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Abstract

Background

Newly emerged COVID-19 has been shown to engage the host cell ACE2 through its spike protein receptor
binding domain (RBD). Here we show that natural phytochemical from a medicinal herb, Withania
somnifera, have distinct effects on viral RBD and host ACE2 receptor complex.

Methods

We employed molecular docking to screen thousands of phytochemicals against the ACE2-RBD complex,
performed molecular dynamics (MD) simulation, and estimated the electrostatic component of binding
free energy, along with the computation of salt bridge electrostatics.

Results

We report that W. somnifera compound, Withanone, docked very well in the binding interface of AEC2-
RBD complex, and was found to move slightly towards the interface centre on simulation. Withanone
significantly decreased electrostatic component of binding free energies of ACE2-RBD complex. Two salt
bridges were also identified at the interface; incorporation of Withanone destabilized these salt bridges
and decreased their occupancies. We postulate, such an interruption of electrostatic interactions between
the RBD and ACE2 would block or weaken COVID-19 entry and its subsequent infectivity.

Conclusion

Our data, for the first time, show that natural phytochemicals could well be the viable options for
controlling COVID-19 entry into host cells, and W. somnifera may be the first choice of herbs in these
directions to curb the COVID-19 infectivity.

Introduction

In December 2019, a mysterious virus causing pneumonia was first reported in China [1], and it is now
growing globally into a deadly disease. In the first week of January 2020, the Chinese Centre for Disease
Control and Prevention (CCDCP) identified a novel coronavirus strain that has not been earlier identified in
humans [2—-4]. Coronaviruses are characterized as zoonotic which can transmit between animals and
people [5]. These are large positive-strand RNA viruses [6], which can cause infection in a variety of avian
as well as mammalian species. These can cause diseases related to the central nervous system, upper
and lower respiratory and gastrointestinal tracts [7, 8]. Till now, seven coronaviruses have been identified
that can cause human diseases, four of these are mild viruses: 0C43, 229E, HKU1 and NL63 [9]. Whereas,
other three viruses can have more serious consequences in human, and these are SARS-CoV (causes
Severe Acute Respiratory Syndrome) which appeared in November 2002 [10, 11], in China. Another
outbreak of MERS-CoV (causes Middle East Respiratory Syndrome) emerged in 2012 in Saudi Arabia [12].
Now, Coronavirus COVID-19 has gradually crossed the wall of China, and has spread throughout the

Page 2/21



world. Stringent efforts are being placed globally to contain COVID-19 spread. However, epidemiological
information and clinical features of illness caused by COVID-19 is still at infancy at present [13, 14].

In a viral infection, the viral entry in the host cell is a critical step that can be exploited for anti-viral
therapy [15]. Coronaviruses get access into the target animal cells via binding to cell-surface-associated
receptors, and its entry can be barred by targeting the viral receptor-binding site with neutralizing
antibodies (nAbs). There are also certain small molecules (like RFI-641 and VP-14637) which inhibit the
entry of several viruses including respiratory syncytial virus [16, 17]. In the case of Coronavirus, the viral
entry is mediated by the Receptor-Binding Domain (RBD) of its spike (S) glycoprotein, which binds to the
host cell receptor Angiotensin-Converting Enzyme-2 (ACE2) [18, 19]. The coronavirus S-protein, a
structural protein responsible for the crown-like shape of the viral particles, is ~ 1200 aa long S-protein
belonging to class-l viral fusion proteins, and contributes to the cell receptor binding, tissue tropism and
pathogenesis [20]. It contains several conserved domains and motifs, and the trimetric S-protein is
processed at the S1/S2 cleavage site by host cell proteases. The protein is divided (cleavage, or priming)
at a conserved sequence AYT |M (located 10 aa downstream of SLLR-ST) into an N-terminal S1-
ectodomain that recognizes a cognate cell surface receptor and a C-terminal S2-membrane-anchored
protein involved in viral entry [20—-22]. The SARS-CoV S1-protein contains a conserved RBD, which
recognizes the host ACE2. The RBD surface of S1/ACE2 implicates 14 aa in the S1 of SARS-CoV [23],
among them, 8 residues are strictly conserved in COVID-19, supporting the hypothesis that ACE2 is also
the receptor of this newly emerged coronavirus [24]. The RBD of COVID-19 differs largely from the SARS-
CoV at the C-terminus, and it has been reported that such difference did not result in drastic changes in its
capability to engage ACE2 receptor [25]. Therefore, RBD has been an attractive target for the researchers
to abrogate coronavirus infection. Reports suggested that certain human antibodies recognized RBD on
the S1 domain and inhibited the viral infection by blocking the attachment of ACE2 [26, 27]. Three
possible mechanisms have been proposed where COVID-19 infection can be abrogated by blocking the
interaction of spike protein and ACE2 (Fig. 1), along with the strategy followed in the present work.

Withania somnifera (L.) Dunal (Solanaceae), commonly known as Ashwagandha, one of the most valued
medicinal plants of the traditional Indian systems of medicines, is used in more than 100 formulations of
Ayurveda, and is thought to be therapeutically equivalent to Ginseng [28]. W. somnifera has been used as
antiviral herb for the treatment of genital disease caused by Herpes Simplex Virus among African tribes
[29], and shown to anti-influenza properties [30]. The aim of present study is to check the antiviral
potential of W. somnifera ingredients against COVID-19 by means of computational methods. The core
rationale of this study is to inhibit or weaken the interactions between the receptor and RBD by using
phytocompounds that could block or hamper viral entry into the host cells.

Materials And Methods
Structures
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We screened thousands of phytocompounds by in-silico method. The strategy was to find
phytocompounds that bind at the protein complex interface, and perturb their interactions. In this regard,
we observed that the phytocompounds from W. somnifera could fit into our strategy. For W. somnifera
root extracts, Chaurasiya et al. [31] have utilized a reversed-phase HPLC method for the simultaneous
analysis of nine structurally similar withanolides: 27-hydroxy withanone, 17-hydroxy withaferin A, 17-
hydroxy-27-deoxy withaferin A, withaferin A, withanolide D, 27-hydroxy withanolide B, withanolide A,
withanone and 27-deoxywithaferin A. Our lab data (unpublished results) also showed significant
concentration of Withanolide A, Withanolide B, Withaferin A and Withanone in W. somnifera sapling (15—
20 days old). Therefore, we studied these compounds in detail after preliminary screening. The 3D
structures of all the phytocompounds were sourced from PubChem database
(https://pubchem.ncbi.nim.nih.gov).

Molecular docking

The structure of the ACE2 complexed with spike protein receptor binding domain (RBD) of 2019-nCoV is
not yet available. Therefore, RBD sequence of 2019-nCoV spike protein was obtained from NCBI (NCBI
accession: QHD43416), and the mutations were considered [32]. The protein complex model was built
using the MODELLER program as implemented in Structuropedia (http://structuropedia.org) [33] and by
using SWISS-Model (http://swissmodel.expasy.org) based on a clean 3D0G (2.8 A resolution; Protein
Data Bank, http://www.rcsb.org) template. The modelled 2019-nCoV RBD complexed with ACE2 A-chain
was used for further processing after editing on PyMol [34]. Energy minimization was performed by 100
steps of steepest descent, followed by 500 steps of conjugate gradient using UCSF Chimera-1.13.1 [35],
and the stereo-chemical quality of the energy minimized model was checked using VERIFY 3D [36)],
ERRAT [37], PROCHECK [38] and RAMPAGE (for Ramachandran plot) [39].

The SDF files of all the ligands downloaded from the PubChem database were then converted into PDB
files using OpenBabel 2.4.1 [40]. The binding site in the ACE2-RBD complex was determined by blind
docking using AutoDock Vina-1.1.2 (ADV-1.1.2) [41], and then the focused/targeted docking was
performed based on the binding location of the ligands derived post blind docking. For intermediary
steps, such as PDBQT files for protein and ligands preparation and grid box creation were performed
using Graphical User Interface program AutoDock Tools-1.5.6 (ADT-1.5.6) [42]. ADT was used to assign
polar hydrogens and Gasteiger charges. ‘Choose ligand’ option was used to set map file types. AutoDock
Tool was used to save the prepared files in PDBQT format. For blind docking, Grid maps were prepared
using a grid box size of 60 x 60 x 60 xyz points and the protein centre (x = 50.541,y =-1.366, z=105.966).
To obtain the maximum number of poses, we set num_modes to 20, energy range to 9, and
exhaustiveness to 8. The pose with lowest energy of binding was extracted and aligned with the receptor
for further analysis by Discovery Studio 2017 R2 Client [43] and PyMol[34]. In focused docking for
Withanone, the grid was defined using AutoDock Tools 4 (ADT4) [42] to involve the binding location in the
ACE2-RBD complex, by rendering side chains of the residues K8, L11, E12, N15, Y16, Q19, A369, Q370,
P371, F372, R375 (ACE2 molecule) and R73, D75, K87, Y175 (RBD) as flexible. The size of the grid was
set to 30 x 30 x 30 xyz points with the grid centre of 32.575,-12.096 and 110.756. Docking simulations
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were initiated with the random seed. Discovery Studio 2017 R2 Client [43] and PyMol [34] were used to
generate all the graphics.

Molecular dynamics (MD) simulation

The Ligand-ACE2-RBD complex was obtained after the targeted molecular docking. The simulation
systems for ACE2-RBD complex without or with the Withanone were prepared using the VMD software
(Humphrey et al., 1996). Ligand parameterization was done with CHARMM-GUI web interface
(http://www.charmm-gui.org) [44]. MD simulation was performed with CHARMM36 force field using the
NAMD package [45]. The protein complex without or with Withanone was solvated with TIP3P water
molecules 10 A from the protein. The systems were ionized and neutralized with 100 mM of NaCl. The
systems contained 67890 and 67851water molecules in the protein complex without and with the
Withanone, respectively. NPT ensemble was used with periodic boundary conditions. Pressure was fixed
at 1 atm, while the temperature was 310 K. The particle-mesh Ewald method was used to evaluate the
Coulomb interactions. 2 fs of time step was used in all MD simulations. Initially, water was equilibrated
for 200 ps at 310 K after fixing the protein and energy minimization of 1000 steps. 1000 steps of energy
minimization of the whole system were performed, and further equilibration for 400 ps at 310 K after
releasing the protein was done. Production run was of 2000 ps. The trajectory data were saved at every
0.5 ps to analyze the change in the dynamics of ACE2-RBD binding interface. The results for flexibility
were analyzed by plotting the non-H atoms RMSD values against the 1000 conformations (stride 4).
Trajectory clustering was performed by UCSF Chimera-1.13.1 [35], using the step size of 1 and default
parameters.

Salt bridge analysis

Salt bridge was defined at a cut off distance of 3.2 A of O-N atoms of the oppositely charged amino acid
side chains using VMD [46]. Electrostatic free energies up on salt bridge formation were computed in
initial and final trajectories. All the computations were performed according to the protocol of Hendsch
and Tidor [47], with slight modifications. Briefly, it was calculated relative to a mutation of its salt-bridging
side-chains to their hydrophobic isosteres; they are identical with the charged residue side-chains, with the
exception that their partial atomic charges were set to zero. The protonation states of all the charged
residues were assigned at pH 7.4 using ProteinPrepare module in PlayMolecule
(https://www.playmolecule.org). Continuum electrostatic calculations were performed with the DelPhi
v8.4.3 [48]. The PARSE partial atomic charges and atomic radii [49] were used. The solvent probe radius
used was 1.4 A. The dielectric constants of the protein and the solvent were 4.0 and 80.0 respectively, and
the ionic strength was 0.145 M. The Poisson-Boltzmann equation was solved using the iterative finite
difference method, initially mapping the molecule on a 3D grid with a grid size of 165 and scale 1, and
then focusing with a grid size of 65 and scale 4. DelPhi gives the energy values in units of kT, where k is
the Boltzmann constant and T is absolute temperature, and the values were multiplied by 0.5922 to
obtain the results in kcal/mol at room temperature (25 °C).

ACE2-RBD complex’ binding energy calculation
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Quantification of electrostatic interactions is important to study protein-protein interactions in bio-
molecular systems. We solved the Poisson—Boltzmann equation (PBE) in the implicit solvent model [50]
to study the interaction between the receptor ACE2 and the viral RBD. The electrostatic component of
AAG, AAG, can be quantified by solving the Poisson-Boltzmann equation (PBE) with the assumption that

there are no conformational changes upon binding, and the equation can be presented as [51]:

AAGg = AAGg g1y + AAGg oyl

= [(AAGeI_soIv)C - (AAGeI_soIv)A - (AAGeI_soIv)B] + [(AAGeI_couI)C - (AAGeI_couI)A - (AAGeI_couI)B]

Where, (AAG, o) c is the electrostatic solvation free energy of the complex, and (AAG so1)a @nd
(AAGg g01v)g correspond to that of the binding partners. Similarly, (AAGg cou))c, (AAGg cour)a @nd
(AAG_cour)g represent the electrostatic coulombic binding free energy of the complex, and the binding
partners.

We used DelPhi v8.4.3 [48] to calculate the electrostatic component of the binding free energies in the
final trajectory of the MD simulation without or with the Withanone, and in the trajectories obtained after
clustering. The above term, AAG can be obtained by subtracting the all energy but grid energy of the
binding partners from that of the complex. Grid size of 165, scale 1 and ionic strength of 0.000 M were
used for the calculation. Protein and solvent dielectric constants were 4 and 80.

Results
Molecular docking

The model of protein complex was built by SWISS-MODEL and the energy was minimized. The stereo-
chemical quality was checked and confirmed (refer to Supporting Information1 for the details).
Withanolides present in roots and leaves of W. Somnifera were docked against ACE2-RBD complex. The
phytocompound which bound to the interface was subjected to targeted/focused docking. The
phytocompounds were bound at the ACE2-RBD complex tightly (see Table 1 for Vina score). Of these
compounds docked, only the Withanone bound at the interface of the receptor and RBD (Fig. 2).
Therefore, Withanone was analyzed further to study its role in blocking or weakening the interactions
between the ACE2 receptor and RBD. On targeted docking of the Withanone, it was found to be well-
bound at the ACE2-RBD interface by two H-bonds (Tyr16 of ACE2 and Tyr175 of RBD to Withanone), alkyl
and van der waals interactions (Fig. 2). These Tyrosines were mutated by alanine, and re-docked with
Withanone.

Table 1: AutoDock Vina score of phytocompounds from

W. somnifera docked against ACE2-RBD complex.
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W. somnifera Binding Energy
Phytocompounds  (kcal/mol)

Withanone 9.4
Withanolide A 9.6
Withanolide B 9.4
Withaferin A 9.1

Molecular dynamics (MD) simulation
Interaction analysis

The RMSD of the simulated molecule (Withanone) was 5.08 A compared to starting position. At the end
of simulation, it moved slightly towards the binding interface centre (Fig. 3A). On analysing, the ligand
interaction, it was found that ACE2 Y16 H-bonding to Withanone was preserved in the simulated
coordinates, whereas RBD Y175 forms Carbon H-bond to Withanone. Additionally, there is formation of
three more H-bonds (ACE2 N15, ACE2 Q19 and RBD R78 to Withanone) in the simulated ligand-ACE2-RBD
complex (Fig. 3B).

Salt bridge analysis

We detected two inter-chain (binding interface) salt bridge interactions, Glu12 OE2- Lys87 NZ (2.75 A)
(aa 404) and Glu20 OE2 — Arg73 NZ (2.67 A) (aa 390). Val residue (aa 404) in SARS-CoV is substituted
by Lys in COVID-19 S protein RBD, and Lys (aa390) is substituted by Arg(Fig. 4). These salt bridges were
also seen during the simulation. Percent occupancy of Glu12-Lys87 salt bridge was decreased to 24.3%
in the simulation trajectories with the Withanone, from 47.2% present in the trajectories without the
ligand. Similarly, occupancy of Glu20-Arg73 salt bridge in the trajectories with the Withanone was 80%,
while it was 93.8% in the trajectories without the ligand.

Energetics of the two salt bridges (E12-K87 and E20-R73) was calculated. It was -1.36 kcal/mol and 1.53
kcal/mol in the starting and last frame for the salt bridge E12-K87, whereas it was estimated to be -6.15
kcal/mol and -2.46 kcal/mol for the salt bridge E20-R73 (Figure 5).

Flexibility analysis

For local flexibility analysis, total RMSD of non-H atoms of the binding interface residues of RBD, RMSD
of non-H atoms of aa 424 to 494 was determined (Fig. 6). The data shows the local RMSD changes.
RMSD was decreased in the simulation of Withanone plus case, in the region of aa 424 to 494 (binding
interface residues in RBD).

Page 7/21



ACE2-RBD complex’ electrostatic component of binding
energy calculation

In MD simulation, total 210 and 217 clusters were obtained upon clustering analysis of the trajectories
with or without Withanone, respectively. The electrostatic component of the binding free energies of
ACE2-RBD complex were estimated on the last 100 ps representative trajectories of the cluster (11
trajectories, without the ligand; 10 trajectories, with the ligand) using DelPhi v8.4.3 [48], to assess the
hypothesis that the proposed phyto-compound weakens the interactions between ACE2 and RBD. The
AAG of the complex with the ligand (7.27 kcal/mol) was decreased by 4.3 kcal/mol as compared to that
without the ligand (11.55 kcal/mol), when estimated in the final trajectories, and it was decreased by

0.6 kcal/mol when estimated on the last 100 ps representative trajectories (8.89 and 8.33 kcal/mol in the
trajectories without or with the ligand, respectively) (Figure. 7). This indicates that the binding of
Withanone at the interface of the ACE2 and RBD weakens their interactions.

Discussion

The spike protein (S) of SARS-coronavirus (SARS-CoV) interacts to its cellular receptor, Angiotensin
Converting Enzyme 2 (ACE2) via Receptor Binding Motif (RBM; aa 424-494) present in receptor binding
domain (RBD). 18 residues of the receptor make contact with 14 residues of the viral spike protein, mainly
by hydrophilic interactions. Tyrosine residues are present at this interface, in RBM [23]. Besides these,
Prabakaran et al. [18] also noted the importance of tyrosines while studying the binding interface of the
RBD and neutralizing antibody. This tyrosine was also noted by Prabakaran et al. [18] as an important
residue in making interaction to neutralizing antibody. We also observed important role of tyrosines; the
phytocompound, ‘Withanon€, was well-bound at the ACE2-RBD interface by two H-bonds (Tyr16 of ACE2
and Tyr175 of RBD to Withanone) (Table 1, Fig. 2), and upon mutation of RBD Tyr175 to Ala, the
phytocompound preferred different location.

MD simulation of ACE2-RBD complex was performed using NAMD, with or without the ligand molecule
(Withanone). The Withanone moved slightly towards the centre of the binding interfacewith a formation
of three new H-bonds (ACE2 N15, ACE2 Q19 and RBD R78 to Withanone) (Figs. 3A and 3B). Further, we
explored ionic interactions at the binding interface of the modeled ACE2 receptor and RBD of 2019-
nCoV.Two inter-chain (binding interface) salt bridge interactions were detected: Glu12 OE2- Lys87 NZ
(2.75 A) (aa 404) and Glu20 OE2 - Arg73 NZ (2.67 A) (aa 390) (Fig. 4A). These salt bridge interactions
play an important role in stabilization of the ACE2 receptor and RBD complex. Val residue (aa 404) in
SARS-CoV is substituted by Lys in COVID-19 S protein RBD, and Lys (aa390) is substituted by Arg. Overall,
the increase in salt bridge number in the receptor-RBD binding interface makes the complex more
stabilized in COVID-19 as compared to SARS-CoV (Fig. 4A). Percent occupancies of the salt bridges were
decreased in the simulation trajectories with the Withanone, as compared to the trajectories without the
Withanone. Overall, there were observed effects of the ligand incorporation in these salt bridges
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occupancies. Longer simulation is needed to observe whether these salt bridges are completely broken by
incorporating the Withanone.

Protein surfaces have many hydrophilic residues, and salt bridges present in the surface play an
important role in protein-protein association or binding [52]. Hence the protein interface (binding
interface) is generally more hydrophilic than the protein interiors. Xu et al. [53] showed that electrostatic
interactions play an important role in protein binding than in folding. Hence the interfacial salt bridges,
which are the major contributors to the electrostatic interactions between proteins, get central role in
binding events. Generally, the structures of the proteins do not change significantly upon complex
formation, but some conformational rearrangements are observed, and most of these are in side chain
movements [54]. Geometrical complementarity and stability in energetic are the two factors to occur for
protein binding, and the hydrophobic effect, hydrogen bonds and salt bridges are the key players in
energetic. A salt bridge can provide favorable free energy to the binding [53], on the other hand, an
isolated charge without forming a salt bridge, when buried in the protein interface, could substantially
destabilize binding, due to the to the desolvation cost. We calculated energetics of the two salt bridges
(E12-K87 and E20-R73) at the interface of ACE2 and RBD. Both the salt bridges were stabilizing initially
(-1.36 kcal/mol and - 6.15 kcal/mol, respectively), but turned into destabilizing (salt bridge E12-K87,
1.53 kcal/mol) or less stabilizing (salt bridge E20-R73, -2.46 kcal/mol) as seen in last frame of the MD
simulation (Fig. 5). These results clearly indicated that the incorporation of the Withanone had
pronounced effect on the salt bridges and on protein complex stability.

In the current work, we have presented the results of a MD simulation of the ACE2-RBD complex with and
without Withanone. The data shows the local RMSD changes, a measure of flexibility, of non-H atoms of
the binding interface residues of RBD (aa 424 to 494) (Fig. 6). RMSD was decreased in the simulation of
Withanone plus case, in the region of aa424 to 494. It may be due to the involvement of these contact
residues in electrostatic interactions with the ligand.

The electrostatic component of the binding free energies of ACE2-RBD complex were estimated on 11
trajectories (simulated without the ligand) and 10 trajectories (simulated with the ligand), to assess the
hypothesis that the proposed phytocompound weakens the interactions between ACE2 and RBD. AAG,,
was decreased by 0.6 kcal/mol in the simulation trajectories with the Withanone, compared to the
trajectories simulated without the Withanone (8.89 and 8.33 kcal/mol in the trajectories without or with
the ligand, respectively) (Figure. 7). Whereas, the AAG,, of the complex with the ligand (7.27 kcal/mol)
was decreased by 4.3 kcal/mol as compared to that without the ligand (11.55 kcal/mol). Such a decrease
in electrostatic component of binding free energy clearly indicates that the binding of Withanone at the
interface of the ACE2 and RBD weakens their interactions.

Conclusions

We have developed a strategy that may be utilized to block or weaken the viral infections like COVID-19,
via disruption of the electrostatic interaction of the interacting viral protein with the ACE2 receptor. In this
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regard, phytochemicals present in Indian medicinal herb Withania somnifera(Ashwagandha) were
screened by molecular docking, and simulated with the selected phytocompound, Withanone. Protein-
protein interactions were studied by calculating the electrostatic component of binding free energy
between the viral RBD and its ACE2 receptor in the presence or absence of Withanone. Salt bridges’
occupancies also decreased in the trajectories simulated with the Withanone, along with the concurrent
decrease in the electrostatic components of binding free energy. We also observed the stabilizing salt
bridges turning into destabilizing, at the end of simulation. This study highlights the importance of
natural origin phytochemicals in controlling COVID-19 entry into host cells, and provides an attractive and
alternative means for the management of COVID-19 infection. W. somnifera could well be the first choice
of medicinal herbs in these directions, to control the COVID-19 infectivity.
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Figure 1

The possible mechanisms of therapeutic agents to block the entry of COVID-19 in to host cells. Three
proposed model has been described where COVID-19 infection can be abrogated by blocking the
interaction of spike protein and ACE-2. In the first model, the RBD of COVID-19 spike protein would be
managed, thereby blocking ACE2 and saturating available sites. Secondly, an antibody or single-chain
antibody fragment (ScFv) could be directed against ACE-2 to accomplish the same. In the third model,
coronavirus virions could be directly target using the ACE-2 extracellular domain as a template to bind to
virus surface protein. An Fc domain fused to ACE-2 would facilitate prolonged circulation of the biologic
(ACE2-Fc). Our proposed strategy is to block or weaken the interaction between RBD and ACE2 by using
phytocompounds of natural origin.
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ACE2
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Figure 2

Binding poses of withanolides (from W. somnifera) in ACE2-RBD complex. Withanone interactions at the
interface of ACE2-RBD complex has been zoomed into. Withanone is well established in the pocket by
two H-bonds - Y16 of ACE2, and Y175 (aa491) of RBD, in addition to alkyl interactions.
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(A). Comparison of Withanone positions before and after MD simulation in ACE2-RBD complex. RMSD of
all atoms is 5.08 A. (B). Withanone' interactions within ACE2-RBD complex as seen in the final trajectory.
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Figure 4

(A). Salt bridge interactions at the binding interface of ACE2-RBD. Val87 (aa 404) in RBD of SARS-CoV is
substituted by Lys in nCov, thus, introducing one extra salt bridge at the binding interface. Glu20 - Arg73
(aa 390) is preserved in both the SARS-CoV and nCoV, but there is Lys at aa 390 instead of Arg. (B).
Percent occupancy of the salt bridges modulated by Withanone incorporation as seen by analysis of the
simulation trajectories.
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Figure 5

Electrostatic contribution upon salt bridge formation of the two salt bridges (E12-K87 and E20-R73)
calculated in the initial and the final frames of simulations. E12-K87 salt bridge was energetically
favorable in the first frame; gradually it got destabilized as seen in final frame. Similarly, E20-R73 salt
bridge was more favorable in the initial frame, and then its extent decreased as seen in the final frame.
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Figure 6

RMSD changes of non-H atoms of the aa424 to 494 of RBD in the ACE2-RBD complex in 2000 ps time, in
the presence and absence of Withanone.
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Figure 7

Comparison of electrostatic component of binding free energies in the ACE2-RBD complexes with or
without the Withanone.
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