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SUPPLEMENTARY NOTE

Discovery and replication populations quality control
While the discovery population consisted exclusively of patients with MS, the replication population included MS cases and controls assembled as part of the MultipleMS consortium. To maximize subsequent phasing and imputation accuracy, all individuals were included in the quality control process. MS cases without disability measures and controls were excluded following imputation and did not contribute to the analyses (Extended Data Fig. 1).

Cohort-level quality control. Each cohort was mapped to the hg19 reference genome and oriented to the forward strand, using strand information from the Illumina array manifest files. Mitochondrial variants and insertions and deletions were excluded. We removed individuals with sample missingness greater than 0.05. We also removed individuals with a mismatch between genetic and reported sex, after selecting a linkage disequilibrium (LD) pruned (PLINK1 --indep-pairphase 20000 2000 0.5) set of high-quality chromosome X variants with missingness < 0.02 and minor allele frequency (MAF) > 0.05. Following inspection of chromosome X F statistic histograms, thresholds for genetic sex determination were set to < 0.55 for females and > 0.8 for males. In the replication population, 4 out of 17 cohorts did not include sex chromosome data.

To account for the effects of population structure2, we performed variant quality control using the subset of participants drawn from the largest ancestral group in each cohort. To define this group, we first selected high confidence autosomal markers based on the following criteria:
· MAF > 0.05,
· Genotype missingness < 0.01,
· Hardy Weinberg equilibrium P > 10-10,
· Non-palindromic variants (excluding AT or CG variants),
· Retained following LD-pruned (PLINK23 --indep-pairwise 1000 kb 1 0.01),
· Outside regions with high principal component (PC) loadings4,
· Common with 1000 Genomes phase 35.

The resulting set of variants were used to compute PC loadings from 2,534 unrelated (PLINK2 --king-cutoff 0.1) individuals from 1000 Genomes phase 3, onto which samples from each cohort were projected. Clustering was then performed on the PCs using the ‘aberrant’ package6 in R, setting the parameter lambda to 30. The largest group comprised 85-100% of cohort participants closely matching the 1000 Genomes European superpopulation. The following variant filter criteria were then applied:
· Genotype missingness < 0.02 (0.05 in the replication cohort; threshold based on inspection of the empirical cumulative distribution function),
· Deviation from HWE P > 10-10 (10-6 for controls in the replication cohorts),
· MAF > 0.01,
· In the discovery only, between-cohort absolute allele frequency difference < 0.1 and absolute log2 fold-change < 5,
· In the replication only, differential missingness between cases and controls P > 10-4.

For the sample quality control, we excluded individuals with an absolute inbreeding coefficient > 0.05, as well as those needed to resolve pairs of relatedness at the third degree or closer (PLINK2 --king-cutoff 0.0442). Finally, cohorts were merged into strata based on genotyping platforms (n=1 for discovery, n=4 for replication).
Stratum-level quality control. Stringent sample quality control was applied to each stratum. Cross-cohort duplicates and related samples were removed following the same approach as above. Population structure was assessed using a two-step approach. We applied PC analysis (PCA) as implemented in EIGENSOFT7 to exclude outliers (> 6 standard deviations from stratum mean on PC1-10 across 5 iterations). Second, we calculated PCs on all 1000 Genomes phase 3 samples, projected our samples onto that space and excluded outliers that fell 6 standard deviations away from the mean of the European 1000 Genomes superpopulation (N=503) on PC1-10. PCs after removal of outliers are presented in Extended Data Fig. 3 and Supplementary Fig. 1.

Additional variant quality control was performed by applying the following criteria: 
· Genotype missingness < 0.05,
· Deviation from HWE P > 10-10,
· For palindromic variants, alternate allele frequency < 0.4 or > 0.6,
· Absolute alternate allele frequency difference < 0.2 compared to European samples in the Haplotype Reference Consortium (HRC; version 1.1) imputation reference panel8.

The number of variants and individuals passing quality control prior to imputation is described in Supplementary Tables 3 and 4.


Phasing and imputation. Phasing was performed using Eagle2 (version v2.4.1) in chunks of 20 Mb with 5 Mb overlapping flanking regions. The parameter for number of conditioning haplotypes (--Kpbwt, default 10,000) was set to 20,000, with other parameters kept as default. Stratum samples were merged with HRC (n = 27,166) to maximize accuracy. Imputation of the phased genotypes was then performed using Minimac49. We applied a range of analyses to examine chromosome continuity, imputation quality by chromosome position and allele frequency difference compared to the reference panel. Across strata, the median imputation quality (R2) was 0.965 to 0.985 for MAF ≥ 0.01 and the median imputation accuracy for genotyped variants (EmpR) was 0.977 to 0.997. Imputed variants with MAF < 0.01 or R2 < 0.3 were excluded, resulting in a total of 7,722,279 to 7,830,995 autosomal variants for further analysis (Supplementary Fig. 2 and Supplementary Table 4).

Supplementary Figure 1 | Principal component projections per stratum including 1000 Genomes reference populations. a, Principal component scores for African (AFR), East Asian (EAS) and European (EUR) samples in 1000 Genomes phase 3. b-f, Using a common set of high-quality variants, individuals included in the GWAS following quality control are plotted along their projected principal components (red) based on the same 1000 Genomes reference populations (gray). Stratum 1 (b) corresponds to the discovery population, whereas strata 2 through 5 (c-f) represent the replication population. Cases consistently overlap with the European cluster in 1000 Genomes.
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Supplementary Figure 2 | Imputation quality and accuracy. To estimate imputation accuracy, we examined the empirical correlation (EmpR) between true genotypes and imputed dosages for directly genotyped variants. The imputation quality genome-wide was evaluated using the square correlation (Rsq) between imputed dosages and true, unobserved genotypes. Left, EmpR and Rsq metrics are presented for variants with MAF > 0.01; Right, Rsq distribution for imputed variants with MAF > 0.01 and Rsq ≥ 0.3. Data are presented for the discovery population (a) and each of the four strata part of the replication population (b-e). MAF, minor allele frequency.
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Supplementary Figure 3 | Quantile-quantile plot for the ARMSS score discovery GWAS. Quantile-quantile plot of the observed -log10(P) versus the expectation under the null hypothesis. The genomic control inflation factor (λGC) was 1.016, while the LD score regression intercept was not significantly different from 1 (1.009, 95% CI 0.996 to 1.022). ARMSS, age-related MS severity; CI, confidence interval; LD, linkage disequilibrium.
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Supplementary Figure 4 | ARMSS score and age at onset. Earlier age at onset is associated with increased MS severity when comparing individuals of the same age. Analysis was performed using linear regression adjusted for age, sex, date of birth, EDSS source, center, genotyping batch and the first ten principal components. R2 represents the gain in coefficient of determinant (incremental R2) when age at onset is added as a variable to a regression of ARMSS score on the baseline covariates. ARMSS, age-related MS severity score.
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Supplementary Figure 5 | ARMSS score and MS susceptibility PRS. a, An increased burden of MS susceptibility variants as reflected by the PRS modestly increased ARMSS scores. This effect was similar for MHC and non-MHC variants. b, The MS susceptibility PRS displayed a stronger inverse association with age at onset. c, Adjustment for age of onset, in addition to baseline covariates, led to attenuation of the effect of the MS susceptibility PRS on ARMSS scores. R2 values represent the gain in coefficient of determinant (incremental R2; Methods). ARMSS (including residualized) and PRS scores were standardized to facilitate comparison between panels. ARMSS, age-related multiple sclerosis severity score; MHC, major histocompatibility complex; PRS, polygenic risk score.
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