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Abstract 

The purpose of this paper is to detect the areas which are affected by urban heat island (UHI) based 

on the relationship between land surface temperature and land use /land cover (LU/LC) changes 

during 1998, 2011, and 2020 for the major city of Kabul, the capital of Afghanistan, using 

multispectral and multi-temporal Landsat data (TM and OLI/TIRS). To achieve the objectives, the 

emissivity corrected land surface temperature method was examined to calculate Land Surface 

Temperature (LST), and the Land-use/Land-cover map was prepared using the support vector 

machine (SVM) supervised algorithm. The LU/LC was categorized into five major classes 

(vegetation, water-body, built-up, bare-land, and soil). According to the LST map estimated by 

processing the thermal band of the satellite image, areas influenced by Urban Heat Island (UHI) 

were detected to evaluate their anomalies to the existing LU/LC types. The findings of LST 

illustrate, that the mean recorded LST in 1998 was 39.42˚C, whereas the mean recorded LST in 

2020 was 41.25˚C, which demonstrates a 1.83 ˚C increase for the whole study period. Specifically 

in 1998 only five districts (1,16,9,15, and 19) were affected by surface UHIs, while in 2011, the 

surface UHIs influenced areas increased to eight districts (15, 16, 1, 21, 17, 12, 13, and 8), and in 

2020, the surface UHIs affected regions are improved to ten districts (1,19, 15,16, 9,17, 22, 11, 13, 

and 2) over the Kabul City. These variations and improvements are mostly due to the status of 

LU/LC in the study area, and it demonstrates the strong link between land cover and land surface 

temperature. Furthermore, Normalized difference vegetation index (NDVI), and normalized 

difference built-up index (NDBI) were also extracted. The relationship of NDVI and NDBI with 

LST was evaluated. Based on the results, a strong negative relationship between LST and NDVI 



was observed, while a positive relationship between LST and NDBI was recorded. The findings 

of this work show that an increase in non-evaporation areas and a decline in the greenery surfaces 

increased the LST. Consequently, the outcomes of this study are significant for decision-makers 

and urban planners to manage the drawbacks of urbanization temperature in arid and semi-arid 

areas. 
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1. Introduction  

 

The global urban expansion expressed in 2018 by (Huang et al., 2021) shows an increase in the 

total land surface by 0.54%. Predictably, 2/3 of the overall population will be intense in urban 

areas by the mid-twentieth century (Kamali Maskooni et al., 2021). This can tell us that 2/3 of the 

overall population will experience increased temperature due to UHI along with global warming 

effects. In this case, LU/LC changes can be taken into account as two main factors for 

environmental monitoring, urban planning, and land management(Kamali Maskooni et al., 2021). 

The UHI effects are taken into account as one of the key environmental consequences of 

urbanization, a phenomenon that increases the temperature of the urban area significantly 

compared to nearby rural areas(Gašparović et al., 2021; Gusso et al., 2015; Luo & Wu, 2020; Naim 

& Kafy, 2021a; F. Yuan & Bauer, 2007; Zhou & Chen, 2018). Some undesirable impacts of the 

urban heat island include air pollutant emanation, increased energy consumption, and greenhouse 

gases triggering harmful environmental effects on people's health and life 

comfortability(Simwanda et al., 2019). Furthermore, due to the increase of detrimental emissions, 

the level of surface ozone is much higher in the urban environment compared to the ruler area. 

This may cause higher urban temperatures which decrease the air quality. Literature showed that 

ozone contamination can intensify certain lung illnesses(Mohammad Harmay et al., 2021; Naim 

& Kafy, 2021a, 2021b). 

On the other hand, alterations in the built-up ecological environment caused by unplanned 

urbanization can straightly affect health and living standards(Gerlitz et al., 2018). 

Literature e.g. (Dihkan et al., 2015; Umezaki et al., 2020; Y. Yuan et al., 2017) have shown that 

the rising land surface temperature caused by urbanization due to the degradation of naturally 



vegetated areas, especially in unplanned cities is a very serious problem. The alterations in land 

use and land cover pattern affect the whole urban environment including urban hydrology, 

evaporation rates, and land surface temperature (Correia Filho et al., 2019; Dihkan et al., 2018; 

Rajasekar & Weng, 2009). UHI is taken into account as one of the very significant outcomes driven 

by urbanization and human activities inclined by land-use patterns and it characterizes the changes 

in albedo, heat flux altercation, and roughness of land surface (Correia Filho et al., 2019; Dihkan 

et al., 2018; Rajasekar & Weng, 2009). The arid and semi-arid regions are probably more prone to 

the effects of UHI. These regions experience extreme temperatures due to a lack of rainfall in the 

summer season(Kamali Maskooni et al., 2021).  

Central Asia countries including Afghanistan, Kazakhstan, Uzbekistan, Turkmenistan, Tajikistan, 

and Kyrgyzstan, are considered extremely continental climates (Gerlitz et al., 2018). They are 

typically counted as arid and semi-arid regions due to less rainfall during the summer season 

compared to the north and south Asia countries (Gerlitz et al., 2018). Among them, Afghanistan 

has a climate of hot summers and cold winters. The lowest precipitation of around 30 mm per year 

takes place in the southwestern and the highest precipitation of more than 100 mm takes place in 

the northeastern regions. The temperature gradually increases from the northeastern to the 

southwestern plateau zone (Manawi et al., 2020). Kabul is the capital of Afghanistan, the biggest 

city in Afghanistan with increasing inhabitants and densification of the built-up area as well as the 

increasing industries (Ahmadi & Kajita, 2017; Zahid et al., 2019). The increasing of built-up areas 

and urban heat islands effects especially in Kabul city considered undesirable consequences for 

the population.   

Thus, it is very important to rapidly analyze and assess the impact of urbanization on urban 

environmental alterations. It can deliver a scientific source for government and non-government 

organizations for deciding to alleviate the drawbacks of urbanization on the living environment.  

Reviewing the literature shows that the new technologies such as GIS and Remote Sensing have 

advantages of wide range coverage, high spatial and temporal resolutions, and high precision 

compared with conventional observation methods, which brings the facility of evaluation of a large 

scale of the urban ecological environment (Dissanayake et al., 2019a; Hoan et al., 2018; Kamali 

Maskooni et al., 2021). 

Moreover, the remotely sensed data provides an effective basis for urban environmental evaluation 

at altered times and scales. Different systems have been suggested for acquiring remotely sensed 



data, where the utmost broadly used system is using satellite data. For instance, the Landsat 

satellite constellation data are freely available and provided by the United States geological survey 

(USGS).  In recent times, different types of remotely sensed data are used for assessing several 

parts of urban ecological and environmental conditions. For example, NDBI, NDVI, NDWI, 

biophysical composition index (BCI), and some other indices can characterize the urban ecology 

and environment from different characteristics. The satellite constellations with multispectral 

sensors provide data that can deliver a consistent scheme for mining different information about 

the ecological environment, comprising the biophysical composition index, vegetation index, 

humidity, and impermeable surface indices(Gašparović et al., 2021; Piyoosh & Ghosh, 2018) 

The new technologies which retrieve the LST from thermal infrared data have been considerably 

developed since the beginning of twenty century, and now it is broadly applied in various 

industries(Abdullah-Al-Faisal et al., 2021). Currently, the relationships between LST and LULC 

using GIS and remotely sensed data are investigated by many studies at global and local scales(Dey 

et al., 2021; How Jin Aik et al., 2021; Naim & Kafy, 2021b; Ogunjobi et al., 2018). 

Although, insufficient studies were conducted to study UHI in arid and semi-arid areas 

experiencing extreme surface temperature during the summer season due to lack of rainfall and 

humidity. Kabul city which is one of the major cities of Afghanistan is placed in the semi-arid and 

arid region, and the pressure of quick urban expansion and inhabitants growth (J. F. He et al., 2007; 

Kamali Maskooni et al., 2021; Lo & Quattrochi, 2003; Manawi et al., 2020). 

Since Kabul city has urbanized rapidly, most of the green areas have been constantly replaced with 

impervious surfaces  (Chaturvedi et al., 2020). Besides that, many of the tallest buildings in Kabul 

city are illegal and oppose with norms and standards of a planned city. Built areas, industrial 

companies, and especially the unplanned illegal tall buildings in Kabul city, produce a high amount 

of heat during the summer season. To reduce UHI efficiently and safely, it is essential to consider 

the impact of LU/LC changes on land surface temperature.  

Various scholars had evaluated the air quality of Kabul City (Ayoobi et al., 2022; Stiftung, 2010; 

Waseq, 2020). The conducted works in general concentrated on particular matters, to evaluate the 

air quality over the Kabul City. Furthermore, the impact of buildings’ energy consumption on air 

quality, and the causes of air pollution in Kabul City related to transportation and groundwater 

were also examined. However, the evaluation of surface UHIs based on the relationship between 

land surface temperature and Land Use/Land Cover Changes in an arid and semi-arid urban region, 



is lacking. Therefore, this is the first remotely sensed research to quantify and evaluate surface 

UHIs based on the relationship between land surface temperature and Land Use/Land Cover 

changes over the Kabul City.  

Consequently, the specific objectives of this study are (1) to evaluate the LU/LC changes, (2) to 

examine the LST changes, (3) to create the relationship between LU/LC and LST, (4) to detect the 

UHIs affected areas, and (5) to assess the relationship of NDVI and NDBI with LST over the Kabul 

city the capital of Afghanistan.  

 

2. Materials and methods 

 

 

2.1  Study Area  

 

Kabul, which is the capital and the biggest city of Afghanistan, is situated in the eastern portion of 

Afghanistan at 34°31′31′′ North latitude and 69°10′42′′ East longitude as shown in (Figure 1). 

Kabul is also a municipality forming a part of the Kabul Province. Kabul city is classified into 22 

districts.  The population of Kabul city has increased from 1.5 million in 2001 to around 5 million 

people in 2017, which become the fifth fastest-improving city in the world(Chaturvedi et al., 

2020). Rapid urbanization has been unable to cope with the demands of the increasing population 

in a capital city that was planned to hold about 700,000 people(Chaturvedi et al., 2020). This reason 

prepared the way, that around 70 percent of housing in Kabul city has been developed 

illegally(Guardian, 2014). Illegal housing in Kabul, where approximately 6 million people live, is 

regarded as one of the reasons for rising air pollution levels in 2020(Humanitarian, 2020). The 

climate of Kabul city ranges from dry to semi-arid, with warm summers and cold winters. In the 

winter, the land surface temperature might drop below -10° C, while in the summer it can reach 

40° C (Qutbudin et al., 2019). Approximately 56 percent of Kabul’s land is covered by mountains, 

while 38 percent is flat. Kabul has four dry seasons, with the most rain falling in February, March, 

and April. The maximum yearly rainfall recorded in Kabul is 400mm (Mehrad, 2020). 

 

[Insert Figure 1] 

 



2.2    Data sources and preprocessing 

 

To evaluate the impact of surface urban heat island on different LU/LC types, Multispectral data 

of Landsat-5 Thematic Mapper (TM) and Operational Landsat Imager (OLI) Landsat-8 along with 

infrared sensors (TIRS) for 1998, 2011, and 2020 (July-August period) with less than 3% cloud 

cover were obtained from the United States Geological Survey (USGS) website as demonstrated 

in (Table 1). Because of probable sensor disturbances due to unfavorable weather conditions at 

the time of imaging, raw satellite images may require some corrections. Therefore, before 

processing, the satellite images must be corrected (Dissanayake et al., 2019b). The Fast Line-of-

Sight Atmospheric Analysis of Spectral Hypercube (FLAASH) method was used to perform 

atmospheric correction using the ENVI 5.3 software as a preprocessing step. Moreover, for all 

images, multispectral band data were transformed to surface reflectance, whereas thermal band 

data were converted to at-sensor brightness temperature in degrees Celsius. The pre-processing 

steps were performed for the satellite data before the LU/LC and LST classification and retrieval. 

 

 

 

[Insert Table 1] 

 

2.3 LST estimation  

 

The emissivity corrected land surface temperature method which requires the input of emissivity 

values from different surfaces was used in this study. First, this method entails the conversion of 

brightness temperature to spectral radiance using the following formula: 𝐿𝐿𝜆𝜆 = 𝑀𝑀𝐿𝐿𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐴𝐴𝐿𝐿 (1) 

 

where 𝐿𝐿𝜆𝜆 is the top of atmospheric spectral radiance W/m2·sr·μm, ML is the band-specific 

multiplicative rescaling factor from the metadata, QCal is quantized and calibrated standard product 

pixel values (DN), and AL is the band-specific additive rescaling factor from the metadata. 

The next step is to transform Spectral Radiance to Temperature in Kelvin with the following 

formula: 



𝐵𝐵𝐵𝐵 =
𝐾𝐾2𝑙𝑙𝑙𝑙 �𝐾𝐾1𝐿𝐿𝜆𝜆 + 1� (2) 

 

In equation (2), BT stands for the brightness temperature in Kelvin, 𝐾𝐾1 and 𝐾𝐾2 is the specific 

thermal conversion constant which is taken from the metadata. To compute the LST, we first 

determined the land surface emissivity (ε) as described by (Dissanayake et al., 2019a) and (Naim 

& Kafy, 2021b) as following: 𝜀𝜀 = 𝑚𝑚𝑃𝑃𝑉𝑉 + 𝑙𝑙 (3) 

 

Where ε is the land surface emissivity, n=0.004, m=0.986, and Pv is the proportion of vegetation 
(Hua & Ping, 2018; Kamali Maskooni et al., 2021): 

𝑃𝑃𝑃𝑃 = � 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑐𝑐𝑚𝑚 + 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚�2 (4) 

 

Normalized Difference Vegetation Index (NDVI) indicates the degree of greenness over an area. 

A healthy environment condition is characterized by the positive values of NDVI. NDVI plays an 

important role in  urban climate analysis(Guha et al., 2020; M. O. Sarif & Gupta, 2019). In general, 

remote sensing-based vegetation cover monitoring depends on the characteristics of chlorophyll 

and the electromagnetic spectrum. The NDVI is considered the most significant index in 

vegetation cover extractions. The NDVI has been widely utilized in studies to determine the extent 

of vegetation cover(Chandramathy & Kitchley, 2018). The equation (5) was used to determine the 

NDVI. 

 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑅𝑅 𝑑𝑑𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑅𝑅 𝑑𝑑 (5) 

 

Many studies including (Weng et al., 2004) have been used the following equation to estimate the 

LST in °C after estimating the at-satellite brightness temperature and land surface emissivity from 

Equation (2).  

 

𝐿𝐿𝐿𝐿𝐵𝐵 = � 𝐵𝐵𝐵𝐵
{1 + ��𝜆𝜆 𝐵𝐵𝐵𝐵𝜌𝜌 � ∗ 𝑙𝑙𝑙𝑙𝜀𝜀�}�− 273.15 (6) 

 



In equation (6), LST stands for land surface temperature (Celsius), BT stands for the brightness 

temperature in Kelvin, λ is the wavelength of emitted radiance (λ = 10.8 μm ), ρ = h × c/σ(1.438 
× 10-2 m K), h = Planck’s constant (6.626 × 10-34 Js), c =  velocity of light (2.998 × 108 m/s), and 
σ = Boltzmann constant (1.38 × 10−23 J/K). The outcome of LST for the current study can be seen 

in (Figure 2). 

 

 

 

[Insert Figure 2] 

 

2.4 Land-use/land-cover classification and accuracy assessment.  

 

To extract and classify LU/LC variations in the study area during 1998, 2011, and 2020 

respectively, and to find out their relationships with the spatial patterns of LST, visible and near-

infrared bands of Landsat TM and OLI/TIRS images were subjected for classification of LU/LC 

using support vector machine supervised classification algorithm in ENVI 5.3 software and the 

results were exported to ArcGIS 10.7 for further statistical analysis. Kabul city was classified into 

five categories: Built-up, Vegetation, Water-body, Bare-Land, and Soil as shown in (Figure 3). 

Due to classification algorithms and image-gathering processes, land cover maps sometimes 

contain errors (Ogunjobi et al., 2018). Therefore, The assessment of classification accuracy was 

done to validate the accuracy of classified maps and evaluate the performance of the classifier 

used. In this research, the kappa coefficient was utilized to evaluate the classification accuracy of 

the LU/LC maps by selecting more than 350 checkpoints on the classified maps as well as on the 

ground. 

 

 

[Insert Figure 3] 

 

2.5 Calculation of normalized difference built-up index (NDBI) 

 

https://www.sciencedirect.com/topics/engineering/classification-accuracy


NDBI is one of the most important indices for understanding urban climate. NDBI is a widely-

used index for the evaluation of built-up statuses(Kamali Maskooni et al., 2021). NDBI values are 

related to spectral signature, which ranges from medium-infra-red to near-infra-red bands. As well 

as it is useful for mapping human settlements(C. He et al., 2010). Hence, in this study, NDBI is 

estimated for three intervals (1998, 2011, and 2020). NDBI can be calculated by the following 

formula. 

 𝑁𝑁𝑁𝑁𝐵𝐵𝑁𝑁 =
𝑀𝑀𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑀𝑀𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑁𝑁𝑁𝑁 

 
(7) 

 

 

3. Result and discussion 

 

 

3.1 Accuracy assessment of LU/LC classification 

 

As previously stated, Kabul city was categorized into five distinct LU/LC classes (Built-up, 

Vegetation, Water-body, Bare-Land, and Soil) using the support vector machine method in 1998, 

2011, and 2020 respectively. The outputs of the accuracy assessment are demonstrated in Table 

2. Based on Table 2, the overall accuracy of the land cover maps for 1998, 2011, and 2020 were 

91%, 90%, and 88% respectively, which is higher than the standard threshold of 85 percent 

(Eniolorunda et al., 2017). The Kappa coefficients for 1998, 2011, and 2020 were also estimated 

to be 0.88, 0.86, and 0.85 respectively. According to (Klein Goldewijk & Ramankutty, 2004), a 

Kappa coefficient of higher than 0.85 indicates strong agreement between images and ground data. 

 

 

[Insert Table 2] 

 

 

3.2 LU/LC classification and change in patterns between 1998 and 2020 

 



Figure 3 demonstrates the spatial pattern of LU/LC classification for the study region in 1998, 

2011, and 2020 respectively, created by the support vector machine algorithm.  As previously 

stated, the entire domain was classified into five categories.  Table 3 describes the estimated area 

and percentage of each land-use type, as well as a summary of LU/LC variations over the studied 

period, is presented in Table 4 . A minus (−) sign in Table 4, exposes a decline in a particular 

land-use type, while a plus (+) sign shows an increase compared to the earlier time step. The 

outputs reveal that between 1998 and 2011, the built-up areas expanded by 2.9%, from 19.1 km2 

to 24.9 km2, which shows a 5.8 km2 expansion, whereas between 2011 and 2022 the built-up area 

increased by 2.9%, from 24.9 km2 to 31.2 km2, which shows 6.4 km2 increase (Table 3 and Table 

4). Moreover, the soil class decreased by 18.3% between 1998 and 2011, which expose a 36.5 km2 

reduction, while between 2011 and 2020 the output exposes a 12.5% increase. However, the bare 

lands increased dramatically by 19.2%, from 93.9 km2 to 131.8 km2 between 2011 and 2020 

(Table 3 and Table 4). Furthermore, the total vegetation area declined slightly by 3.7%, from 18 

km2 to 11.0 km2 between 1998 and 2011, while between 2011 and 2020 the result shows a 3.4% 

reduction, from 11 km2 to 4.1 km2, which shows a 6.9 km2 decrease.  However, the water body 

decreased by 0.2% from 0.5 km2 to 0.2 km2 between 1998 and 2011, whereas between 2011 and 

2020 the water body increased by 0.016%, from 0.23 km2 to 0.28 km2, which shows a 0.05 km2 

increase. The results of LULC variation demonstrate that the spatial range of the built-up area 

of Kabul city expanded from 1998 to 2020. The expansion of built-up areas in Kabul city has a 

balanced pattern throughout the city. Soil and vegetation land cover changed to impervious 

surfaces such as built-up areas and bare lands. As a result, growing urbanization hurts the city’s 

temperature-stabilization zones. 

[Insert Table 3] 

 

 

[Insert Table 4] 

 



3.3 Relationship between land use/land cover and LST 

 

The LST map prepared from Landsat TM, and TIRS satellites are demonstrated in Figure 2. The 

surface temperature in this map was categorized using standard deviation, and the locations 

influenced by UHI were identified. The summary of the statistical analysis of LST is presented in 

Table 5. Based on that, the outputs reveal that LST fluctuated from 18.48 to 49.6°C, 21.5-51°C, 

and 22 – 52.19 °C during 1998, 2011, and 2020 respectively. Furthermore, the mean LST increased 

from 39.42 to 41.57°C between 1998 and 2020, whereas it changed from 40.57°C to 41.25°C 

between 2011 and 2020 respectively (Table 5). Moreover, based on zonal statistical analysis in 

ArcGIS the mean LST for each LU/LC type is estimated and the outputs are demonstrated in Table 

6. According to Table 6, the outputs reveal that bare land has the maximum LST value, whereases 

the water body has the minimum value. The land surface temperature for bare land is changed 

from 38.43°C to 41.89°C which shows 3.46°C changes between 1998 and 2020, while, LST for 

water body is changed from 25.24°C to 27.42°C which shows a 2.18°C increase for the whole 

period. The LST for vegetation areas decreased by 1.65°C from 1998 to 2020, while a 2.02°C 

increase was estimated between 1998 and 2011, and a 3.67°C decrease was estimated between 

2011 and 2020. The LST for built-up areas declined by 1.28°C for the whole period, while a 0.4°C 

increase was estimated between 1998 and 2011 and a 1.67°C decrease was estimated between 

2011 and 2020. The LST for soil cover is changed from 42.51°C to 42.88°C, which expose 0.38°C 

changes between 1998 and 2020, while a 1.16°C increase was estimated between 1998 and 2011, 

and a 0.79°C reduction was estimated between 2011 and 2020. Based on the overall assessment of 

Table 6, the outputs expose that the maximum increase of LST is related to bare land, built-up, 

and urban areas, whereas the minimum increase of LST is related to the water body and vegetation 

areas. This is related to the high evapotranspiration phenomenon from vegetation areas which 

precisely play important role in the reduction of land surface temperature(Kamali Maskooni et al., 

2021; M. O. Sarif & Gupta, 2019). Moreover, the water body is also playing an important role in 

the evaporation and cooling process which can have a high hand in the reduction of land surface 

temperature(Bokaie et al., 2016; Paper, 2016; Y. Yuan et al., 2017).  

The summary of statistical analysis of mean LST spatial variations for all districts over the Kabul 

City is shown in Figure 4. Based on that, the maximum mean LST in 1998 is estimated for 1, 16, 

9, 15, and 19 districts, while in 2011 the highest mean LST value is estimated for 15, 16, 1, 21, 17, 



12, 13, and 8 districts, and in 2020 the maximum LST value is calculated for 1,19, 15,16, 9,17, 22, 

11, 13, and 2 districts. The LST change is related to urban growth and LU/LC changes which have 

a direct impact on the UHI of the city(Balew & Korme, 2020; Correia Filho et al., 2019). Based 

on Figure 4, in 1998 five (1,16,9,15, and 19) districts were highly affected by surface UHIs, while 

in 2011 it increased to eight (15, 16, 1, 21, 17, 12, 13, and 8) districts which are affected by UHIs, 

and in 2020 the affected UHIs regions are improved to ten (1,19, 15,16, 9,17, 22, 11, 13, and 2) 

districts. Furthermore, the outputs revealed that surface UHIs over the Kabul City are in the 

developing process and this development will have negative impacts on both people and the 

environmental condition of the Kabul City. 

The reduction of green areas, development of urban areas, expansion of imperviousness surfaces, 

the existence of industrial parks, factories that use poor quality fuel, brick factories that use row 

coal, informal residential settlements, and Kabul International Airport are the main catalyst in the 

development of surface UHIs over the Kabul City. 

 

 

[Insert Figure 4] 

 

Therefore, to mitigate the UHIs expansion over the Kabul City, the development of green zones, 

usage of energy efficiency approaches in building designs and construction, and also the 

comprehensive utilization of green roofs, urban parks, street trees, and renewable energy 

resources, are suggested. Moreover, imposing heavy penalties for the owners of those factories 

who use poor quality fuel and raw coal will also have a positive impact on the reduction of surface 

UHIs over Kabul City.  

 

[Insert Table 5] 

 

[Insert Table 6] 

 



3.4 Relationship between NDVI and LST 

 

NDVI is the most commonly used vegetation index for observing greenery around the world. In 

general, healthy vegetation absorbs the electromagnetic spectrum well in the visible region. The 

index has also been utilized in several UHI types of research because of the cooling impact of 

vegetation due to latent heat vaporization and convective cooling of tree canopies that support the 

air-cooling process(Bokaie et al., 2016, 2019). Therefore, in this study NDVI is calculated for 

three intervals (1998, 2011, and 2020), the results are shown in Figure 5. The statistical analysis 

is shown in Table 7. An NDVI between 0.1 and 0.7 is generally related to vegetation areas, 

whereas an NDVI greater than 0.75 is related to canopy cover. The NDVI values which are near 

zero are related to bare land and soil, while the NDVI negative values are water indicators (Kamali 

Maskooni et al., 2021).  

Based on Figure 5 and Table 7, the outputs revealed, that the mean NDVI value for the whole 

study area was 0.16, 0.15, and 0.2 in 1998, 2011, and 2020 respectively.  The highest mean NDVI 

value is estimated in district 14, while the lowest mean NDVI is estimated for district 1 in 1998. 

In 2011 the highest mean NDVI value is also estimated for district 14, while the lowest mean 

NDVI value was estimated for district 20, and in 2020 the highest mean NDVI value is estimated 

for district 14 whereas the lowest NDVI mean value is calculated for district 1 and district 21 of 

Kabul city. Therefore, in general, lower values for NDVI are estimated in areas that are composed 

of bare land, built-up, and soil covers. The findings of NDVI estimation revealed that this 

parameter generally reduced during 22 years of studying period, which indicates the LU/LC 

changes from green areas to built-up covers. The relationships between LST and NDVI were 

investigated using correlation analysis which is shown in Figure 6. Based on that, the findings 

expose that the lower NDVI values were estimated in areas represented by higher land surface 

temperature. However, there is a strong negative correlation between NDVI and LST for all time 

intervals with a correlation coefficient of R2=0.44, 0.30, and 0.32 in 1998, 2011, and 2020 

respectively. Hence, due to the negative correlation between NDVI and LST, it can be stated that 

a reduction in vegetation cover results in an improved surface temperature(Naim & Kafy, 2021a; 

Ogashawara & Bastos, 2012; Md Omar Sarif et al., 2020; Umezaki et al., 2020; Weng et al., 2004). 
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3.5 Relationship between NDBI and LST 

 

The value of NDBI generally differs from -1 to +1. Literature review shows that the NDBI negative 

values donate water bodies and vegetation covers, whereas the positive values refer to the built-up 

area, and the lower positive values specify bare land cover. in general, NDBI gives information 

regarding the imperviousness of the surface(Md Omar Sarif et al., 2020). In this study, the 

estimated NDBI for three-time steps (1998, 2011, and 2020) is shown in Figure 7, and the 

statistical summary is described in Table 8. Based on that, our findings revealed, that the mean 

NDBI value increased from -0.08 in 1998 to -0.06 in 2011, and -0.03 in 2020 respectively for the 

whole Kabul city. Moreover, the outcomes donated that, the lowest mean NDBI is estimated in 17, 

1, 11, and 22 districts of Kabul city, while the highest mean NDBI is calculated for 10, 18, and 9 

districts in 1998. In 2011 the minimum mean NDBI is estimated for 17, 1, 22, and 11 districts, 

while the maximum mean NDBI is estimated for 18, 9, and 10 districts respectively, and in 2020 

the highest mean NDBI is calculated for 1, 17, 21, 13, and 22 districts, while the lowest NDBI is 

estimated for 18, 14, and 9 districts of Kabul city respectively.  Based on Figure 8, our findings 

revealed a strong positive relationship between LST and NDBI for all time intervals, with a 

correlation coefficient of R2=0.31, 0.24, and 0.32 in 1998, 2011, and 2020 respectively. 

[Insert Figure 7] 
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4. Conclusions 

 

This paper evaluated the impacts of LU/LC change on surface UHI based on LST for three 

intervals (1998,2011, and 2020) over Kabul City, the capital of Afghanistan using multispectral 

and multi-temporal Landsat data (TM, OLI and TIRS). The emissivity corrected land surface 

temperature method was used for extraction of LST to analyze UHIs in the city, and the support 

vector machine (SVM) supervised algorithm was used to prepare the LU/LC maps for all study 

periods respectively. The satellite images were radiometrically and atmospherically corrected 

before performing the desired processing to produce LST, LU/LC, NDVI, and NDBI by the use 

of ENVI 5.3 software. The findings of LST illustrate, that the mean recorded LST in 1998 was 

39.42˚C, whereas the mean recorded LST in 2020 was 41.25˚C, which demonstrates a 1.83 ˚C 

increase for the whole study period. The study area was categorized into five major classes 

(vegetation, Water-body, built-up, bare-land, and soil). Hence, the findings of LU/LC variations 

between 1998 and 2020 indicate that vegetation areas declined from 14.20% to 3.57 %, whereas 

built-up areas increased from 18% to 43.56%. In addition, water bodies declined from 0.52 % to 

0.27%, while bare land increased from 24.17% to 35.64%, and finally, the soil cover decreased 

from 42.76% to 16.96%.  The mean LST of each LU/LC class was also extracted to assess the 

distributed LST changes. According to that, the maximum increase of LST is recorded for bare 

land, built up, and urban areas, whereas the minimum increase of LST is related to the water body 

and vegetation areas for all study periods respectively. This demonstrates the influence of natural 

covers such as water bodies and green areas on the mitigation of the intensity and spread of UHI.  

According to the overall assessment, the outputs revealed that surface UHIs over the Kabul City 

throughout the study period are developing. Based on results, in 1998 only five districts (1,16,9,15, 

and 19) were affected by surface UHIs, while in 2011 surface UHIs affected areas increased to 

eight districts (15, 16, 1, 21, 17, 12, 13, and 8) and in 2020 the UHIs affected regions are increased 

to ten districts (1,19, 15,16, 9,17, 22, 11, 13, and 2) which demonstrates ascending development 



of UHIs over the Kabul City. Additionally, the obtained results also confirmed an adverse 

correlation between the spatial pattern of land cover and green spaces, measured by NDVI, and 

LST estimated by satellite images. As expected, with an increase in the NDVI, the LST was 

reduced and in areas covered with green spaces, a lower average LST was observed, while a 

positive correlation was found between mean LST and NDBI for all time intervals respectively. 

As expected, with an increase in the NDBI, the LST was also increased and in areas covered with 

built-up covers, a higher mean LST was recorded for all study periods respectively.  

The conversion of green areas and water bodies to impervious surfaces like built-up areas and bare 

lands are the main parameters in the development of UHI, and also the existence of industrial 

parks, factories that use poor quality fuel, brick factories that use row coal, informal residential 

settlements, and Kabul International Airport are recognized as a catalyst for production and 

development of surface UHIs over the Kabul City.  

Therefore, to mitigate the UHIs expansion over the Kabul City, the development of green zones, 

usage of energy efficiency approaches in building designs and construction, and also the 

comprehensive utilization of green roofs, urban parks, street trees, and renewable energy 

resources, are suggested. Moreover, imposing heavy penalties for the owner of those factories who 

use poor quality fuel and raw coal will also have a positive impact on the reduction of surface 

UHIs over Kabul City. 
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