
Supplementary Material for: Recycling nonlocality in a
quantum network

Ya-Li Mao1,2, Zheng-Da Li1,2, Anna Steffinlongo3,4,5, Bixiang Guo1,2, Biyao Liu1,2, Shufeng Xu1,2,

Nicolas Gisin6,7, Armin Tavakoli4,5 & Jingyun Fan1,2

1Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern

University of Science and Technology, Shenzhen, 518055, China

2Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University

of Science and Technology, Shenzhen, 518055, China

3Dipartimento di Fisica e Astronomia “G.Galilei”, Università degli Studi di Padova, I-35131 Padua,
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1 Derivation of Eq. (4) in main text

Recall that for a choice of m parties, s, the quantum probabilities are given by

p(a, bs|x, ys) = Tr

[(
m⊗
k=1

B
(k,sk)
bk,sk |yk,sk

⊗ Aa|x

)
χs

]
, (1)
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up to the ordering of the tensor product. The recycled total state, χs, takes the form χs =⊗m
k=1 ρ

(sk−1)
k , where ρ0k = ρk. Here, ρ(j−1)k is the average recycled state that arrives to Bk,j .

These states can be obtained recursively from the Lüders rule,

ρ
(j)
k =

1

2

∑
bk,j ,yk,j

(√
B

(k,j)
bk,j |yk,j ⊗ I

)
ρ
(j−1)
k

(√
B

(k,j)
bk,j |yk,j ⊗ I

)
, (2)

In the quantum protocol, we let each source distribute the maximally entangled state, |φ+〉 =

1√
2

[|00〉+ |11〉]. All outer parties perform unsharp measurements in the Pauli Z and X bases respec-

tively. The j’th one in the k’th branch has observables ηZk,jσZ(yk,j = 0) and ηXk,jσX(yk,j = 1). Let A

perform measurementsAa|x =
∑

a1⊕...⊕am=a

⊗m
k=1 Π

(k)
ak|x, where Π

(k)
ak|x = 1

2
(I + (−1)ak (cos θσZ + (−1)x sin θσX)).

We now recursively compute the recycled states.

ρ
(j)
k =

1

2

∑
bk,j ,yk,j

(√
B

(k,j)
bk,j |yk,j ⊗ I

)
ρ
(j−1)
k

(√
B

(k,j)
bk,j |yk,j ⊗ I

)

=
1

2

[√
1

2
(I + ηZk,jσZ)⊗ I

]
ρ
(j−1)
k

[√
1

2
(I + ηZk,jσZ)⊗ I

]

+
1

2

[√
1

2
(I− ηZk,jσZ)⊗ I

]
ρ
(j−1)
k

[√
1

2
(I− ηZk,jσZ)⊗ I

]

+
1

2

[√
1

2
(I + ηXk,jσX)⊗ I

]
ρ
(j−1)
k

[√
1

2
(I + ηXk,jσX)⊗ I

]

+
1

2

[√
1

2
(I− ηXk,jσX)⊗ I

]
ρ
(j−1)
k

[√
1

2
(I− ηXk,jσX)⊗ I

]

=
1

4

[
2 +

√
1−

(
ηZk,j
)2

+

√
1−

(
ηXk,j
)2]

ρ
(j−1)
k +

1

4

[
1−

√
1−

(
ηZk,j
)2]

(σZ ⊗ I)ρ(j−1)k (σZ ⊗ I)

+
1

4

[
1−

√
1−

(
ηXk,j
)2]

(σX ⊗ I)ρ(j−1)k (σX ⊗ I).

(3)
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To compute the network Bell inequality, we must evaluate the quantities

Is =
1

2m

∑
ys

∑
a,bs

(−1)a+
∑

k bk,skp(a, bs|0, ys), (4)

Js =
1

2m

∑
ys

∑
a,bs

(−1)a+
∑

k(bk,sk+yk,sk )p(a, bs|1, ys). (5)

We now compute these quantities in the quantum model.

Is =
1

2m

∑
ys

∑
a,bs

(−1)a+
∑

k bk,skp(a, bs|0, ys)

=
1

2m

∑
ys

∑
a,bs

(−1)a+
∑

k bk,sk Tr

[(
m⊗
k=1

B
(k,sk)
bk,sk |yk,sk

⊗ Aa|0

)
χs

]

=
1

2m

∑
ys

∑
a,bs

(−1)a+
∑

k bk,sk Tr

[(
m⊗
k=1

B
(k,sk)
bk,sk |yk,sk

⊗
∑

a1⊕...⊕am=a

m⊗
k=1

Π
(k)
ak|0

)
m⊗
k=1

ρ
(sk−1)
k

]

=
1

2m

∑
ys

∑
a,bs

∑
a1⊕...⊕am=a

(−1)a+
∑

k bk,sk Tr

[
m⊗
k=1

(
B

(k,sk)
bk,sk |yk,sk

⊗ Π
(k)
ak|0ρ

(sk−1)
k

)]

=
1

2m

∑
ys

∑
a,bs

∑
a1⊕...⊕am=a

(−1)a+
∑

k bk,sk

m∏
k=1

[
Tr
(
B

(k,sk)
bk,sk |yk,sk

⊗ Π
(k)
ak|0ρ

(sk−1)
k

)]
=

1

2m

m∏
k=1

Tr
{
ρ
(sk−1)
k

[
(B

(k,sk)
0|0 −B(k,sk)

1|0 )⊗ Π0
Am

+ (B
(k,sk)
0|1 −B(k,sk)

1|1 )⊗ Π0
Am

]}
=

1

2m

m∏
k=1

{
ηZk,sk Tr

[
ρ
(sk−1)
k (cos θσZ ⊗ σZ + sin θσZ ⊗ σX)

]
+

ηXk,sk Tr
[
ρ
(sk−1)
k (cos θσX ⊗ σZ + sin θσX ⊗ σX)

]}
=

1

2m

m∏
k=1

[
ηZk,sk cos θTr

(
ρ
(sk−1)
k σZ ⊗ σZ

)
+ ηZk,sk sin θTr

(
ρ
(sk−1)
k σZ ⊗ σX

)
+ηXk,sk cos θTr

(
ρ
(sk−1)
k σX ⊗ σZ

)
+ ηXk,sk sin θTr

(
ρ
(sk−1)
k σX ⊗ σX

)]

(6)

Below we compute quantities Tr
(
ρ
(sk−1)
k σZ ⊗ σZ

)
, Tr
(
ρ
(sk−1)
k σZ ⊗ σX

)
, Tr
(
ρ
(sk−1)
k σX ⊗ σZ

)
,
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and Tr
(
ρ
(sk−1)
k σX ⊗ σX

)
,

Tr
(
ρ
(sk−1)
k σZ ⊗ σZ

)
=

1

4
(2 +

√
1−

(
ηZk,sk−1

)2
+

√
1−

(
ηXk,sk−1

)2
) Tr
(
ρ
(sk−2)
k σZ ⊗ σZ

)
+

1

4
(1−

√
1−

(
ηZk,j
)2

) Tr ρ
(sk−2)
k (σZσZσZ ⊗ σZ) +

1

4
(1−

√
1−

(
ηXk,sk−1

)2
) Tr ρ

(sk−2)
k (σXσZσX ⊗ σZ)

=
1

4
(2 +

√
1−

(
ηZk,sk−1

)2
+

√
1−

(
ηXk,sk−1

)2
) Tr
(
ρ
(sk−2)
k σZ ⊗ σZ

)
+

1

4
(1−

√
1−

(
ηZk,sk−1

)2
)Trρ

(sk−2)
k (σZ ⊗ σZ)− 1

4
(1−

√
1−

(
ηXk,sk−1

)2
) Tr ρ

(sk−2)
k (σZ ⊗ σZ)

=

[
1

4
(2 +

√
1−

(
ηZk,sk−1

)2
+

√
1−

(
ηXk,sk−1

)2
) +

1

4
(1−

√
1−

(
ηZk,sk−1

)2
)

−1

4
(1−

√
1−

(
ηXk,sk−1

)2
)

]
Tr
(
ρ
(sk−2)
k σZ ⊗ σZ

)
=

1

2
(1 +

√
1−

(
ηXk,sk−1

)2
) Tr
(
ρ
(sk−2)
k σZ ⊗ σZ

)
.

(7)

Tr
(
ρ
(sk−1)
k σZ ⊗ σX

)
=

1

4
(2 +

√
1−

(
ηZk,sk−1

)2
+

√
1−

(
ηXk,sk−1

)2
) Tr
(
ρ
(sk−2)
k σZ ⊗ σX

)
+

1

4
(1−

√
1−

(
ηZk,sk−1

)2
) Tr ρ

(sk−2)
k (σZσZσZ ⊗ σX)

+
1

4
(1−

√
1−

(
ηXk,sk−1

)2
) Tr ρ

(sk−2)
k (σXσZσX ⊗ σX)

=
1

4
(2 +

√
1−

(
ηZk,sk−1

)2
+

√
1−

(
ηXk,sk−1

)2
) Tr
(
ρ
(sk−2)
k σZ ⊗ σX

)
+

1

4
(1−

√
1−

(
ηZk,sk−1

)2
) Tr ρ

(sk−2)
k (σZ ⊗ σX)− 1

4
(1−

√
1−

(
ηXk,sk−1

)2
) Tr ρ

(sk−2)
k (σZ ⊗ σX)

=

[
1

4
(2 +

√
1−

(
ηZk,sk−1

)2
+

√
1−

(
ηXk,sk−1

)2
) +

1

4
(1−

√
1−

(
ηZk,sk−1

)2
)

−1

4
(1−

√
1−

(
ηXk,sk−1

)2
)

]
Tr
(
ρ
(sk−2)
k σZ ⊗ σX

)
=

1

2
(1 +

√
1−

(
ηXk,sk−1

)2
) Tr
(
ρ
(sk−2)
k σZ ⊗ σX

)
(8)
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Tr
(
ρ
(sk−1)
k σX ⊗ σZ

)
=

1

4
(2 +

√
1−

(
ηZk,sk−1

)2
+

√
1−

(
ηXk,sk−1

)2
) Tr
(
ρ
(sk−2)
k σX ⊗ σZ

)
+

1

4
(1−

√
1−

(
ηZk,sk−1

)2
) Tr ρ

(sk−2)
k (σZσXσZ ⊗ σZ) +

1

4
(1−

√
1−

(
ηXk,sk−1

)2
) Tr ρ

(sk−2)
k (σXσXσX ⊗ σZ)

=
1

4
(2 +

√
1−

(
ηZk,sk−1

)2
+

√
1−

(
ηXk,sk−1

)2
) Tr
(
ρ
(sk−2)
k σX ⊗ σZ

)
− 1

4
(1−

√
1−

(
ηZk,sk−1

)2
) Tr ρ

(sk−2)
k (σX ⊗ σZ) +

1

4
(1−

√
1−

(
ηXk,sk−1

)2
) Tr ρ

(sk−2)
k (σX ⊗ σZ)

=

[
1

4
(2 +

√
1−

(
ηZk,sk−1

)2
+

√
1−

(
ηXk,sk−1

)2
)− 1

4
(1−

√
1−

(
ηZk,sk−1

)2
)

+
1

4
(1−

√
1−

(
ηXk,sk−1

)2
)

]
Tr
(
ρ
(sk−2)
k σX ⊗ σZ

)
=

1

2
(1 +

√
1−

(
ηZk,sk−1

)2
) Tr
(
ρ
(sk−2)
k σX ⊗ σZ

)
.

(9)

Tr
(
ρ
(sk−1)
k σX ⊗ σX

)
=

1

4
(2 +

√
1−

(
ηZk,sk−1

)2
+

√
1−

(
ηXk,sk−1

)2
) Tr
(
ρ
(sk−2)
k σX ⊗ σX

)
+

1

4
(1−

√
1−

(
ηZk,sk−1

)2
) Tr ρ

(sk−2)
k (σZσXσZ ⊗ σX) +

1

4
(1−

√
1−

(
ηXk,sk−1

)2
) Tr ρ

(sk−2)
k (σXσXσX ⊗ σX)

=
1

4
(2 +

√
1−

(
ηZk,sk−1

)2
+

√
1−

(
ηXk,sk−1

)2
) Tr
(
ρ
(sk−2)
k σX ⊗ σX

)
− 1

4
(1−

√
1−

(
ηZk,sk−1

)2
) Tr ρ

(sk−2)
k (σX ⊗ σX) +

1

4
(1−

√
1−

(
ηXk,sk−1

)2
) Tr ρ

(sk−2)
k (σX ⊗ σX)

=

[
1

4
(2 +

√
1−

(
ηZk,sk−1

)2
+

√
1−

(
ηXk,sk−1

)2
)− 1

4
(1−

√
1−

(
ηZk,sk−1

)2
)

+
1

4
(1−

√
1−

(
ηXk,sk−1

)2
)

]
Tr
(
ρ
(sk−2)
k σX ⊗ σX

)
=

1

2
(1 +

√
1−

(
ηZk,sk−1

)2
) Tr
(
ρ
(sk−2)
k σX ⊗ σX

)
(10)
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Recursively, we have

Tr
(
ρ
(sk−1)
k σZ ⊗ σZ

)
= 21−sk Tr

(
ρ0kσZ ⊗ σZ

) sk−2∏
j=0

(1 +

√
1−

(
ηXk,sk−1

)2
),

Tr
(
ρ
(sk−1)
k σZ ⊗ σX

)
= 21−sk Tr

(
ρ0kσZ ⊗ σX

) sk−2∏
j=0

(1 +

√
1−

(
ηXk,sk−1

)2
),

Tr
(
ρ
(sk−1)
k σX ⊗ σZ

)
= 21−sk Tr

(
ρ0kσX ⊗ σZ

) sk−2∏
j=0

(1 +

√
1−

(
ηZk,sk−1

)2
),

Tr
(
ρ
(sk−1)
k σX ⊗ σX

)
= 21−sk Tr

(
ρ0kσX ⊗ σX

) sk−2∏
j=0

(1 +

√
1−

(
ηZk,sk−1

)2
).

(11)

Inserting these results into Equation (6) and noting that Tr(ρ0kσZ ⊗ σZ) = Tr(ρ0kσX ⊗ σX) = 1 and

Tr(ρ0kσX ⊗ σZ) = Tr(ρ0kσZ ⊗ σX) = 0 we obtain

Is =
1

2m

m∏
k=1

[
ηZk,sk cos θTr

(
ρ
(sk−1)
k σZ ⊗ σZ

)
+ ηZk,sk sin θTr

(
ρ
(sk−1)
k σZ ⊗ σX

)
+ηXk,sk cos θTr

(
ρ
(sk−1)
k σX ⊗ σZ

)
+ ηXk,sk sin θTr

(
ρ
(sk−1)
k σX ⊗ σX

)]
=

1

2m

m∏
k=1

21−sk

[
ηZk,sk cos θ

sk−1∏
j=1

(1 +

√
1−

(
ηXk,j
)2

) + ηXk,sk sin θ

sk−1∏
j=1

(1 +

√
1−

(
ηZk,j
)2

)

] (12)

Similarly we can write Js explicitly as,

Js =
1

2m

∑
ys

∑
a,bs

(−1)a+
∑

k (bk,sk+yk,sk )p(a, bs|1, ys)

=
1

2m

m∏
k=1

[
ηZk,sk cos θTr

(
ρ
(sk−1)
k σZ ⊗ σZ

)
− ηZk,sk sin θTr

(
ρ
(sk−1)
k σZ ⊗ σX

)
−ηXk,sk cos θTr

(
ρ
(sk−1)
k σX ⊗ σZ

)
+ ηXk,sk sin θTr

(
ρ
(sk−1)
k σX ⊗ σX

)]
=

1

2m

m∏
k=1

21−sk

[
ηZk,sk cos θ

sk−1∏
j=1

(1 +

√
1−

(
ηXk,j
)2

) + ηXk,sk sin θ

sk−1∏
j=1

(1 +

√
1−

(
ηZk,j
)2

)

] (13)

Then we obtain Eq. (4) in the main text,
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Ss =

[
m∏
k=1

21−sk

(
ηZk,sk cos θ

sk−1∏
j=1

fX
k,j + ηXk,sk sin θ

sk−1∏
j=1

fZ
k,j

)]1/m
. (14)

2 Unsharp measurement

The positive-operator-valued-measures (POVMs) of a qubit system is given as

Π0|~r =
1

2
(I + ησ~r), Π1|~r = I− Π0|~r, (15)

where I is the identity operator, σ~r = ~r · ~σ, ~r is the Bloch vector with |~r| = 1, ~σ = (σX , σY , σZ) are

Pauli matrices, and η ∈ [0, 1].

A quantum circuit to implement the unsharp measurement is given in Fig. S1(a), in which

the meter qubit |Φm〉 = Sm(θ) |0m〉 = cos θ|0m〉 + sin θ|1m〉 couples to the system qubit ρs via a

Controlled-Not (C-NOT) gate,

UC-NOT
sm = |0s〉 〈0s| ⊗ Im + |1s〉 〈1s| ⊗ σX,m. (16)

The POVMs of the system qubit are given as

E0 = M †
0M0 =

1

2
(I + cos 2θσZ) = Π0|~r,

E1 = M †
1M1 =

1

2
(I− cos 2θσZ) = Π1|~r,

(17)

with

M0 = 〈0m|UC-NOT
sm (Is ⊗ Sm(θ)) |0m〉 = cos θ |0s〉 〈0s|+ sin θ |1s〉 〈1s| ,

M1 = 〈1m|UC-NOT
sm (Is ⊗ Sm(θ)) |0m〉 = sin θ |0s〉 〈0s|+ sin θ |1s〉 〈1s| ,

(18)

where the unsharp measurement strength is η = cos 2θ.
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(a)

(b)

(c)

D1

D2

D3

D4

HWP@θ/2

HWP@45° HWP@45°

QHQ-box

Bk,2 Ｂk,1

Figure 1: (a) The quantum circuit to realize unsharp measurement Eq. (15). (b) The quantum circuit

to realize unsharp measurement with a Sagnac interferometer and (c) its optical realization.

Measuring system qubit in other directions σ~r = ~r · ~σ are implemented by applying a unitary

rotation Us to the system qubit accordingly, for example, Us is Hadamard gate for measurement σX ,

Us =
1√
2

1 1

1 −1

 , (19)

and Us for σY is

Us =
1√
2

 1 −i

−i 1

 . (20)

In this experiment, Bk,1 encodes system qubit to the polarization state and meter qubit to the

8



path state of photon, with the quantum circuit shown in Fig. S1 (b) and experimental realization

shown in Fig. S1 (c). One can show that the quantum circuit of Fig. S1 (b) is equivalent to that of

Fig. S1 (a). We set meter qubit to state |0〉m (|1〉m) as photon propagates (counter-) clockwise in the

Sagnac interferometer. Below we describe the photon traveling through the Sagnac interferometer

with a unitary,

USagnac
sm = UC−NOT

ms UC−NOT
sm [(Ss(θ) ∗ σZ)⊗ Im]UC−NOT

ms UC−NOT
sm

(21)

C-NOT gate UC−NOT
sm with meter qubit as target is implemented by the PBS in the Sagnac

interferometer. The photon passes the PBS twice and experiences UC−NOT
sm twice.

C-NOT gate UC−NOT
ms with system qubit as target is implemented by passing photon in state

|0〉m through a HWP oriented at 45◦ (HWP@45◦). The HWP@45◦ inside (outside) the Sagnac

interferometer is to implement the first (second) UC−NOT
ms .

Unitary rotation S(θ) of system qubit is implemented by passing photon through a HWP

oriented at θ (HWP@θ/2) in the Sagnac interferometer.

σZ is implemented as horizontally polarized photons gain phase π upon reflection by a mirror.

9



We then have

USagnac
sm =(cos θ |0s〉 〈0s|+ sin θ |1s〉 〈1s|)⊗ |0m〉 〈0m|+ (− sin θ |0s〉 〈1s|+ cos θ |1s〉 〈0s|)⊗ |0m〉 〈1m|

+(sin θ |0s〉 〈0s|+ cos θ |1s〉 〈1s|)⊗ |1m〉 〈0m|+ (cos θ |0s〉 〈1s| − sin θ |1s〉 〈0s|)⊗ |1m〉 〈1m|
(22)

We then reproduce Eq. (18),

M0 = 〈0m|USagnac
sm |0m〉 = cos θ |0s〉 〈0s|+ sin θ |1s〉 〈1s| ,

M1 = 〈1m|USagnac
sm |0m〉 = sin θ |0s〉 〈0s|+ sin θ |1s〉 〈1s| .

(23)

To implement arbitrary unitary Us, we pass photons sequentially through HWP, QWP, and

HWP (QHQ-box), as shown in Fig. 1(c).

From Eq. (23), we can read that photon exiting the Saganc interferometer into the upper

or lower path of the setup in Fig. 1(c) corresponds to output bk,1 = 0 or bk,1 = 1 of party Bk,1,

respectively.

Finally, we perform projective polarization measurements by passing photons sequentially

through HWP, QWP and PBS, with outcomes bk,2 = 0 if the photon transmits the PBS and bk,2 = 1

if the photon is reflected by the PBS. The single photon detection at detectors D1, D2, D3, or D4

corresponds to one of the four outcome combination {bk,1, bk,2} as shown in Tab. 1.
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[htbp!]

Table 1: Outcome combination of {bk,1, bk,2}

Detector in Fig. 1(c) bk,1 bk,2

D1 0 0

D2 0 1

D3 1 1

D4 1 0
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