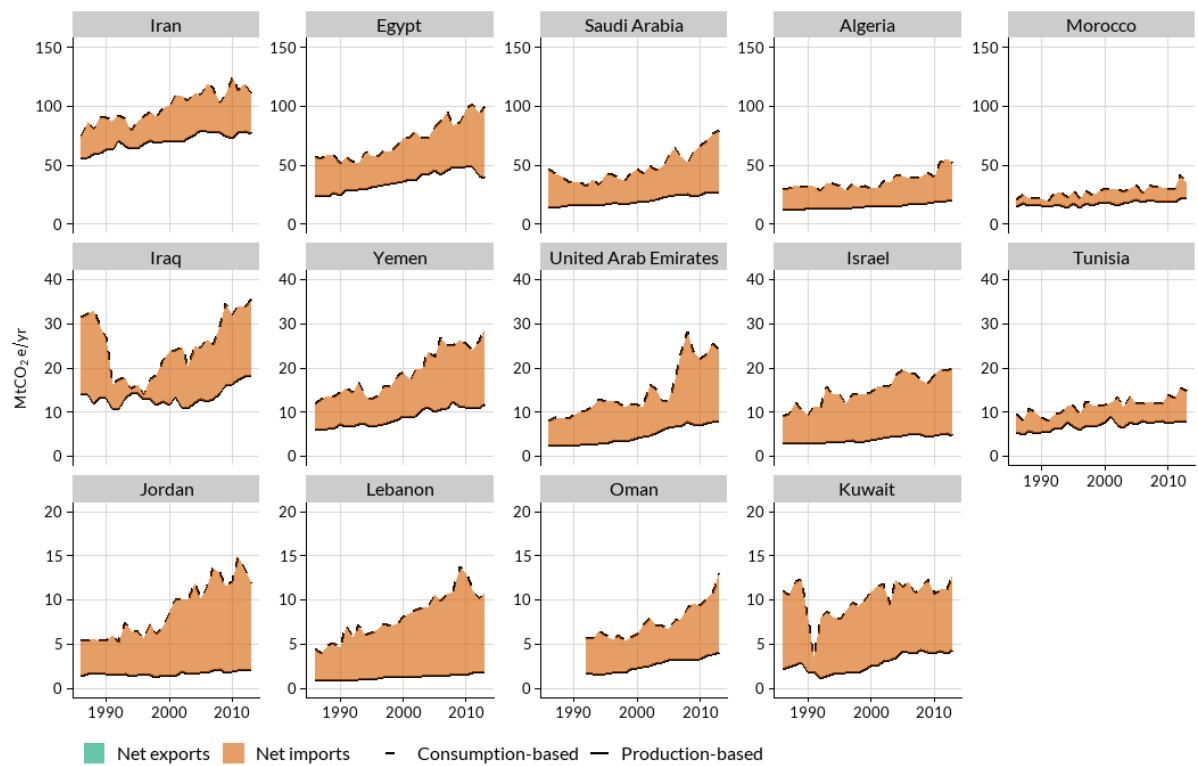
B. Europe


Figure SI-5. Carbon footprint of food consumption vs. domestic GHG emissions of food production in GtCO₂ for European countries.

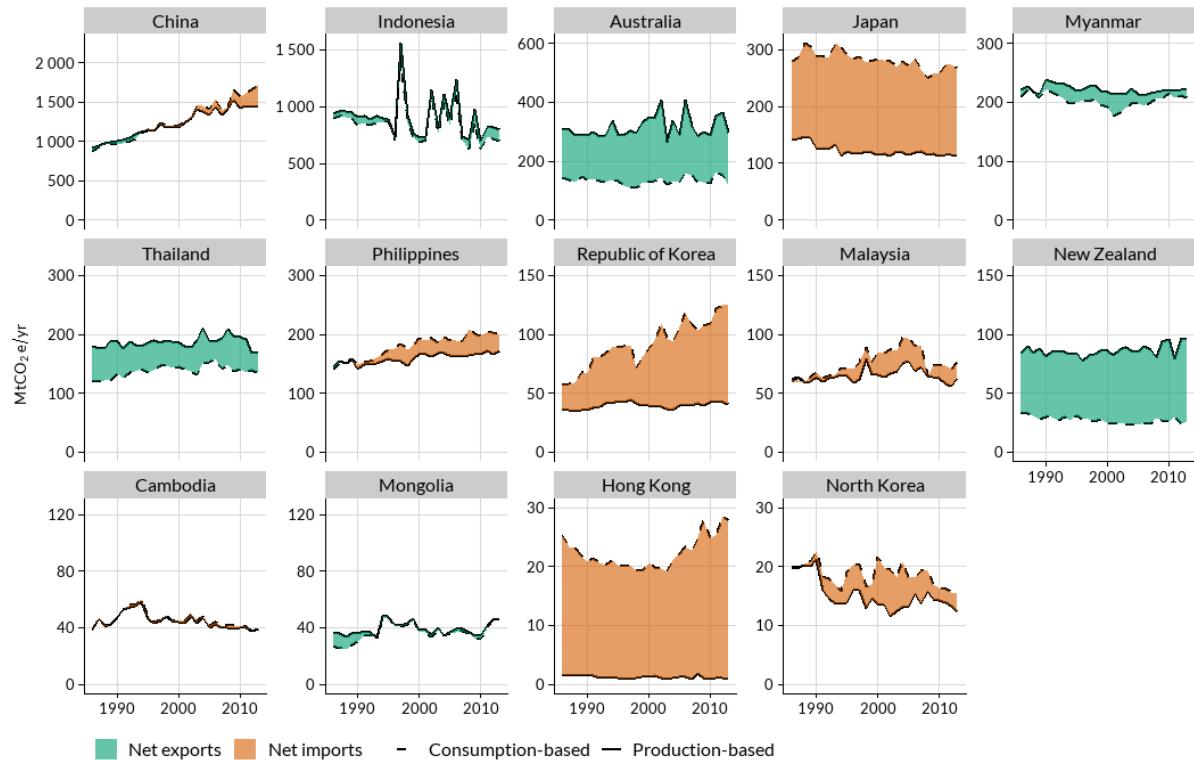
C. Americas


Figure SI-6. Carbon footprint of food consumption vs. domestic GHG emissions of food production in GtCO₂e for North American and Latin American countries.

D. Africa


Figure SI-7. Carbon footprint of food consumption vs. domestic GHG emissions of food production in GtCO₂e for Sub-Saharan African countries.

E. Central Asia


Figure SI-8. Carbon footprint of food consumption vs. domestic GHG emissions of food production in GtCO₂e for Central Asian countries.

F. Middle East and North Africa

Figure SI-9. Carbon footprint of food consumption vs. domestic GHG emissions of food production in GtCO₂e for Middle East and North African countries.

G. East Asia & Pacific

Figure SI-10. Carbon footprint of food consumption vs. domestic GHG emissions of food production in GtCO₂e for East Asia & Pacific countries.

2.2. Income and fraction of food emissions embodied in the import trade

In our yearly dataset, higher incomes are associated at the country level with a higher fraction of emissions embodied in the agro-food import trade (Figure SI-11). This is in addition to the positive correlation between income and absolute food emissions embodied in imports.

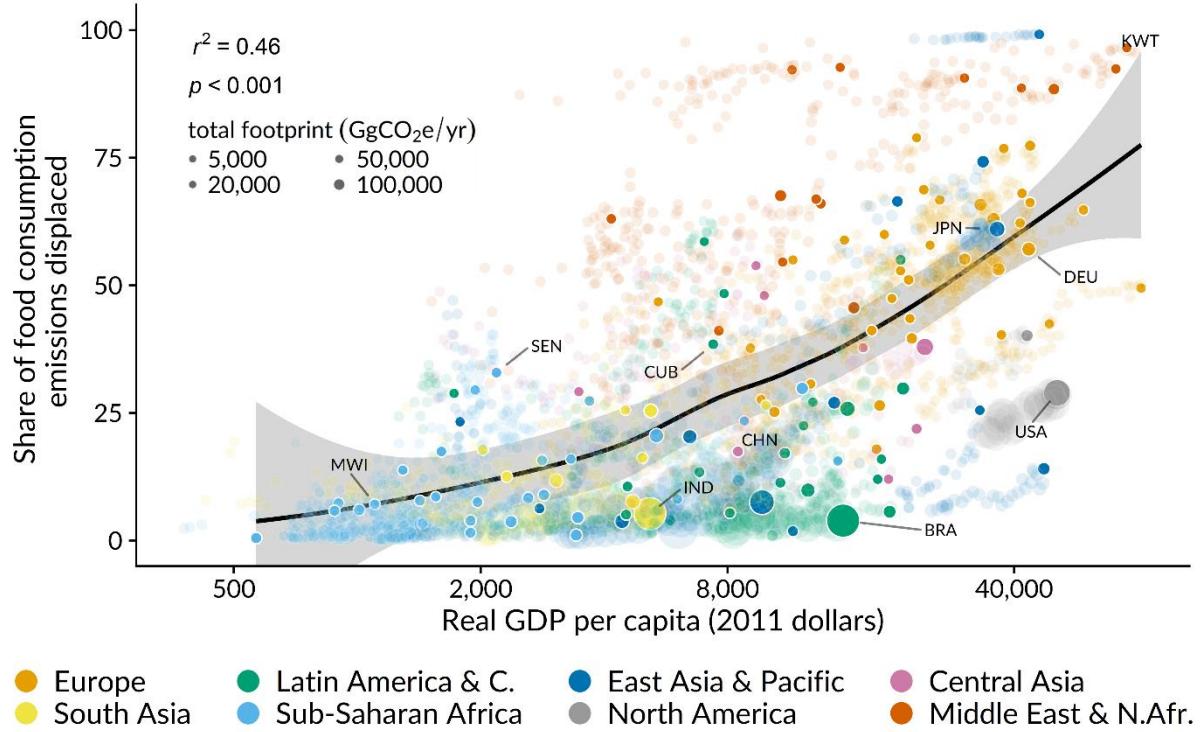


Figure SI-11. Share of food consumption emissions displaced via imports (%) against average incomes (real GDP per capita in 2011 dollars, log scale). Highlighted dots, trendline and correlation coefficients refer only to 2013 data, transparent dots to observations 1986-2012. All countries with population > 2M included.

2.3. Drivers of agro-food emissions embodied in trade

We conduct panel data regression to examine the impact of changes in income and population on agro-food emission displaced via trade. We estimate a combined entity and time fixed-effects model to control for unobserved confounders idiosyncratic to each country which affect agro-food consumption patterns (local environments, cultural traditions, population geography, etc.), as well as for unobserved variables which varied worldwide over time (such as global economic cycles and trade regulations). Our full model is an equation of the following form:

$$DE_{it} = \beta_1 Inc_{it} + \beta_2 Pop_{it} + \beta_3 (Pop_{it} \times Inc_{it}) + \alpha_i + \lambda_t + u_{it}$$

where DE_{it} is the dependent variable (displaced agro-food emissions per capita in country i in year t); Inc_{it} and Pop_{it} are the independent variables of interest (per capita income and population in country i in year t); $(Pop_{it} \times Inc_{it})$ is an interaction term between them, so that β_3 is the effect of a one-unit increase in income *and* population above and beyond the sum of the individual effects of an increase in population and income alone; α_i ($i=1\dots n$) is the intercept for each entity (i.e. the country fixed effect); λ_t is the intercept for each time period (i.e. the year fixed effect); and u_{it} is the error term.

The different specifications reported in table SI-3 allow us to focus on longitudinal variation (changes in each country relative to itself in the past, column 1), as well as to include both country and year fixed effects to concentrate on variation across time in each country outside of a general world time trend (columns 2-4). The last specification in column 4 includes the interacted regressor which allows the population effect on displaced emissions to depend on average incomes (and vice versa). Column 3 shows that the effect of income is still large even when accounting for population increase. The coefficients in column 4 show that population increases result in higher agro-food emission displacement only when average incomes increase at the same time. Standard errors are clustered at the country level in all cases to account for serial correlation.

Table SI-3. Impact of income per capita on displaced agro-food emissions per capita, 1986-2013.

	(1)	(2)	(3)	(4)
Income (GDP per capita, log)	0.527*** (0.055)	0.341*** (0.089)	0.328*** (0.088)	0.280 (0.395)
Population (thousands, log)			-0.304* (0.157)	-0.345 (0.347)
Population * Income				0.005 (0.042)
Country Fixed Effects	Yes	Yes	Yes	Yes
Year Fixed Effects	No	Yes	Yes	Yes
Observations	3,493	3,493	3,493	3,493
RMSE	0.30	0.29	0.29	0.29

Notes: displaced agro-food emissions per capita (tCO₂/yr/cap) as the dependent variable. Real GDP per capita (PPP, in 2011 dollars) and population (in thousands of people) as independent variables. Columns 1 shows panel data regression with country fixed effects; columns 2-4 show panel data regression with both country and year fixed effects; column 3 controls for population growth; column 4 shows panel data regression interacting GDP per capita and population. Clustered standard errors at the country level reported in brackets. Observations are year-country pairs. ***, **, and * denote significance at the 1%, 5%, and 10% levels.

Sources: displaced agro-food emissions from the dataset presented in this study; GDP per capita and population data from the Maddison Database³⁸.

2.4. Leakage of emissions and aggregate per capita agro-food emissions

We conduct a further panel data regression analysis to consider whether leakage of agro-food emissions leads to larger or smaller emissions per capita *in the aggregate*, beyond the relationship of income levels on leakage. The regression equation is:

$$E_{it} = \beta_1 Mshare_{it} + \beta_2 Inc_{it} + \alpha_i + \lambda_t + u_{it}$$

where E_{it} is the dependent variable (total agro-food consumption emissions per capita in country i in year t); $Mshare_{it}$ and Inc_{it} are the independent variables of interest (import share of total agro-food consumption emissions and per capita income in country i in year t); α_i ($i=1\dots n$) is the country fixed effect; λ_t is the year fixed effect; and u_{it} is the error term.

The results suggest that increasing the import share of a country's consumption footprint is associated with slightly lower total per capita emissions. When including both country and year fixed effects (column 3), as well as controlling for income, an increase of 1% in the import share of emissions is associated with a decrease of 0.06% in the total per capita agro-food consumption emissions. Clustered standard errors (at the country level) are always calculated to account for serial correlation.

Table SI-4. Impact of emission displacement on total per capita agro-food consumption emissions, 1986-2013.

	(1)	(2)	(3)
Import share of emissions (log)	-0.146*** (0.025)	-0.049* (0.027)	-0.063*** (0.028)
GDP per capita (log)			0.147*** (0.047)
Country Fixed Effects	Yes	Yes	Yes
Year Fixed Effects	No	Yes	Yes
Observations	3,493	3,493	3,493
RMSE	0.14	0.13	0.13

Notes: results obtained using total per capita agro-food consumption emissions (tCO₂/yr/cap, in logs) as the dependent variable. Share of total agro-food consumption emissions displaced via imports (%) and real GDP per capita (PPP, in 2011 dollars) as independent variables. Column 1 shows the basic pooled OLS regression; columns 2-4 show panel data regressions with fixed effects. Clustered standard errors at the country level reported in brackets. Observations are year-country pairs. ***, **, and * denote significance at the 1%, 5%, and 10% levels.

Sources: agro-food emissions and import share from our own dataset; GDP per capita data from the Maddison Database³⁸.

REFERENCES

- 1 Hong, C. *et al.* Land-use emissions embodied in international trade. *Science* **376**, 597-603, doi:10.1126/science.abj1572 (2022).
- 2 Tubiello, F. N. *et al.* Pre- and post-production processes increasingly dominate greenhouse gas emissions from agri-food systems. *Earth Syst. Sci. Data* **14**, 1795-1809, doi:10.5194/essd-14-1795-2022 (2022).
- 3 Tubiello, F. N. *et al.* Greenhouse gas emissions from food systems: building the evidence base. *Environmental Research Letters* **16**, 065007, doi:10.1088/1748-9326/ac018e (2021).
- 4 Xu, X. *et al.* Global greenhouse gas emissions from animal-based foods are twice those of plant-based foods. *Nature Food* **2**, 724-732, doi:10.1038/s43016-021-00358-x (2021).
- 5 Hong, C. *et al.* Global and regional drivers of land-use emissions in 1961–2017. *Nature* **589**, 554-561, doi:10.1038/s41586-020-03138-y (2021).
- 6 Crippa, M. *et al.* Food systems are responsible for a third of global anthropogenic GHG emissions. *Nature Food* **2**, 198-209, doi:10.1038/s43016-021-00225-9 (2021).
- 7 Mbow, C. *et al.* Food Security. In *Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems* (2019).
- 8 Poore, J. & Nemecek, T. Reducing food's environmental impacts through producers and consumers. *Science* **360**, 987-992, doi:10.1126/science.aaq0216 (2018).
- 9 Bennetzen, E. H., Smith, P. & Porter, J. R. Agricultural production and greenhouse gas emissions from world regions—The major trends over 40 years. *Global Environmental Change* **37**, 43-55, doi:10.1016/j.gloenvcha.2015.12.004 (2016).

10 Vermeulen, S. J., Campbell, B. M. & Ingram, J. S. I. Climate Change and Food Systems. *Annual Review of Environment and Resources* **37**, 195-222, doi:10.1146/annurev-environ-020411-130608 (2012).

11 International Energy Agency. World Energy Balances 2019 Edition. Database Documentation (2019).

12 Smith, P. *et al.* Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture. *Agriculture, Ecosystems & Environment* **118**, 6-28, doi:10.1016/j.agee.2006.06.006 (2007).

13 Stadler, K. *et al.* EXIOBASE 3: Developing a Time Series of Detailed Environmentally Extended Multi-Regional Input-Output Tables. *Journal of Industrial Ecology* **22**, 502-515, doi:10.1111/jiec.12715 (2018).

14 Tubiello, F. N. *et al.* Methods for estimating greenhouse gas emissions from food systems. Part III: energy use in fertilizer manufacturing, food processing, packaging, retail and household consumption. (Food and Agriculture Organization of the United Nations, Rome, 2021).

15 FAO. Energy-smart food for people and the planet. (Food and Agriculture Organization of the United Nations, Rome, 2011).

16 Kool, A., Marinussen, M. & Blonk, H. LCI data for the calculation tool Feedprint for greenhouse gas emissions of feed production and utilization. GHG Emissions of N, P and K fertilizer production. (2012).

17 European Commission *et al.* GHG emissions of all world : 2021 report. (Publications Office of the European Union, 2021).

18 Fischedick, M. *et al.* in *Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change* (eds O. Edenhofer *et al.*) (Cambridge University Press, 2014).

19 Bellarby, J., Foereid, B., Hastings, A., and Smith, P. Cool Farming: Climate Impacts of Agriculture and Mitigation Potential. (Amsterdam, 2008).

20 Steinfeld, H. *et al.* *Livestock's Long Shadow: Environmental Issues and Options*. Vol. 24 (2006).

21 Hurtt, G. C. *et al.* Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. *Geosci. Model Dev.* **13**, 5425-5464, doi:10.5194/gmd-13-5425-2020 (2020).

22 Hansis, E., Davis, S. J. & Pongratz, J. Relevance of methodological choices for accounting of land use change carbon fluxes. *Global Biogeochemical Cycles* **29**, 1230-1246, doi: 10.1002/2014GB004997 (2015).

23 Jain, A. K. & Yang, X. Modeling the effects of two different land cover change data sets on the carbon stocks of plants and soils in concert with CO₂ and climate change. *Global Biogeochemical Cycles* **19**, doi: 10.1029/2004GB002349 (2005).

24 Houghton, R. A. in *TRENDS: A Compendium of Data on Global Change* (Carbon Dioxide Information Analysis Center, 2008).

25 van der Werf, G. R. *et al.* CO₂ emissions from forest loss (vol 2, pg 737, 2009). *Nature Geoscience* **2**, 829-829 (2009).

26 Blaser, J. & Robledo, C. Initial analysis of the mitigation potential in the forestry sector. (UNFCCC, Bern, 2007).

27 Wernet, G. *et al.* The ecoinvent database version 3 (part I): overview and methodology. *The International Journal of Life Cycle Assessment* **21**, 1218-1230, doi:10.1007/s11367-016-1087-8 (2016).

28 Kinnon, A. Guidelines for Measuring and Managing CO₂ Emission from Freight Transport Operations. (European Chemical Industry Council, 2011).

29 James, S. J. & James, C. The food cold-chain and climate change. *Food Research International* **43**, 1944-1956, doi: 10.1016/j.foodres.2010.02.001 (2010).

30 Chen, G. Q. & Zhang, B. Greenhouse gas emissions in China 2007: Inventory and input-output analysis. *Energy Policy* **38**, 6180-6193, doi:10.1016/j.enpol.2010.06.004 (2010).

31 Bruckner, M. *et al.* FABIO—The Construction of the Food and Agriculture Biomass Input–Output Model. *Environmental Science & Technology* **53**, 11302-11312, doi:10.1021/acs.est.9b03554 (2019).

32 Aguiar, A., Chepelyev, M., Corong, E. L., McDougall, R. & van der Mensbrugghe, D. The GTAP Data Base: Version 10. *2019* **4**, 27, doi:10.21642/jgea.040101af (2019).

33 Parker, R. W. R. *et al.* Fuel use and greenhouse gas emissions of world fisheries. *Nature Climate Change* **8**, 333-337, doi:10.1038/s41558-018-0117-x (2018).

34 Intergovernmental Panel on Climate Change (IPCC). 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme. (2006).

35 Stehfest, E. & Bouwman, L. N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. *Nutrient Cycling in Agroecosystems* **74**, 207-228, doi:10.1007/s10705-006-9000-7 (2006).

36 Tubiello, F. N., Biancalani, R., Salvatore, M., Rossi, S. & Conchedda, G. A Worldwide Assessment of Greenhouse Gas Emissions from Drained Organic Soils. *Sustainability* **8**, 371 (2016).

37 European Environment Agency (EEA). EMEP/EEA air pullutant emissions inventory guidebook 2016: Technical guidance to prepare national emissions inventories. Report 21/2016 (2016).

38 Bolt, J. & Zanden, J. L. v. Maddison Project Database, version 2020. Maddison style estimates of the evolution of the world economy. A new 2020 update (2020).