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1. QUALITY ASSURANCE

1.1. Comparison with other studies
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Figure SI-1. Comparison of food system emissions estimated in our study with those estimated by other studies.
Emissions are aggregated by food system stage (columns) and by gas (rows). GWP refers to Global Warming Potential.
The distinction between ‘Full’ and ‘Retail gate’ refers to the inclusion or not (respectively) of post-retail emissions (food
preparation in households, restaurants and caterings, and food waste management). This distinction is not made for
farm-gate and LUC emissions.



Table SI-1. Summary of methodological differences across studies.
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Components Biomass X . . . . . . . ! . . L Biomass Biomass
Biomass fire emissions fire emissions Biomass Biomass burning, fire emissions fire emissions
Method Amortization Legacy Anﬁugl Anﬁugl Anﬁugl Legacy Anr.\ue.ll Anﬁugl Amortization Legacy NA
100 years emissions emissions emissions emissions emissions 20 years
Source FAOSTAT FAOSTAT FAOSTAT FAOSTAT FAOSTAT™ FAOSTAT FAOSTAT FAOSTAT
LUC, peat IPCC 2006 IPCC 2006 tier IPCC 2006 tier IPCC 2006 tier IPCC 2006 tier IPCC 2006 tier IPCC 2006 tier IPCC 2006 tier
Method )
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Poore and
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Transport Source EXIOBASEL Various Various and Kinnon, EDGARY, 2018¢, Ecoinvent and Chen and
sources sources Eurostat, FAO ) . James, 201020 Zhang, 20103
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food
Tubiello et al.
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food
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a) Annex | and Non-Annex | countries.

b) They also provide an alternative scenario in which feed emissions are allocated to animals based on energy

requirements.

¢ Global warming potential. All studies use a 100-year time horizon.

d) Fifth Assessment Report, with climate change feedbacks.

e) Second Assessment Report.

f) Fifth Assessment Report, without climate change feedbacks.
8) Except savannah burning, from FAOSTAT, and fisheries, from Parker et al. (2018)3.

h) Except cattle enteric fermentation and rice (Tier 2).
) Filling gaps with IPCC (2006)34 Tiers 1 and 2, Ecoinvent??, Stehfest and Bouwman, 200635, Tubiello et al., 201636,

EEA, 2016%7.
i) New dataset which separates agriculture-related emissions.

¥ Former dataset in which all emissions are attributed to agriculture.
) Except cattle enteric fermentation and rice (Tier 2).

m With assumptions to estimate the pre-1990 period.
") Emission intensities of the exporter country are assumed for exports.



1.2. Analysis of GHG intensities of food products
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Figure SI-2. Comparison of global variation in the carbon footprint of a selection of products in our study with the
variation in a compilation of published life-cycle assessment studies reported by Poore and Nemeceké, 2018. The dots
represent the weighted mean in our study and the median in Poore and Nemecek, 20188. When the dots are very close,
only the value of our study is shown to facilitate visualization. a. High-emissions animal and vegetal products; b.
Vegetables, fruits, tubers and roots; c. Other animal products; d. Cereals, pulses and nuts; e. Processed vegetal

products.
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1.3. Sensitivity analysis of amortization periods of land use change
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Figure SI-3. a. Land use change emissions by amortization period in the study years (1986-2013). b. Land use change-
related carbon release by world region from 1850 to 2015 (LUH2 database).
2.1. Carbon footprint of food consumption vs. domestic GHG emissions of
food production
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Figure SI-4. Carbon footprint of food consumption vs. domestic GHG emissions of food production in GtCO,e for South
Asian countries.
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Figure SI-6. Carbon footprint of food consumption vs. domestic GHG emissions of food production in GtCO.e for

North American and Latin American countries.
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Figure SI-7. Carbon footprint of food consumption vs. domestic GHG emissions of food production in GtCO,e for
Sub-Saharan African countries.
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Figure SI-8. Carbon footprint of food consumption vs. domestic GHG emissions of food production in GtCO.e for
Central Asian countries.
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Figure SI-9. Carbon footprint of food consumption vs. domestic GHG emissions of food production in GtCO,e for
Middle East and North African countries.
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Figure SI-10. Carbon footprint of food consumption vs. domestic GHG emissions of food production in GtCO.e for
East Asia & Pacific countries.

2.2. Income and fraction of food emissions embodied in the import trade

In our yearly dataset, higher incomes are associated at the country level with a higher fraction of
emissions embodied in the agro-food import trade (Figure SI-11). This is in addition to the positive
correlation between income and absolute food emissions embodied in imports.
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Figure SI-11. Share of food consumption emissions displaced via imports (%) against average incomes (real GDP per
capita in 2011 dollars, log scale). Highlighted dots, trendline and correlation coefficients refer only to 2013 data,

transparent dots to observations 1986-2012. All countries with population > 2M included.

2.3. Drivers of agro-food emissions embodied in trade

We conduct panel data regression to examine the impact of changes in income and population on
agro-food emission displaced via trade. We estimate a combined entity and time fixed-effects model
to control for unobserved confounders idiosyncratic to each country which affect agro-food
consumption patterns (local environments, cultural traditions, population geography, etc.), as well as
for unobserved variables which varied worldwide over time (such as global economic cycles and trade
regulations). Our full model is an equation of the following form:

DE;; = BiIncy + BoPopi + Bs(Popy X Inci) + a; + Ap + e

where DEis the dependent variable (displaced agro-food emissions per capita in country i in year t);
Incir and Popi: are the independent variables of interest (per capita income and population in country i
in year t); (Popir X Inci) is an interaction term between them, so that bs is the effect of a one-unit
increase in income and population above and beyond the sum of the individual effects of an increase
in population and income alone; a; (i=1...n) is the intercept for each entity (i.e. the country fixed
effect); It is the intercept for each time period (i.e. the year fixed effect); and uy is the error term.

The different specifications reported in table SI-3 allow us to focus on longitudinal variation (changes
in each country relative to itself in the past, column 1), as well as to include both country and year
fixed effects to concentrate on variation across time in each country outside of a general world time
trend (columns 2-4). The last specification in column 4 includes the interacted regressor which allows
the population effect on displaced emissions to depend on average incomes (and vice versa). Column
3 shows that the effect of income is still large even when accounting for population increase. The
coefficients in column 4 show that population increases result in higher agro-food emission
displacement only when average incomes increase at the same time. Standard errors are clustered at
the country level in all cases to account for serial correlation.



Table SI-3. Impact of income per capita on displaced agro-food emissions per capita, 1986-2013.

(1) (2) (3) (4)
Income (GDP per capita, log) 0.527"" 0341 0.328™" 0.280
(0.055) (0.089) (0.088)  (0.395)
Population (thousands, log) -0.304* -0.345
(0.157)  (0.347)
Population * Income 0.005
(0.042)
Country Fixed Effects Yes Yes Yes Yes
Year Fixed Effects No Yes Yes Yes
Observations 3,493 3,493 3,493 3,493
RMSE 0.30 0.29 0.29 0.29

Notes: displaced agro-food emissions per capita (tCO2/yr/cap) as the dependent variable. Real GDP per capita
(PPP, in 2011 dollars) and population (in thousands of people) as independent variables. Columns 1 shows panel
data regression with country fixed effects; columns 2-4 show panel data regression with both country and year
fixed effects; column 3 controls for population growth; column 4 shows panel data regression interacting GDP
per capita and population. Clustered standard errors at the country level reported in brackets. Observations are
year-country pairs. ***, ** ‘and * denote significance at the 1%, 5%, and 10% levels.

Sources: displaced agro-food emissions from the dataset presented in this study; GDP per capita and population
data from the Maddison Database:.

2.4. Leakage of emissions and aggregate per capita agro-food emissions

We conduct a further panel data regression analysis to consider whether leakage of agro-food
emissions leads to larger or smaller emissions per capita in the aggregate, beyond the relationship of
income levels on leakage. The regression equation is:

E;; = f1Mshare; + BoIncy + a; + Ay + uye
where Eiis the dependent variable (total agro-food consumption emissions per capita in country i in
year t); Msharei and Inc; are the independent variables of interest (import share of total agro-food

consumption emissions and per capita income in country i in year t); ai (i=1...n) is the country fixed
effect; |1 is the year fixed effect; and u; is the error term.

The results suggest that increasing the import share of a country’s consumption footprint is
associated with slightly lower total per capita emissions. When including both country and year fixed
effects (column 3), as well as controlling for income, an increase of 1% in the import share of
emissions is associated with a decrease of 0.06% in the total per capita agro-food consumption
emissions. Clustered standard errors (at the country level) are always calculated to account for serial
correlation.



Table SI-4. Impact of emission displacement on total per capita agro-food consumption emissions, 1986-2013.

(1) (2) (3)
Import share of emissions (log) -0.146™" -0.049" -0.063™"
(0.025) (0.027) (0.028)
GDP per capita (log) 0.147™
(0.047)
Country Fixed Effects Yes Yes Yes
Year Fixed Effects No Yes Yes
Observations 3,493 3,493 3,493
RMSE 0.14 0.13 0.13

Notes: results obtained using total per capita agro-food consumption emissions (tCO2/yr/cap, in logs) as the
dependent variable. Share of total agro-food consumption emissions displaced via imports (%) and real GDP per
capita (PPP, in 2011 dollars) as independent variables. Column 1 shows the basic pooled OLS regression;
columns 2-4 show panel data regressions with fixed effects. Clustered standard errors at the country level
reported in brackets. Observations are year-country pairs. ***, ** and * denote significance at the 1%, 5%, and
10% levels.

Sources: agro-food emissions and import share from our own dataset; GDP per capita data from the Maddison
Database?®.
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