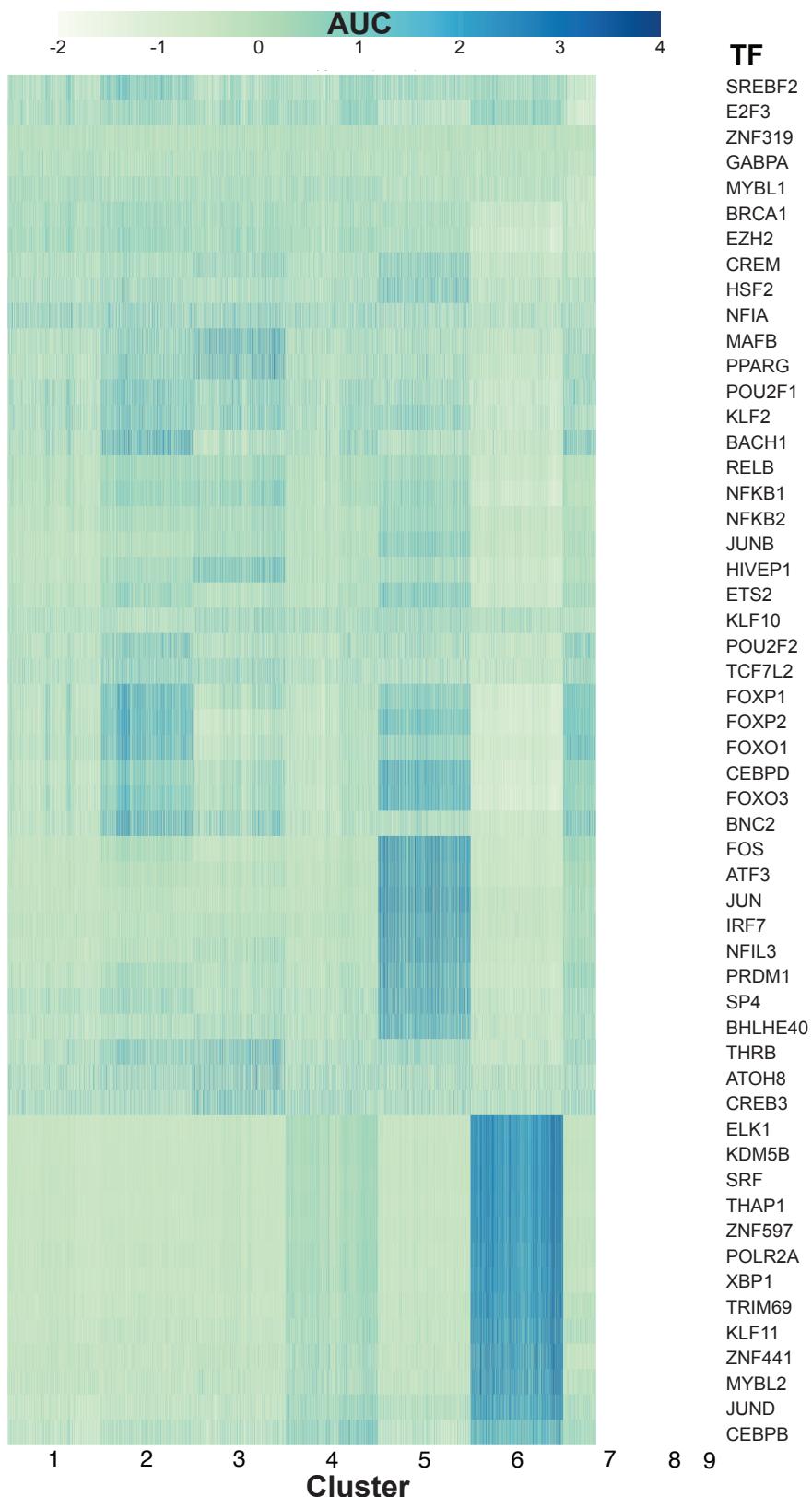



## Prater, Green, et al. Supplemental Tables/Figures

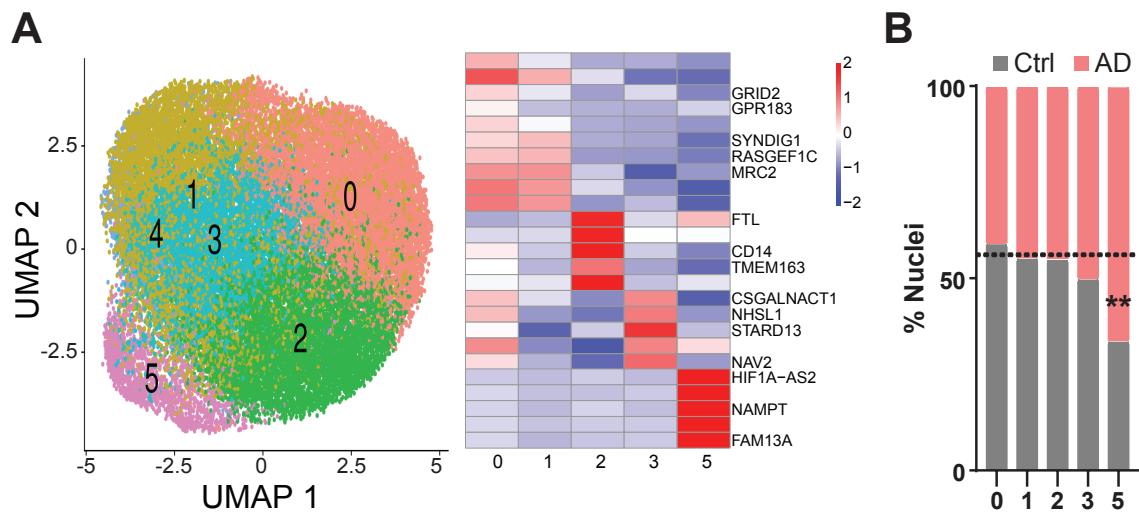
Supplemental Table 1: Complete demographic information on the cohort

| Sample | Study Designation | Coded AGE | SEX | Race               | APOE Genotype | PMI  | ADNC Score |
|--------|-------------------|-----------|-----|--------------------|---------------|------|------------|
| 1      | AD                | 90+       | F   | White              | 3,3           | 5.08 | 3          |
| 2      | AD                | 74        | F   | White              | 3,4           | 4.42 | 3          |
| 3      | AD                | 90+       | F   | Mixed              | 3,3           | 5.08 | 2          |
| 4      | AD                | 90+       | F   | White              | 3,3           | 3.75 | 3          |
| 5      | AD                | 60        | F   | Unknown/Unreported | 3,3           | 5.75 | 3          |
| 6      | AD                | 86        | F   | White              | 3,3           | 8.07 | 2          |
| 7      | AD                | 87        | F   | White              | 3,4           | 4.87 | 3          |
| 8      | AD                | 90+       | F   | White              | 3,4           | 4.25 | 3          |
| 9      | AD                | 77        | F   | White              | 4,4           | 3.33 | 3          |
| 10     | AD                |           | M   | White              | 3,3           | 3.33 | 3          |
| 11     | AD                | 83        | M   | White              | 3,4           | 3    | 3          |
| 12     | AD                | 90+       | M   | White              | 3,4           | 4.58 | 3          |
| 13     | Ctrl              | 90+       | F   | Hispanic / Latino  | 2,3           | 4.33 | 0          |
| 14     | Ctrl              | 90+       | F   | White              | 3,3           | 3.75 | 1          |
| 15     | Ctrl              | 90+       | F   | White              | 3,3           | 6.97 | 0          |
| 16     | Ctrl              | 80        | F   | White              | 3,3           | 8.13 | 0          |
| 17     | Ctrl              | 90+       | F   | White              | 3,3           | 7.72 | 1          |
| 18     | Ctrl              | 70        | F   | White              | 3,4           | 7    | 1          |
| 19     | Ctrl              | 74        | M   | White              | 2,3           | 4.83 | 0          |
| 20     | Ctrl              | 84        | M   | White              | 3,3           | 3.92 | 1          |
| 21     | Ctrl              | 90+       | M   | White              | 3,3           | 8.17 | 1          |
| 22     | Ctrl              | 82        | M   | White              | 3,3           | 7.75 | 1          |


Ctrl = Control, AD = Alzheimer's Disease pathology, Coded Age = age at death in years. Ages greater than 90 are coded 90+ to maintain anonymity, F = Female, M = Male, Race = self-reported race, APOE Genotypes: APOE alleles ε2/ε3 (2/3), APOE alleles ε3/ε3 (3/3), APOE alleles ε3/ε4 (3/4), or APOE alleles ε4/ε4 (4/4), PMI = post-mortem interval in hours, ADNC = Alzheimer's Disease Neuropathic Change



**Supplemental Figure 1. APOE 3/3 genotype does not substantially alter microglial clustering in human autopsy brain. A) UMAP of unbiased clustering on 13 samples of only APOE 3/3 individuals shows 9 clusters. B) Similar to the clusters identified in the mixed *APOE* genotype dataset, the clusters identified in our *APOE* ε 3/ε3 genotype dataset are highly distinct by gene expression. The top 5 genes are displayed for each cluster. C) Venn diagrams demonstrating overlap between clusters from the Mixed *APOE* and *APOE* ε 3/ε3 cohorts demonstrating significant similarity in gene expression profiles.**


| Cluster 4 | % replicates in top 10 | Cluster 7 | % replicates in top 10 | Cluster 9 | % replicates in top 10 | Cluster 10 | % replicates in top 10 |
|-----------|------------------------|-----------|------------------------|-----------|------------------------|------------|------------------------|
| JUNB      | 96.30                  | NFATC1    | 96.30                  | PRDM1     | 100.00                 | EZH2       | 100.00                 |
| STAT1     | 88.89                  | DDIT3     | 96.30                  | CEBDP     | 96.30                  | BRCA1      | 96.30                  |
| ZNF768    | 85.19                  | HIVEP1    | 92.59                  | FOXO1     | 81.48                  | MAZ        | 85.19                  |
| E2F6      | 81.48                  | MAFB      | 85.19                  | FOXN2     | 81.48                  | MYBL1      | 81.48                  |
| PPARA     | 77.78                  | ATF3      | 77.78                  | FOS       | 59.26                  | FOXN2      | 40.74                  |
| JUND      | 59.26                  | NFIL3     | 74.07                  | XBP1      | 48.15                  | THAP1      | 40.74                  |
| NFE2L1    | 44.44                  | ATF5      | 59.26                  | PPARD     | 48.15                  | ZFP64      | 40.74                  |
| GABPA     | 33.33                  | NR3C1     | 55.56                  | FOXP2     | 37.04                  | ZNF16      | 37.04                  |
| KLF9      | 33.33                  | E2F3      | 51.85                  | XRCC4     | 37.04                  | SREBF2     | 37.04                  |
| TRIM69    | 33.33                  | ZNF235    | 37.04                  | RUNX3     | 29.63                  | ZBTB2      | 33.33                  |

**Supplemental Figure 2. Top transcription factors for each cluster are unique and represent biological function switches.** These are the transcription factors that most often drove gene expression in Clusters 4, 7, 9, and 10. Values denote the percentage of replicates of permutations of the dataset where that particular transcription factor was unique to the given cluster. Note that while a few similar transcription factors are seen in multiple clusters, particularly the most prevalent transcription factors are unique, and are representative of gene expression driving biological functions in these clusters.



**Supplemental Figure 3. Transcription factor regulatory networks are specific and unique to subpopulations of microglia within the APOE  $\epsilon 3/\epsilon 3$  genotype clusters.** Similar to what

was seen in the larger dataset, transcription factors driving gene expression within clusters are distinct when the data is comprised purely of a single APOE genotype, in this case  $\epsilon 3/\epsilon 3$  allele carriers. Specific transcription factors drive clusters with similar gene expression phenotypes, such as NF $\kappa$ B1 and NF $\kappa$ B2 in Cluster 9, the inflammatory cluster in this dataset, that also drove expression in Cluster 8 in the larger dataset. This replicates the finding from the full dataset that gene expression and transcription factor regulation of that gene expression are quite distinct between clusters of microglia.



**Supplemental Figure 4. The APOE  $\epsilon 3/\epsilon 3$  genotype cohort also demonstrates a subcluster of the homeostatic cluster increased in AD brain. A)** The results from the full dataset were replicated in the pure APOE  $\epsilon 3/\epsilon 3$  allele cohort. Again suggesting multiple subpopulations within the “homeostatic” cluster. These subpopulations are once again distinct by gene expression despite being comprised of one “homeostatic” subpopulation. **B)** Within the APOE  $\epsilon 3/\epsilon 3$  cohort “homeostatic” Cluster 1, there is again a Cluster 1.5 that is increased in AD brain. Unlike the full cohort, this population is not specific to AD brain, but is increased in AD. These results suggest that within the “homeostatic” subpopulation of microglia there may be additional subpopulations of particular interest for AD research and therapeutic development.

**Table S4: Recipes for Nuclei Extraction and FANS Buffers:**

**Myelin gradient buffer (Store at 4°C)**

| Reagent                                                                                                                                                                           | Volume for 1 Liter |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| NaH <sub>2</sub> PO <sub>4</sub> ·H <sub>2</sub> O (Fisher Scientific, S369-500), adjust to pH 7.4 with 3.56g/L Na <sub>2</sub> HPO <sub>4</sub> ·H <sub>2</sub> O (Fluka, 71643) | 0.78 g             |
| NaCl (Fisher Scientific, S271-3)                                                                                                                                                  | 8.0 g              |
| KCl (Fisher Scientific, P217-500)                                                                                                                                                 | 0.4 g              |
| Glucose (Sigma, G7021-1KG)                                                                                                                                                        | 2.0 g              |
| BSA (VWR, EM-2930)                                                                                                                                                                | 0.2%               |

**Nuclei buffer (NB) (Store at 4°C)**

| Reagent                                                                    | Volume for 10mL |
|----------------------------------------------------------------------------|-----------------|
| Nuclease-free water into a 15 ml conical tube. (Fisher Scientific, M46000) | 9.85 mL         |
| 1 M Tris-HCl, pH 7.5 (ThermoFisher, 15567027)                              | 100 µL          |
| 5 M NaCl (ThermoFisher AM9760G)                                            | 20 µL           |
| 1 M MgCl <sub>2</sub> (ThermoFisher Scientific, AM9530G)                   | 30 µL           |

**Nuclei lysis buffer (NLB) (make same-day)**

| Reagent                                                                     | Volume for 1 Sample |
|-----------------------------------------------------------------------------|---------------------|
| Nuclei Buffer                                                               | 727 µL              |
| 10% NP-40 alternative (final concentration 0.1%)                            | 10 µL               |
| Protease inhibitors in DPBS (Sigma-Aldrich, 4693124001)                     | 142.9 µL            |
| 1mM ATA in NB (make fresh evening prior)                                    | 112.5 µL            |
| PMSF (Tocris Bioscience, 4486)                                              | 10 µL               |
| Phosphatase inhibitors (Sigma-Aldrich, P5726-1ML)                           | 5 µL                |
| Protector RNase inhibitor (final concentration 1 U/µl). (Sigma, 3335402001) | 28.25 µL            |
| <b>Total Volume</b>                                                         | 1,035.5 µL          |

**Nuclei suspension solution (NSS) (make same-day) (10X Genomics calls this “Wash Buffer”)**

| Reagent                                                                      | Volume for 1 Sample |
|------------------------------------------------------------------------------|---------------------|
| DPBS (Sigma-Aldrich, D8537-500ML)                                            | 637 µL              |
| 10% BSA (final concentration 1%) (Sigma-Aldrich, A1595-50mL)                 | 100 µL              |
| 1mM ATA in DPBS (make fresh evening prior)                                   | 100 µL              |
| 7x Protease inhibitors in DPBS (Sigma-Aldrich, 4693124001)                   | 142.9 µL            |
| 1M PMSF (Tocris Bioscience, 4486)                                            | 10 µL               |
| Protector RNase inhibitor (final concentration 1.0 U/µl) (Sigma, 3335402001) | 5 µL                |
| Phosphatase inhibitors (Sigma-Aldrich, P5726-1ML)                            | 5 µL                |
| <b>Total Volume</b>                                                          | 1 mL                |

**Percoll/myelin gradient buffer solution (PMB) (make same day)**

| Reagent                                                                          | Volume for 1 Sample |
|----------------------------------------------------------------------------------|---------------------|
| Myelin gradient buffer                                                           | 412 µL              |
| 10x HBSS (Fisher Sci., 14185052)                                                 | 30 µL               |
| 1mM ATA in myelin gradient buffer (make fresh evening prior)                     | 100 uL              |
| 1.5M NaCl                                                                        | 25 µL               |
| Percoll (Fisher Sci., 17-089-101) (Do not use if crystals have precipitated out) | 270 µL              |

|                                                                                      |          |
|--------------------------------------------------------------------------------------|----------|
| Protector RNase Inhibitor (final concentration 1.0 U/μl) (Sigma Aldrich, 3335402001) | 5 μL     |
| Phosphatase inhibitors (Sigma-Aldrich, P5726-1ML)                                    | 5 μL     |
| 7x Protease inhibitors in myelin gradient buffer (Sigma-Aldrich, 4693124001)         | 142.9 μL |
| PMSF (Tocris Bioscience, 4486)                                                       | 10 μL    |
| <b>Total Volume</b>                                                                  | 1 mL     |

**FACS Media (FM) (store at 4°C)**

| Reagent                                                                                                                                                       | Volume for 1 sample |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Nuclease free H <sub>2</sub> O (Fisher Scientific, M46000)                                                                                                    | 7.7 mL              |
| HEPES (Invitrogen, 15630080)                                                                                                                                  | 100 uL              |
| 10x HBSS without Mg/Ca (Fisher Scientific, 14185052)                                                                                                          | 1 mL                |
| FBS 10%                                                                                                                                                       | 1 mL                |
| Protease inhibitors (Sigma-Aldrich, 4693124001) (dissolve tablet in 9.8mL of the above media at room temp and chill on ice before adding the solutions below) | “~200 uL”           |
| PMSF (Tocris Bioscience, 4486)                                                                                                                                | 100 uL              |
| Phosphatase inhibitors (Sigma-Aldrich, P5726-1ML)                                                                                                             | 50 uL               |
| Protector RNase Inhibitor (Sigma Aldrich, 3335402001)                                                                                                         | 50 uL               |
| 100 uM ATA in dPBS (Sigma-Aldrich, A1895) good at -20C for 1 month                                                                                            | 1 mL                |
| <b>Total Volume</b>                                                                                                                                           | 11.2 mL             |