Extended Data Figures
[image: ]Extended Data Fig. 1 | Gene set enrichment analysis (GSEA) identified cancer hallmarks and KEGG pathways enriched for sensitivity and resistance. a, A clustergram of normalized enrichment scores (NES) computed using cancer hallmarks as supervised gene sets where NES represent the enrichment of a cancer hallmark by overexpression of genes implicated in resistance (red) or under-expression of genes implicated in sensitivity (blue) using GSEA. b, A clustergram that uses KEGG Pathways as the supervised gene sets to carry out GSEA. c - e, All pairwise correlations (R2) of z-normalized gene expression of any two genes within each cancer hallmark, KEGG pathway, and co-expressing gene cluster are plotted with the ranked percentile of each gene set on x-axis and their respective R2 values on the y-axis, where the red line indicates the median correlation within each gene set and the blue bars signify the interquartile range of R2. f, A plot showing median pairwise correlations within each gene set as a function of ranked (by median correlation) percentile of gene sets for each of cancer hallmarks (red), KEGG pathways (blue), unsupervised clusters (green).
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Extended Data Fig. 2 | Overview of the Biomarker Discovery Tool. The computational pipeline begins with a BM biopsy from an MM patient, where the specimen is sorted for CD138+ cells. One of these aliquots is sent to bulk RNA sequencing and the other is sent for ex vivo drug sensitivity characterization using the EMMA framework. Bulk RNA sequencing data from 844 MM patients is used to construct an MM transcriptomic map, where z-normalized gene expression of 16,738 genes is subjected to dimensionality reduction using tSNE to reduce the patient-space from 844 to two-dimensions. The genes on the 2D transcriptomic map are subjected fuzzy C-means clustering to identify clusters of co-expressing genes. Each gene cluster is passed through GSEA, along with ex vivo drug sensitivity data as a phenotypic variable to determine if the cluster is enriched for resistance (shown in red), or sensitivity (shown in blue) for bortezomib, for example. The genes from gene clusters enriched for resistance (or sensitivity) are concatenated into a long list of genes that are again passed through GSEA to identify KEGG pathways and Cancer Hallmarks that are enriched for each of these conditions. These enriched pathways/mechanisms are the output of the computational pipeline implicating mechanisms involved in resistance to a certain therapy. 








Extended Data Tables
Extended Data Table 1. Examples of cytogenetic abnormalities and mutations implicated in resistance and sensitivity to various drugs
	Description
	t(11;14)  MM patients are sensitive to Venetoclax1,2
	MCL1 locus is present in 1q21 and amplification of 1q21 leads to overexpression of MCL1, which in turn leads to resistance to Venetoclax3
	BHLHE41 is a HIF-presenting factor and promotes proteasomal degradation of HIFs4.
	CSK1B overexpression causes drug resistance by upregulating MEK and Stat35.
	Reduced EP300 expression leads to doxorubicin resistance in bladder cancer6,7.

	Study Type
	Clinical/ Pre-clinical
	Pre-clinical
	Pre-clinical
	Pre-clinical
	Pre-clinical

	Disease
	MM
	MM
	TNBC
	MM
	Bladder Cancer

	Abnormality
	t(11;14)
	Amp/dup1q21
	BHLHE41
	Amp/dup1q21
	EP300

	Drug
	VEN
	VEN
	BTZ
	TRAM
	DOX


Extended Data Table 2. Examples of transcription factors implicated in resistance and sensitivity to various drugs
	
Description
	PLK1 is a key cell cycle regulator that promotes cell proliferation, which is regulated by FOXM1 and phosphorylates FOXM1 as part of a positive feedback loop8,9.
	Silencing FOXM1 increased MTOR protein levels in gastric cancer cells10 and overexpression of FOXM1 decreased MTOR signaling activity through phosphorylation in castration resistant prostate cancer cells11.
	Panobinostat decreased FOXM1 expression and induced cell cycle arrest in gastric cancer12
	Higher FOXM1 expression leads to activation of wnt/-catenin pathway, which justifies the association with antihelminitic pyrvinium that blocks wnt/-catenin13,14.
	Activation of PI3K-AKT signaling pathway regulates FOXM1 expression, so inhibiting AKT signaling reduces FOXM1 expression and leads to cell cycle arrest15,16.
	FOXM1 knockdown decreased BCL2 mRNA and protein levels, and suppressed BCL2L1 expression leading to increased cellular dependency on BCL2, and sensitivity to VEN17,18
	CDK7 inhibitor resistance is associated with TGF-b/activin signaling and FOXM1 is found to be a critical driver of TGF-b-induced endothelial to mesenchymal transition19,20
	RELA is an NFB subunit and NFB activity is associated with proteasome inhibitor resistance in MM. The mechanism is likely regulated through cIAP2 gene21,22.
	[bookmark: _Hlk98862323]BACH1 is exported from the nucleus by XPO1, and it recruits PRC2 to promote H3K27me3 modification23,24
	Increased levels of FOXM1 diminishes the sensitivity of MM cells to MEL and DOX25.
	High FOXM1 expression could be associated with development of resistance to lenalidomide and cross resistance to pomalidomide in RRMM26.
	EwS-specific oncogenic transcription factor EWSR1-FLI1 hijacks PRC1.PLK1 is a major upstream interacting partner of PRC1. PLK1 inhibition that can repress even chemo resistant EwS cells by triggering mitotic catastrophe27.
	Hyper-activation of the Aurora kinase A (AKA)-FOXM1 axis contribute to evade death in Imatinib(IM)-resistant BCR-ABL1+ cells.  IM-resistant patients displaying over-expression and hyper-activation of AKA may thus benefit from ponatinib treatment28.

	Phenotype
	Sensitive
	Sensitive
	Sensitive
	Sensitive
	Sensitive
	Resistance
	Resistance
	Resistance
	Resistance
	Resistance
	Resistance
	Sensitivity
	Sensitivity

	Disease
	Oesophaegal Adenocarcinoma
	Gastric & Prostate Cancers 
	Gastric Cancer & Glioma
	MM and Glioma
	Colorectal Cancer
	AML
	Breast Cancer
	MM
	Pan-cancer
	MM
	MM
	Ewing Sarcoma
	CML

	Transcription Factor
	FOXM1
	FOXM1
	FOXM1
	FOXM1
	FOXM1
	FOXM1
	FOXM1
	RELA
	BACH1
	FOXM1
	FOXM1
	FLI1
	FOXM1

	Drug
	VOLA
	INK128
	PANO
	PYR
	MK2206
	VEN
	THZ1
	BTZ, CFZ, IXA
	SELI
	DOX, MEL

	LEN, POM
	BI2536
	PONA


Extended Data Table 3. Comparison of Selinexor response between patients treated with an anti-CD38 monoclonal antibody in an immediate prior line versus those who didn’t in STOMP and XPORT-MM-028 clinical trials.
	STOMP Study of Selinexor and Combinations in MM
	
	Best overall Response
	PFS

	
	Patients
	VGPR or Better
n (%)
	ORR
n (%)
	CBR
n (%)
	Events
	Median
(95% CI)

	Anti-CD38 mAb In Immediate Prior Line
	28
	9 (32.1)
	17 (60.7)
	19 (67.9)
	8
	15.0 (8.7, NE)

	Anti-CD38 mAb  Not in Immediate Prior Line
	16
	2 (12.5)
	10 (62.5)
	14 (87.5)
	8
	8.9 (4.9, NE)

	Patients with MM treated with either XPd or XKd (ongoing clinical trial, most recent update on 14th July 2021)

	

	XPORT-028 Selinexor and Bortezomib Plus Low-dose Dexamethasone in Triple Class refractory MM
	
	Best overall Response
	PFS

	
	Patients
	VGPR or Better
n (%)
	ORR
n (%)
	CBR
n (%)
	Events
	Median
(95% CI)

	Anti-CD38 mAb In Immediate Prior Line
	15
	0
	7 (46.7)
	9 (60.0)
	1
	NE (7.0, NE)

	Anti-CD38 mAb  Not in Immediate Prior Line
	12
	1 (8.3)
	1 (8.3)
	5 (41.7)
	6
	3.5 (3.4, NE)

	Patients with MM treated with XVd (ongoing clinical trial, most recent update on 1st June 2021)





Extended Data Table 4.  Organotypic high-throughput ex vivo drug sensitivity screening data
	[bookmark: _Hlk107407982]Category
	Parameter
	Description

	Assay
	Type of assay
	Organotypic high-throughput ex vivo drug sensitivity screening using brightfield microscopy

	
	Target
	Patient-derived primary multiple myeloma cells

	
	Primary measurement
	Cell viability (percent live cells) measured by the persistent membrane motion of live MM cells non-destructively estimated by digital image analysis of brightfield images taken once every 30 minutes for upto 6 days.

	
	Key reagents
	None

	
	Assay protocol
	https://www.jove.com/t/53070/an-organotypic-high-throughput-system-for-characterization-drug

	
	Additional comments
	None

	Library
	Library size
	37 agents

	
	Library composition
	Standard-of-care and experimental agents used to treat multiple myeloma and other cancers in humans, which includes proteasome inhibitors, immunomodulatory drugs, monoclonal antibodies, DNA damaging agents, and kinase inhibitors. A complete list of drug class description is provided in Extended Data Table 5.

	
	Source
	SelleckChem library of compounds

	
	Additional comments
	None

	Screen
	Format
	Each patient specimen is treated with 31 drugs at five concentrations each in two replicates in a 384-well plate

	
	Concentration(s) tested
	Five serially diluted concentrations at a ratio of 1:3 starting from the maximum concentration. A complete list of maximum concentrations for each agent is provided in Extended Data Table 5.

	
	Plate controls
	Internal positive and negative controls are included on each plate. MM1.S (MM human cell line) cells are used in lieu of patient-derived primary MM cells as positive control for each agent. Untreated patient-derived cells are seeded in 10 wells with DMSO as negative control.

	
	Reagent/ compound dispensing system
	Biotek Precision 

	
	Detection instrument and software
	EVOS Auto FL 2.0

	
	Assay validation/QC
	In 90 patients, we have tested the panel of agents at same concentrations in two different plates. We correlated the area under the curve (AUC) between the technical replicates, which yielded a Pearson’s correlation of 0.905 and linear regression coefficient of 0.901; regardless of the agent. Quality control is done by visually inspecting time lapse videos of live imaging in each well, followed by comparing the estimates measured in two replicates for each drug and concentration to ensure that the replicates yield similar measurements. Finally, for each drug the dose-response curves are assessed to ensure a dose-dependent response consistent with literature and historical studies.

	
	Correction factors
	As part of the aforementioned QC process, if certain wells were identified to have technical and experimental artifacts such as debris, excessive condensation, and inadvertent displacement of the plate these wells would be excluded from AUC estimations after confirming the cause.

	
	Normalization
	Response to each agent is measured as the total area occupied by live MM cells across time. Viability estimates at each time point of a given well are normalized by the estimate at t=0 for all wells. Further, wells treated with drugs are normalized by the untreated control response.

	
	Additional comments
	None

	Post-HTS analysis
	Hit criteria
	Not applicable. The organotypic high-throughput ex vivo drug sensitivity screening assay employed here is used to estimate patient-drug specific sensitivities using patient-derived MM cells co-cultured in an ex vivo reconstruction of the tumor microenvironment as described in the methods section. Unlike HTS assays with small molecules, which have a high percentage of false positives (hence the need for post-HTS analysis), all the compounds tested in this study have predicted mechanisms of action (targets) and are expected to have an effect (cell death) in the cells tested. Our objective thus is not to seek new hits (targets) but to identify the molecular characteristics that associate with resistance or sensitivity to these known The objective of the assay is not to target a specific receptor or ligand, but to quantify the patient-specific ex vivo response to various clinical and experimental agents. Thecompounds. The accuracy of estimation of this assay is discussed in the literature29-38.

	
	Hit rate
	

	
	Additional assay(s)
	

	
	Confirmation of hit purity and structure
	

	
	Additional comments
	


 

Extended Data Table 5.  Appendix of therapeutic agents used in the ex vivo assay. All drugs were tested in five concentrations in three-fold serial dilution.
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image3.emf
DrugCode DrugName

Maximum 

Concentration (M)

Drug Class Targets or Action of Drug

BTZ Bortezomib 5.00E-08 Proteasome Inhibitor 20S Proteasome Inhibitor

CFZ Carfilzomib 5.00E-08 Proteasome Inhibitor Irreversible Proteasome Inhibitor

MEL Melphalan 5.00E-05 DNA Damaging Agent Phenylalanine Derivative of Nitrogen Mustard 

PANO Panobinostat 5.00E-08 HDAC Inhibitor Broad-spectrum HDAC Inhibitor

POM Pomalidomide 1.00E-05 Immunomodulatory Agent Inhibitor of LPS-induced TNF-Alpha Release and E3 Ligase protein Cereblon (CRBN)

DEX Dexamethasone 1.00E-05 Glucocorticosteroid Glucocorticoid Steroid and Interleukin Receptor Modulator

LEN Lenalidomide 1.00E-05 Immunomodulatory Agent Inhibitor of TNF-Alpha Secretion and E3 Ligase protein Cereblon (CRBN)

VEN Venetoclax 1.00E-05 BCL-2 Inhibitor Selective BCL-2 Inhibitor

IXA Ixazomib 5.00E-08 Proteasome Inhibitor Inhibitor Chymotripsin-like Protelytic (b5) Site of the 20S Proteasome.

SELI Selinexor 1.00E-05 Nuclear Export Inhibitor Selective CRM1 Inhibitor

DOX Doxorubicin 5.00E-06 DNA Damaging Agent DNA Toposiomerase II Inhibitor

DARA Daratumumab 7.00E-06 Monoclonal Antibody Recombinant monoclonal antibody to CD38

VOLA Volasertib 1.00E-05 Kinase Inhibitor Selective PLK1 Inhibitor

ELE Elevenostat 1.00E-07 HDAC Inhibitor Selective HDAC11 Inhibitor

INK128 INK-128 1.00E-05 Kinase Inhibitor Selective mTOR(TORC-1/-2) inhibitor

ELO Elotuzumab 2.33E-06 Monoclonal Antibody anti-SLAMF7 Monoclonal Antibody

CPD22 CPD22 1.00E-05 Kinase Inhibitor ILK Inhibitor

DEFA Defactinib 2.00E-05 Kinase Inhibitor FAK Inhibitor

DINA Dinaciclib 1.00E-07 Kinase Inhibitor CDK2, CDK5, CDK1, and CDK9 Inhibitor

BI2536 BI2536 1.00E-05 Kinase Inhibitor PLK1, PLK2, PLK3 Inhibitor

THZ1 THZ1 1.00E-05 Kinase Inhibitor Covalent CDK7 Inhibitor

SILMI Silmitasertib 1.00E-05 Kinase Inhibitor Selective Inhibitor of CK2 (Casein Kinase 2)

JNK-IN-8 JNK-IN-8 1.00E-05 Kinase Inhibitor JNK1, JNK2, JNK3 Inhibitor

MK2206 MK2206 1.00E-05 Kinase Inhibitor Highly Selective AKT1, AKT2, AKT3 Inhibitor

NU-7441 NU-7441 1.00E-05 Kinase Inhibitor Highly Selective DNA-PK Inhibitor

R406 R406 1.00E-05 Kinase Inhibitor SYK Inhibitor

TAI-1 TAI-1 1.00E-05 Kinase Inhibitor Specific HEC1 Inhibitor

39621 39621 1.00E-05 Kinase Inhibitor MARK/PAR-1 Inhibitor

PALB Palbociclib 1.00E-05 Kinase Inhibitor CDK4 and CDK6 Inhibitor

RUXO Ruxolitinib 1.00E-05 Kinase Inhibitor JAK1 and JAK2 Inhibitor

CRIZ Crizotinib 1.00E-05 Kinase Inhibitor c-Met and ALK Inhibitor

PONA Ponatinib 1.00E-05 Kinase Inhibitor ABL, PDGFR-Alpha, VEGFR2, FGFR1 and SRC Inhibitor

PYR Pyrvinium 1.00E-05 Antihelmintic Agent Antiheminitic Effective for Pinworms

RICO Ricolinostat 1.00E-05 Kinase Inhibitor Selective HDAC6 Inhibitor

ALI Alisertib 1.00E-05 Kinase Inhibitor Selective Aurora A Inhibitor

DABRA Dabrafenib 1.00E-05 Kinase Inhibitor Mutatnt BRAFV600 Inhibitor

MOTE Motesanib 1.00E-05 Kinase Inhibitor Receptor Tyrosine Kinase Inhibitor


