
Appendices

A Supplementary proofs

A.1 Laplace approximation

Let us explain the Laplace approximation. Denote that

fθ(µi) ≜
ni!

j=1

P(θ|Xij, yij)φ(µi; τ)

and one can see the log term inside the log-likelihood function that

"

µi

fθ(µi)dµi =

"

µi

elog fθ(µi)dµi ≜
"

µi

eg(µi,θ)dµi (1)

Applying a Taylor expansion on g(µi, θ), and we choose µ̂i that maximized g(µi, θ). See
that µ̂i satisfies gµ(µ̂i, θ) = 0 and gµµ(µ̂i, θ) < 0, we have

g(µi, θ) = g(µ̂i, θ)−
1

2
(µ̂i − µi)

2 (−gµµ(µ̂i, θ)) + o(µ2
i )

With Laplace approximation, main text Eq.(2) can approximate as

"

µi

eg(µi,θ)dµi ≈ exp{g(µ̂i, θ)}
#
2π ·− 1

gµµ(µ̂i, θ)

$ni/2

A.2 Gauss Hermite approximation

The Hermite polynomial Hk(x) and weight hk are defined as followings,

Hk(x) ≜ (−1)kex
2 dk

dxk
e−x2

hk ≜
2k−1k!

√
π

k2 [Hk−1(xk)]
2

where xk are the roots of Hk(x) = 0.
Thus, with the Gauss-Hermite approximation, main text Eq.(2) can be approximated by

"

µi

eg(µi)dµi ≈
√
2πω̂

K%

k=1

hk exp
&
g(µ̂i +

√
2πω̂xk) + x2

k

'
, ω̂ =

(

− 1

g′′(µ̂i)
(2)
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notice that when K = 1, it is a Laplace approximation.
Our final objective function for GH is

Li = Li(β, µi;Xi·, yi·) =
√
2πω̂

K%

k=1

hk exp
&
g(µ̂i +

√
2πω̂xk;β) + x2

k

'

Denote that

fk = hk exp
&
g(µ̂i +

√
2πω̂xk;β) + x2

k

'

fkβ = fkgβ(µ̂i)

fkµ = fkgµ(µ̂i)

fkω = fkgµ(µ̂i)
√
2πxk

A.3 Optimization

A logistic regression model with random effects is developed under the form of

log{L(θ)} =
m%

i=1

log

)"

µi

*
ni!

j=1

P(θ|Xij, yij)

+
φ(µi; τ)dµi

,

and the distribution P follows density of logit and φ is a univariate normal, see that

ni!

j=1

P(θ|Xij, yij) =

ni!

j=1

π
yij
ij (1− πij)

(1−yij)

φ(µi; θ) =
1√
2πτ

exp(−µ2
i /2τ

2)

where πij is a Sigmoid function of µi and defined as

πij =
exp(X⊤

ijβ + µi)

1 + exp(X⊤
ijβ + µi)

with the Gauss-Hermite approximation set up, the objective function can be approximated
as

√
2πω̂

K%

k=1

hk exp
&
g(µ̂i +

√
2πω̂xk;β) + x2

k

'

where

g(µi;β) = log

ni!

j=1

P(θ|Xij, yij)φ(µi; τ)

=

ni%

j=1

[logP(θ|Xij, yij)] + log φ(µi; τ)

=

ni%

j=1

[yij log πij + (1− yij) log(1− πij)] + log φ(µi; τ)
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A.3.1 Step 1: Maximize g(µi)

To maximize g(µi), we need to get the derivatives

∂g

∂µi

=

ni%

j=1

#
yij

1

πij

∂πij

∂µi

− (1− yij)
1

1− πij

∂πij

∂µi

$
+

1

φ

∂φ

∂µi

=

ni%

j=1

(yij − πij)−
µi

τ 2

where
∂φ

∂µi

= (
√
2πτ)−1 exp(−µ2

i /2τ
2) · (−µi/τ

2)

and

∂2g

∂µ2
i

= −
ni%

j=1

∂πij

∂µi

− 1

τ 2
< 0

where
∂πij

∂µi

=
exp

-
X⊤

ijβ + µi

.
/
1 + exp

-
X⊤

ijβ + µi

.02

see that it is a convex problem, using newton’s method, we can derive µ̂i = argmaxµi
g(µi)

that is global optimum.

A.3.2 Step 2: Maximization preparation of β in LOCAL

See the derivative
∂πij

∂β
=

Xij exp
-
X⊤

ijβ + µi

.
/
1 + exp

-
X⊤

ijβ + µi

.02

and denote fk(µ̂i;β) := hk exp
1
g(µ̂i +

√
2πω̂xk;β) + x2

k

2
, then

∂Li

∂β
=

√
2πω̂

K%

k=1

)
fk(µ̂i;β)hk

∂g(µi;β)

∂β

3333
µi=µ̂i+

√
2πω̂xk

,
(3)

=
√
2πω̂

K%

k=1

)
fk(µ̂i;β)hk

ni%

j=1

(Xijyij −Xijπij)

,
(4)

and the second derivative

∂2Li

∂β2
=

√
2πω̂

K%

k=1

4
5

6fk(µ̂i;β)h
2
k

ni%

j=1

(Xijyij −Xijπij)

*
ni%

j=1

(Xijyij −Xijπij)

+⊤

(5)

+ fk(µ̂i;β)hk

ni%

j=1

7
−Xij

∂πij

∂β

8,
(6)

Notice that µi in (3), (4) and (5) are replaced by µ̂i +
√
2πω̂xk where µ̂i is the maximand of

function g(·) with respect to µi.
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A.3.3 Step 3: Maximization of β in GLOBAL

Reminds that L =
9m

i=1 logLi, then another Newton’s method is applied in global log-
likelihood function,

∂L
∂β

=
m%

i=1

L′
i(β)

Li(β)

∂2L
∂β2

=
m%

i=1

*
L′′

i (β)

Li(β)
−

7
L′

i(β)

Li(β)

82
+

Now, focus on β(n+1) = β(n) − L′(β(n))

L′′(β(n))
, deduce that

L′(β(n))

L′′(β(n))
=

9m
i=1

L′
i(β)

Li(β)

9m
i=1

L′′
i (β)

Li(β)
−

9m
i=1

7
L′

i(β)

Li(β)

82

A.4 Synthetic data generation

There are 8 settings of data sets generated from the process, and each setting can be summa-
rized in main text Tab.1. We set true sensitivity and specificity as sen = 0.6 and sp = 0.9
and

β = (−1.5, 0.1,−0.5,−0.3, 0.4,−0.2,−0.25, 0.35,−0.1, 0.5)

Also define X1 = 1N as the intercept, and X2, X3, X4 are generated with Bernoulli distribu-
tion with probability p = 0.1, 0.3, 0.5 respectively.

f(Xi; p) =

:
p if Xi = 1
q = 1− p if Xi = 0

(7)

then X5, X6, X7 are generated from normal distributions N (0, 0.5),N (0, 1),N (0, 1.5) respec-
tively. Lastly, X8, X9, X10 are generate from uniform distributions U(−0.5, 0.5), U(−0.7, 0.7),
U(−1, 1) respectively. We also generate the random effect µ using trivariate normal distri-
bution

N3

;

<

;

<
0
0
0

=

> ,Σ

=

> , Σ = I3 (8)

and with the settings, we can deduce the log-odds ratio with following formula

log(π) = f(Xβ + µ+ ε) (9)

where f is the sigmoid function defined as

f(x) =
ex

1 + ex
(10)

Now, we generate the outcomes y for each sample with Bernoulli distribution where
the log-odds ratio served as the probability p. Also, the sensitivity and specificity can be
calculated with Binomial distribution with probability sen+ µ2 and sp+ µ3.
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B Supplementary tables

Supplementary Table 1. The performance of centralized GLMM on R package with a
significance threshold α = 0.05. TNR refers to the True negative rate.

Precision Recall TNR Accuracy
X1 0.7162 1.0000 0.0000 0.7162
X2 0.1000 0.9231 0.2000 0.2635
X3 0.5917 0.9726 0.3467 0.6554
X4 0.4400 0.9649 0.2308 0.5135
X5 0.5703 0.9865 0.2568 0.6216
X6 0.4797 1.0000 0.0000 0.4797
X7 0.7162 1.0000 0.0000 0.7162
X8 0.3167 0.9268 0.2336 0.4257
X9 0.1417 0.8500 0.1953 0.2838

Supplementary Table 2. The performance of distributed GLMM with Laplace transfor-
mation with a significance threshold α = 0.05. TNR refers to the True negative rate.

Precision Recall TNR Accuracy
X1 0.7063 1.0000 0.0000 0.7063
X2 0.0833 1.0000 0.2667 0.3125
X3 0.5750 0.9857 0.4333 0.6750
X4 0.4609 1.0000 0.3168 0.5688
X5 0.5303 0.9859 0.3034 0.6063
X6 0.4375 1.0000 0.0000 0.4375
X7 0.6563 1.0000 0.0000 0.6563
X8 0.3000 1.0000 0.3226 0.4750
X9 0.1500 1.0000 0.2817 0.3625
X10 0.5316 1.0000 0.0263 0.5375
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Supplementary Table 3. The performance of distributed GLMM with 2-degree Gauss-
Hermite transformation with significance threshold α = 0.05. TNR refers to True negative
rate.

Precision Recall TNR Accuracy
X1 0.5455 1.0000 0.0000 0.5455
X2 0.3158 1.0000 0.3390 0.4935
X3 0.6404 1.0000 0.4938 0.7338
X4 0.6066 1.0000 0.4000 0.6883
X5 0.5952 1.0000 0.3544 0.6688
X6 0.5260 1.0000 0.0000 0.5260
X7 0.6948 1.0000 0.0000 0.6948
X8 0.5000 0.9828 0.4063 0.6234
X9 0.4386 1.0000 0.3846 0.5844
X10 0.5658 1.0000 0.0294 0.5714

Supplementary Table 4. The result of centralized GLMM in R package

Coef Std.Err z P-value [0.025 0.975]
(Intercept) -5.882 0.133 -44.294 0.000 -6.142 -5.621

age 0.043 0.001 30.918 0.000 0.040 0.045
Gen M 0.370 0.033 11.052 0.000 0.304 0.435

race Asian 0.365 0.122 2.995 0.003 0.126 0.604
race Caucasian 0.157 0.049 3.185 0.001 0.061 0.254

race Other.Unknown 0.385 0.070 5.530 0.000 0.249 0.521
ethnicity Not.Hispanic -0.181 0.060 -3.030 0.002 -0.299 -0.064

ethnicity Unknown -0.088 0.069 -1.274 0.203 -0.224 0.048
COPD Y 0.096 0.038 2.556 0.011 0.022 0.169
CHF Y 0.153 0.040 3.796 0.000 0.074 0.232
CKD Y 0.029 0.044 0.674 0.500 -0.056 0.115
MS Y -0.090 0.124 -0.725 0.469 -0.332 0.153
RA Y 0.144 0.070 2.048 0.041 0.006 0.281
LU Y -0.001 0.204 -0.004 0.997 -0.400 0.398

HTN Y 0.113 0.053 2.121 0.034 0.009 0.217
IHD Y 0.334 0.037 9.077 0.000 0.262 0.406

DIAB Y 0.149 0.035 4.214 0.000 0.080 0.218
ASTH Y -0.170 0.054 -3.143 0.002 -0.276 -0.064
Obese Y 0.211 0.043 4.893 0.000 0.126 0.295
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Supplementary Table 5. The result of federated GLMM with GH method

Coef Std.Err z P-value [0.025 0.975]
(Intercept) -3.476 0.066 -53.064 0.000 -3.605 -3.348

age 0.043 0.001 55.794 0.000 0.041 0.044
Gen M 0.370 0.021 17.847 0.000 0.329 0.410

race Asian 0.364 0.075 4.847 0.000 0.217 0.511
race Caucasian 0.156 0.028 5.538 0.000 0.101 0.211

race Other.Unknown 0.383 0.041 9.365 0.000 0.303 0.463
ethnicity Not.Hispanic -0.178 0.036 -4.936 0.000 -0.249 -0.107

ethnicity Unknown -0.091 0.042 -2.154 0.031 -0.174 -0.008
COPD Y 0.096 0.026 3.700 0.000 0.045 0.146
CHF Y 0.154 0.029 5.205 0.000 0.096 0.211
CKD Y 0.028 0.031 0.901 0.367 -0.033 0.090
MS Y -0.093 0.078 -1.205 0.228 -0.245 0.059
RA Y 0.144 0.049 2.959 0.003 0.048 0.239
LU Y 0.001 0.119 0.008 0.994 -0.233 0.235

HTN Y 0.113 0.028 3.988 0.000 0.057 0.169
IHD Y 0.334 0.024 14.162 0.000 0.288 0.381

DIAB Y 0.149 0.022 6.677 0.000 0.105 0.192
ASTH Y -0.169 0.032 -5.242 0.000 -0.233 -0.106
Obese Y 0.211 0.028 7.483 0.000 0.156 0.267

Supplementary Table 6. The result of federated GLMM with LA method

Coef Std.Err z P-value [0.025 0.975]
(Intercept) -3.162 0.064 -49.437 0.000 -3.288 -3.037

age 0.041 0.001 54.895 0.000 0.040 0.043
Gen M 0.359 0.021 17.374 0.000 0.318 0.399

race Asian 0.315 0.075 4.214 0.000 0.168 0.461
race Caucasian 0.130 0.028 4.675 0.000 0.076 0.185

race Other.Unknown 0.330 0.041 8.138 0.000 0.251 0.410
ethnicity Not.Hispanic -0.211 0.036 -5.886 0.000 -0.281 -0.140

ethnicity Unknown -0.114 0.042 -2.707 0.007 -0.197 -0.031
COPD Y 0.098 0.026 3.750 0.000 0.047 0.149
CHF Y 0.156 0.030 5.234 0.000 0.098 0.215
CKD Y 0.029 0.032 0.928 0.353 -0.033 0.092
MS Y -0.092 0.077 -1.192 0.233 -0.244 0.059
RA Y 0.138 0.049 2.829 0.005 0.042 0.234
LU Y -0.007 0.118 -0.061 0.952 -0.239 0.225

HTN Y 0.104 0.028 3.722 0.000 0.049 0.159
IHD Y 0.337 0.024 14.208 0.000 0.290 0.383

DIAB Y 0.144 0.022 6.461 0.000 0.100 0.187
ASTH Y -0.175 0.032 -5.445 0.000 -0.238 -0.112
Obese Y 0.182 0.028 6.450 0.000 0.127 0.237
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