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1 Derivation of Eq. (4) in main text

Recall that for a choice of m parties, s, the quantum probabilities are given by
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up to the ordering of the tensor product. The recycled total state, y,, takes the form y, =

X, p,(:rl) , where p) = pi. Here, p,(cj Y is the average recycled state that arrives to B, ;.

These states can be obtained recursively from the Liiders rule,

G _ 1 (kd) (-1) ")
Pr- = 2 Z ( Bbk,ﬂyk,j ®]I> P ( Bbk,j'?/k,j ® ]I) ’ ()

br,j Yk, j

In the quantum protocol, we let each source distribute the maximally entangled state, [¢T) =
\/% [|00) + |11)]. All outer parties perform unsharp measurements in the Pauli Z and X bases respec-

tively. The j’th one in the &’th branch has observables 77 ;07 (yx,; = 0) and 7 ;0 x (yr; = 1). Let A
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perform measurements Ag, = >, o o0 _ QL 1 ol =
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We now recursively compute the recycled states.
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To compute the network Bell inequality, we must evaluate the quantities
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We now compute these quantities in the quantum model.
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Below we compute quantities Tr (p,(C o, ® JZ), Tr (pgf’“*l)az ® 0X>, Tr (p,(:’“*l)ax ® az>,



and Tr (p,(:’“fl)ax ® 0x>,
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Recursively, we have
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Inserting these results into Equation (6) and noting that Tr(pY0; @ 07) = Tr(plox ® ox) = 1 and

Tr(plox ® oz) = Tr(ploz ® ox) = 0 we obtain
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Then we obtain Eq. (4) in the main text,
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2 Unsharp measurement

The positive-operator-valued-measures (POVMs) of a qubit system is given as

1
Mo = o (T+noz),  Tyjr =1 — T, (15)

where [ is the identity operator, o = 7 - @, 7 is the Bloch vector with |7] = 1, & = (ox, 0y, 07) are

Pauli matrices, and 1 € [0, 1].

A quantum circuit to implement the unsharp measurement is given in Fig. S1(a), in which
the meter qubit |®,,) = Sy (0) |0m) = cos|0n,) + sinb|1,,) couples to the system qubit p, via a

Controlled-Not (C-NOT) gate,

USCI’I‘_INOT = |OS> <Os, ® I, + |1S> <1S| ® OXm- (16)
The POVMs of the system qubit are given as

1
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with

My = (00| USNON(I, @ Sin(9)) |0m) = cos @ ]0s) (0g] + sin 6 ]15) (14,
(13)
My = (1| USNN(I, @ Sin(6)) |Om) = sin 0 |0g) (05] + sin @ [15) (14,

where the unsharp measurement strength is = cos 26.
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Figure 1: (a) The quantum circuit to realize unsharp measurement Eq. (15). (b) The quantum circuit

to realize unsharp measurement with a Sagnac interferometer and (c) its optical realization.

Measuring system qubit in other directions o = 7 - ¢ are implemented by applying a unitary

rotation Us to the system qubit accordingly, for example, Uy is Hadamard gate for measurement oy,

U, Lt (19)
s \/§ 1 _1 )
and U, for oy is
U, L b (20)
L2 - 1 |

In this experiment, By, ; encodes system qubit to the polarization state and meter qubit to the
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path state of photon, with the quantum circuit shown in Fig. S1 (b) and experimental realization
shown in Fig. S1 (c). One can show that the quantum circuit of Fig. S1 (b) is equivalent to that of
Fig. S1 (a). We set meter qubit to state |0), (|1).,) as photon propagates (counter-) clockwise in the
Sagnac interferometer. Below we describe the photon traveling through the Sagnac interferometer

with a unitary,

USSnzlxgnac — UHCIJ;NOTUSE:NOT [(Ss(e) % UZ) ® ]Im] UHCII;NOTUSEJI:NOT (21)

C-NOT gate USNOT with meter qubit as target is implemented by the PBS in the Sagnac

interferometer. The photon passes the PBS twice and experiences USNOT twice.

C-NOT gate USNOT with system qubit as target is implemented by passing photon in state
|0)m through a HWP oriented at 45° (HWP@45°). The HWP@45° inside (outside) the Sagnac

interferometer is to implement the first (second) USNOT,

Unitary rotation S(6) of system qubit is implemented by passing photon through a HWP

oriented at § (HWP@#/2) in the Sagnac interferometer.

oz is implemented as horizontally polarized photons gain phase 7 upon reflection by a mirror.



‘We then have
Ussn?gnac =(cos 0 |0) (05| +sin 0 |15) (1s]) @ |Om) (Om| + (= sin 0 |0g) (15| + cos 0 |15) (Os]) @ [Om) (1n|
+(sin @ |0g) (Os] + cos 0 |1s) (15|) @ [11m) (Om| + (cos 0 ]0s) (15| — sin @ |15) (Os]) & |1m) (1]

(22)

We then reproduce Eq. (18),

My = {0y, U528 |0} = cos 0 |0,) (0] +sin @ |15) (14|,
(23)

My = (1,| U2 |0,) = sin @ |05) (0| + sin 6| 15) (1] .

To implement arbitrary unitary Uy, we pass photons sequentially through HWP, QWP, and

HWP (QHQ-box), as shown in Fig. 1(c).

From Eq. (23), we can read that photon exiting the Saganc interferometer into the upper
or lower path of the setup in Fig. 1(c) corresponds to output by ; = 0 or by ; = 1 of party By 1,

respectively.

Finally, we perform projective polarization measurements by passing photons sequentially
through HWP, QWP and PBS, with outcomes by, » = 0 if the photon transmits the PBS and b, » = 1
if the photon is reflected by the PBS. The single photon detection at detectors Dy, Dy, D3, or Dy

corresponds to one of the four outcome combination {by 1, by 2} as shown in Tab. 1.
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Table 1: Outcome combination of {by 1, by}

Detector in Fig. 1(c) | bx1 | bk
D, 0 0
D, 0 | 1
D 1|1
Dy 1 0
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